
TOWARDS AN APPROACH FOR ASPECT-ORIENTED SOFTWARE
REENGINEERING

Vinicius Cardoso Garcia, Daniel Lucrédio, Antonio Francisco do Prado
Federal University of S̃ao Carlos, Department of Computer Science

P.O. Box 676 – S̃ao Carlos, Brazil

Eduardo Santana de Almeida, Alexandre Alvaro, Silvio Romero de Lemos Meira
C.E.S.A.R. – Recife Center for Advanced Studies and Systems

P.O. Box 7851 – Recife, Brazil

Keywords: Software Reengineering, Aspect Mining, Refactoring, AOP, MVCASE, Software Transformation.

Abstract: This paper presents a reengineering approach to help in migrating pure object-oriented codes to a mixture of
objects and aspects. The approach focuses on aspect-mining to identify potential crosscutting concerns to be
modeled and implemented as aspects, and on refactoring techniques to reorganize the code according to aspect-
oriented paradigm by using code transformations it is possible to recover the aspect-oriented design using a
transformational system. With the recovered design it is possible to add or modify the system requirements in
a CASE tool, and to generate the codes in an executable language, in this case AspectJ.

1 INTRODUCTION

Software reengineering is being used to recover
legacy systems and allow their evolution. Several en-
terprises are being forced to move their legacy sys-
tems to newer languages or are looking for new ways
to improve their existing software systems. This is
done mainly to reduce maintenance costs, improve
development speed and improve systems readability.

Current uses of reengineering include existing soft-
ware development techniques, such as component-
based development and object-orientation, rebuilding
legacy systems into more reusable and maintainable
systems. However, some limitations that are inher-
ent to object-oriented paradigm could lead to systems
that are hard to maintain and reuse. Design patterns
(Gamma et al., 1995) could be used to partially over-
come these limitations, but this may not be enough.

In this way, even that the system design is recov-
ered in a high abstraction level, giving the Software
Engineer a readable vision of the system functional-
ity, its maintenance, in many cases, is still an ardu-
ous and difficult task. This could interfere with the
evolution of the system in order to keep up with new
hardware and software technologies.

Aspect-Oriented Software Development (AOSD)
(Kiczales et al., 1997) may help to reduce this depen-
dency, by offering a new modular unit (aspect). Func-
tionalities that are necessarily dispersed in object-
oriented systems, such as exception handling and log-

ging, for example, can be grouped into a singleas-
pect, increasing the modularity and the reuse level of
the retrieved assets.

This paper presents a approach to help in migrating
from pure object-oriented codes to a mixture of ob-
jects and aspects using reengineering and AOSD tech-
niques, such as aspect mining, refactoring and soft-
ware transformation. The reengineering product has
great reuse potential, due to the benefits of AOSD.

The paper is organized as follows: Section 2
presents the Phoenix Reengineering Approach. Sec-
tion 3 presents the preliminary evaluation based on
the Phoenix approach and revises it based on the iden-
tified requirements. Related works are presented in
Section 4. Section 5 presents some conclusion and
future works.

2 PHOENIX APPROACH

2.1 Overview

The Phoenix approach aims at migrating object-
oriented systems to aspects. It is based on Aspect-
Oriented reverse engineering techniques and is sup-
ported by two mechanisms: a transformational sys-
tem (called Draco-PUC (Leite et al., 1994)) and
a modeling tool (called MVCASE (Almeida et al.,
2002)). The proposed approach combines differ-

274
Cardoso Garcia V., Lucrédio D., Francisco do Prado A., Santana de Almeida E., Alvaro A. and Romero de Lemos Meira S. (2005).
TOWARDS AN APPROACH FOR ASPECT-ORIENTED SOFTWARE REENGINEERING.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 274-279
DOI: 10.5220/0002520302740279
Copyright c© SciTePress



ent techniques based on our experience in software
reengineering (Alvaro et al., 2003),(Garcia et al.,
2004b).

Figure 1 shows the approach, according to the
SADT notation (Ross, 1977).

Figure 1: Reverse Engineering

In order to identify and extract crosscutting con-
cerns in legacy systems, tree steps are performed, as
follows.

Crosscutting Concerns Identification. Initially,
the software engineer analyzes the legacy system aim-
ing to identify possible crosscutting concerns that are
present. These will serve as input to the aspect min-
ing, which determines where these concerns are lo-
cated inside the system. In our approach, aspect min-
ing is performed using character sequence and regular
expression analysis, and parser-based mining, imple-
mented in the transformational system Draco-PUC.
The idea is to find static join points, occurring in the
context of the program, that refer to specific crosscut-
ting concerns.

The parser-based aspect mining was performed
through software transformations, implemented in
Draco-PUC Transformational System, to identify the
crosscutting concerns. The Figure 2 show the regu-
lar expressions to indicate the presence of exception
handling (1) and database persistence (2) concerns.

In the second stage of the reverse engineering, the
source code will be organized according to Aspect-
Orientation principles, separating the non-functional
requirements in aspects and the functional require-
ments in classes with their respective methods and at-
tributes.

Aspectual Reorganization.After the crosscutting
concerns are identified, the software engineer uses
refactorings to extract and encapsulate these concerns
into aspects. These refactorings (Garcia et al., 2004c)
consider the interlaced nature of the legacy system
code, and thus the transfer of individual members
from classes to an aspect should not be isolated. In
most cases, they are part of a set of transfers that com-
prise all the implementation elements of the concern
that is being extracted. Such concerns typically in-

Figure 2: Exception handling and database persistence
regular expressions

clude multiple code fragments scattered across multi-
ple modular units (e.g. methods, classes, packages).
Therefore, in many cases, more than one refactoring
should be applied to extract a particular concern.

Aspect-Oriented Design Retrieval. Next, the
software engineer, using software transformations in
the Draco-PUC Transformational System, obtains the
AO design, in UML descriptions. The transforma-
tions map descriptions in a programming language,
corresponding to the reorganized AO code, into de-
scriptions in a modeling language, which can be
loaded into MVCASE tool. Then, the software engi-
neering may edit the retrieved models in MVCASE,
inserting minor corrections and refinements. We cur-
rently use an UML extension that is capable of repre-
senting AOSD concepts, and is implemented in MV-
CASE (Garcia et al., 2004a). More information on
automatic design retrieval using transformations may
be seen in (Alvaro et al., 2003).

Figure 3 shows an example of AO design retrieval
using software transformations. The AO Source code
(1) is analyzed by the transformations (2), which are
responsible for mapping the code into descriptions in
a modeling language (3). These descriptions are then
loaded into MVCASE, becoming available for edition
(4).

In the reading pattern calledLHS, in (2), the trans-
former recognizes a aspect declaration, in the domain
of AspectJ language. After identifying the aspect dec-

TOWARDS AN APPROACH FOR ASPECT-ORIENTED SOFTWARE REENGINEERING

275



Figure 3: AO Design Retrieval

laration the control pointPOST-MATCHis executed.
Following this, the written pattern, calledRHS, is ex-
ecuted through aTEMPLATE, that persists the as-
pect in XMI language specifications. Later, the as-
pect members are also persisted in the XMI language
specifications.

After that, the Software Engineer, using the CASE
tool, imports the XMI descriptions containing the as-
pects definition to visualize the design of the legacy
code. This design is represented using a class diagram

with aspects-specific notation (Garcia et al., 2004a).
The retrieved design and the Aspect-Oriented

source code constitute the knowledge of the legacy
system. Next, this knowledge is encapsulated in
highly modularized, reusable assets, with updated and
consistent documentation. With the aspect-oriented
design obtained from the code, the Software Engineer
goes to the forward engineering, to obtain the new im-
plemented aspect-oriented code.

Using the design obtained in the Reverse Engi-
neering phase that was imported into MVCASE, the
Software Engineer can apply modeling techniques to
modify the existing functional and non-functional re-
quirements, add new features or define the logical and
physical architecture of the system components.

Once the new aspect-oriented design is finished, the
Software Engineer may then implement it using an
aspect-oriented language. This task is partially auto-
mated by MVCASE, through a plug-in that was devel-
oped to generate code in the target language, which in
this case is AspectJ.

The generated code can then be tested and exe-
cuted. If any problems are identified, the user can
go back and correct them directly in the code, or in
the design, since the code can be generated and tested
again. This process continues until the system passes
the tests. A set of unit tests and coverage tests may be
created to help in maintaining the correctness of the
re-constructed system.

3 PARTIAL EVALUATION

In order to obtain a partial evaluation of the Phoenix
approach, a case study was performed.

The pilot project has involved the reverse engineer-
ing of a Bank Teller System, which was developed in
Java. It is composed of 11 classes, where 3 contain
business rules and 8 are related to Graphical User In-
terfaces, through thejava.swingpackage. The system
had approximately 2.5K lines of code.

Like most object-oriented systems, database persis-
tence commands are dispersed through the system’s
classes since the separation of concerns is not always
considered during the development process.

3.1 METHODOLOGY

The systems was obtained in the Internet1. No docu-
mentation was available other than source code com-
ments. The system understanding was performed
through its execution, which generated a document
containing its main functionalities, such as:

1http://www.portaljava.com.br

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

276



i. The system allows the customer to register itself,
as well as its accounts. The account information in-
cludes the initial balance, and the account type; and

ii. For the user to access his accounts, it is neces-
sary to inform an user name and a previously stored
password. After this identification, the customer in-
forms the account number and the value that he wants
to draw or deposit.

After understanding, the system was analyzed in
order to identify the possible crosscutting concerns,
that were interlaced and spread through the classes. In
this pilot project, two concerns were identified: data-
base persistence and exception handling.

Figure 4 shows an example of how parser-based
mining may help in the identification of the exception
handling crosscutting concern.

Figure 4: Exception Handling Crosscutting Concern
Identification

The parser recognizes the“try-catch” syntactic
structure in Java code and the occurrence of aSQLEx-
ception exception type, that indicates the presence
of a non-functional requirement (exception handling).
This information is stored to be later consulted, in or-
der to aid the software engineer to extract and encap-
sulate that crosscutting concern into aspects. How-
ever, it must be stressed that parser-based mining,
as well as character sequence and regular expression
analysis, is just an aid to perform the mining, which
must be carried out manually by the software engi-
neer.

Refactorings were applied to extract these con-
cerns, and the AO Design was retrieved, both activ-
ities through transformations. In order to verify if
the retrieved assets were still in conformance with the
original system requirements, a new implementation
of the system was performed in a forward engineer-
ing step. The new AO system was executed, and its
observation verified that the functionalities of the OO
system were maintained.

The Figure 5 shows an example of transformation
to refactoring exception handling in source code. The
“try-catch” syntactic structure (1) was recognized by

an LHS reading pattern in the“RefactoringExcep-
tionByTryCatch” transformer (2). After identifying
the “try-catch” declaration, the control pointPOST-
MATCH is executed. Following this, the written pat-
tern (RHS) creates an aspect responsible to exception
handling (3).

Figure 5: Exception Handling Aspectual Refactoring

Table 1 shows a brief comparison between the OO
and the AO systems.

Table 1: Result Evaluation
OO AO

Classes 11 11
Aspects - 6
Lines of Code (LOC) 2492 2324

The reduced number of lines of code and the in-
creased number of modules (aspects) indicate that the
retrieved assets are smaller and better divided. Since
each aspect groups a single concern, the modules are
also more cohesive. Therefore, we may deduct that

TOWARDS AN APPROACH FOR ASPECT-ORIENTED SOFTWARE REENGINEERING

277



the retrieved assets are more reusable than the origi-
nal ones.

3.2 DISCUSSION

This was only an initial study, to prove the viability of
the proposed approach.

The consequences on identifying and separating
crosscutting concerns are equivalent to those stated
by AOSD:

i. Automation: The use of software transforma-
tions, through Draco-PUC, automates an important
stage in the reengineering: the recovery of the sys-
tem design. The Reverse Engineering activities, such
as the crosscutting concerns identification and the as-
pectual reorganization, are also accelerated due to this
automation;

ii. Requirements traceability: After the separa-
tion of concerns, it is easier to trace each module to a
specific requirement;

iii. Easier Maintenance: Requirement changes,
functionality improvements and code restructuring
are also easier to perform;

iv. Readability: The new code is lighter and
less polluted, because attributes and methods are not
spread through the system; and

v. Reuse: The identified and extracted aspects can
be implemented in such a way that they can be later
reused. This may even give origin, with the accom-
plishment of different case studies, to a framework of
aspects.

Also, some disadvantages could be observed:
Transformers construction: Since Phoenix uses a

transformational system help the Software Engineer
in some tasks of the process, there must exist trans-
formers to identify crosscutting concerns, to refac-
toring source code and to recover design information
directly from the code. However, these transformers
must be first constructed, which requires great effort
and knowledge about the involved languages. The
time spent in the transformers construction is also a
critical factor. However, it must be stressed that this
effort is later reused in any legacy system written in
the same language. The time reduction obtained when
using these transformers in the design recovery, as
discussed earlier, also justifies this effort.

4 RELATED WORK

The first relevant work involving the OO technology
and retrieval of knowledge embedded in legacy sys-
tem was presented by Jacobson and Lindstron (Jacob-
son and Lindstrom, 1991), who applied reengineering
in legacy systems that were implemented in proce-
dural languages. The authors state that reengineering

should be accomplished in a gradual way, because it
would be impracticable to substitute an old system for
a completely new one.

Today, on the top of OO techniques, an additional
layer of software development, based on components,
is being established. The goals of“componentware”
are very similar to those of OO: reuse of software is
to be facilitated and thereby increased, software shall
become more reliable and less expensive (Lee et al.,
2003).

Among the first research works in this direction,
Caldiera and Basili (Caldiera and Basili, 1991) have
explored the automated extraction of reusable soft-
ware components from existing systems. They pro-
pose a process that is divided in two phases. First,
it chooses, from the existing system, some candi-
dates and packages them for possible independent
use. Next, an engineer with knowledge of the appli-
cation domain analyzes each component to determine
the services it can provide.

Investigations about AOSD in the literature has in-
volved determining the extent that it can be used
to improve software development and maintenance,
along the lines discussed by Bayer in (Bayer, 2000).
The AOSD can be used to reduce code complexity
and tangling; it also increases modularity and reuse,
which are the main problems that are currently faced
by software reengineering. Thus, some works that use
AOSD ideas in reengineering may be found in the re-
cent literature.

In Kendall’s case study (Kendall, 2000), exist-
ing object-oriented designs for role models are used
as the starting point for reengineering with aspect-
oriented techniques. In this work, it did not describe
the reengineering process in full detail. They are
just told the comparative results among the object-
oriented code and the aspect-oriented code, target of
the reengineering. The use of AOSD in this case study
reduced the overall module (30 methods) and lines of
code (146).

Currently, with AOSD technologies being adopted
and extended, new challenges and innovations start
to appear. AOSD languages, such asAspectJand
AspectS, the contributions of several research groups
and the recent integration with application servers,
such asJBOSS, demonstrate the potential of AOSD
in solving real problems, including those pursued in
reengineering.

5 CONCLUSIONS AND FUTURE
WORK

Many software reengineering approaches have been
proposed to redesign and rebuild legacy systems. The
goal is to develop a global picture on the subject sys-

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

278



tem, which is the first major step toward its under-
standing or transformation into a system that better
reflects the quality needs of the application domain.

This paper presents a migrating proposal, that inte-
grates different techniques and mechanisms to guide
and help software engineers in redesign and rebuild of
software systems, using transformations from object-
oriented to aspect-oriented paradigm.

This integration has the goal of guiding the user in
the task of retrieving the system design, according to
the aspect-oriented paradigm, willing to get a better
degree of reuse and develop a system that is easier to
maintain. It also helps to improve development pro-
ductivity and support for changes in the requirements.

Additionally, an evaluation was accomplished to
show the reengineering proccess usefulness. By fol-
lowing the Phoenix, it could be verified that the
AOSD brings several and important benefits to soft-
ware development. The way as the aspects is com-
bined with the system modules allows the inclusion
of additional responsibilities without committing the
clarity of the code, maintainability, reusability, and
providing a greate reliability.

As a future work, the possibility of using the Ob-
ject Management Group (OMG) Model Driven De-
velopment (MDD) in the Phoenix approach is being
studied to enable rapid design, development, modifi-
cation and deployment of the aspect-oriented appli-
cation. The idea is that through MVCASE, the Soft-
ware Engineer could generate complete, working ap-
plications directly from a visual model, in this case an
UML+AO specifications, and using active synchro-
nization to keep both model and code up to date dur-
ing rapid application changes.

Graphical visualization of the possible crosscutting
concerns source code is also being developed. In this
way, the task of identifying different concerns in the
legacy system should be facilitated.

REFERENCES

Almeida, E., Bianchini, C., Prado, A., and Trevelin, L.
(2002). MVCASE: An integrating technologies tool
for distributed component-based software develop-
ment. In Proceedings of the 6th Asia-Pacific Net-
work Operations and Management Symposium. (AP-
NOMS’2002) Poster Session. IEEE Computer Society
Press.

Alvaro, A., Lucŕedio, D., Garcia, V. C., de Almeida, E. S.,
do Prado, A. F., and Trevelin, L. C. (2003). Orion-RE:
A Component-Based Software Reengineering Envi-
ronment. InProceedings of the 10th Working Con-
ference on Reverse Engineering (WCRE), pages 248–
257. IEEE Computer Society Press.

Bayer, J. (2000). Towards engineering product lines using
concerns. InWorkshop on Multi-Dimensional Sep-

aration of Concerns in Software Engineering (ICSE
2000).

Caldiera, G. and Basili, V. R. (1991). Identifying and quali-
fying reusable software components.IEEE Computer,
24(2):61–71.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns - Elements of Reusable
Object-Oriented Software. Addison Wesley Profes-
sional Computing Series. Addison-Wesley.

Garcia, V. C., Lucŕedio, D., Frota, L., Alvaro, A.,
de Almeida, E. S., and do Prado, A. F. (2004a). A case
tool for aspect-oriented software development (in por-
tuguese). In XI Tools Section - XVIII Brazilian Sym-
posium on Software Engineering (SBES 2004).ISBN
85-7669-004-7.

Garcia, V. C., Lucŕedio, D., do Prado, A. F., de Almeida,
E. S., and Alvaro, A. (2004b). Using aspect min-
ing and refactoring to recover knowlegde embedded in
object-oriented legacy system. InProceedings of the
IEEE International Conference on Information Reuse
and Integration (IEEE IRI-2004).IEEE Computer So-
ciety Press.

Garcia, V. C., Piveta, E. K., Lucrédio, D., Alvaro, A.,
de Almeida, E. S., do Prado, A. F., and Zancanella,
L. C. (2004c). Manipulating Crosscutting Concerns.
4th Latin American Conference on Patterns Lan-
guages of Programming (SugarLoafPlop 2004).

Jacobson, I. and Lindstrom, F. (1991). Reengineering of
old systems to an object-oriented architecture. InPro-
ceedings of the Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’91),
pages 340–350. ACM Press.

Kendall, E. A. (2000). Reengineering for separation of con-
cerns. InWorkshop on Multi-Dimensional Separation
of Concerns in Software Engineering (ICSE 2000).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-Oriented Programming. InProceedings of the
11st European Conference Object-Oriented Program-
ming (ECOOP’97), volume 1241 ofLNCS, pages
220–242. Springer Verlag.

Lee, E., Lee, B., Shin, W., and Wu, C. (2003). A reengi-
neering process for migrating from an object-oriented
legacy system to a component-based system. InPro-
ceedings of the 27th Annual International Computer
Software and Applications Conference (COMPSAC),
pages 336–341. IEEE Computer Society Press.

Leite, J. C., Sant’anna, M., and Freitas, F. G. (1994). Draco-
PUC: A Technology Assembly for Domain Oriented
Software Development. InProceedings of the 3rd In-
ternational Conference on Software Reuse (ICSR’94),
pages 94–100. IEEE Computer Society Press.

Ross, D. T. (1977). Structured analysis (SA): A language
for communicating ideas.IEEE Transactions on Soft-
ware Engineering, 3(1):16–34. Special collection on
Requirement Analysis.

TOWARDS AN APPROACH FOR ASPECT-ORIENTED SOFTWARE REENGINEERING

279


