
AN MDA-EDOC BASED DEVELOPMENT PROCESS FOR
DISTRIBUTED APPLICATIONS

Rita Suzana Pitangueira Maciel, Bruno Carreiro da Silva
Faculdade Ruy Barbosa, Rua Theodomiro Batista, Salvador-BA, Brazil

Carlos André Guimarães Ferraz, Nelson Souto Rosa,
Centro de Informática, Universidade Federal de Pernambuco, Recife-PE, Brazil

Keywords: MDA, EDOC, Distributed Application Development

Abstract: With the proposal of MDA by OMG, the modelling of systems, in development process of distributed
applications, has become a central point, therefore software models go beyond system documentation.
EDOC - MDA profile for modelling distributed application - uses as conceptual framework the RM-ODP.
These elements, although very useful, are insufficient for a software development process; therefore they
are not followed by development methodologies. In this article is presented a MDA-based development
process for distributed applications that utilize EDOC and the RM-ODP. The process is described as a
sequence of steps and a set of diagrams that should be specified to provide a MDA-based system
description.

1 INTRODUCTION

Distributed applications are inherently complex,
from their design, development and testing through
to maintenance (Bernstein, 1996). The Object
Management Group (OMG) has been constantly
investing in proposals to facilitate the development
of distributed applications. To improve their
applicability, middleware environments
incorporating the components concept (ex.
CORBA/CCM (OMG, 2002a) and J2EE/EJB
(Shannon, 2003)) and specific services, which cater
to a given application category, are being proposed.
One of the most recent initiatives from this scenario
is OMG MDA (Model Driven Architecture) (OMG,
2003).

MDA is a framework for systems development,
based on stabilized grounds of software engineering,
which separate the specification of the functionality
of a system, from the modeling and mapping of this
functionality in a specific technological platform.
MDA uses abstract models to specify all the logic of
the application, where concepts referring to
languages or platform are irrelevant – platform
independent model (PIM). This high level model is
subsequently used to create new models that express

the requirements of the system in a specific platform
- platform specific model (PSM).

 These models are not only used for systems
documentation, but also as a tool for
implementation. Each activity of the development
process requires a number of input models that
produce other models as an output. Accordingly, the
construction process of an application can be seen as
a set of transformations that lead to the final system.
The system and its requirements, as well as the
domain of the application, can be seen through these
models that describe it through different views and
levels of abstractions.

To manage the models, OMG provides a series
of UML profiles. These include EDOC (Enterprise
Distributed Object Computing Specification) (OMG,
2002b), which is a profile for specifying distributed
systems based on components. EDOC, which
consists of various sub-profiles, uses (Reference
Model of Open Distributed Process) RM-ODP (ISO,
1995) as a conceptual framework to specify the PIM
of applications.

The use of modeling techniques and
methodologies facilitates the construction of
applications. Although EDOC and the RM-ODP
framework offer a set of tools that permit the

3
Suzana Pitangueira Maciel R., Carreiro da Silva B., André Guimarães Ferraz C. and Souto Rosa N. (2005).
AN MDA-EDOC BASED DEVELOPMENT PROCESS FOR DISTRIBUTED APPLICATIONS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 3-10
DOI: 10.5220/0002521300030010
Copyright c© SciTePress

Figure 1: RM-ODP views in MDA PIM and PSM

specification of a system based on high abstraction
models, they do not offer a guide to orient

developers in the application of these concepts.
Together they provide a set of definitions and
notations, but not a process with well defined steps
to be followed (Gervais, 2002).

Some proposals are being drawn up to assist
developers in the construction of distributed
applications through MDA. In (Wang, 2003) a
specific application development process is
proposed for the educational domain. This proposal
does not use EDOC. In (Gervais, 2002) the ODAC
methodology is proposed for the development of
applications through MDA. Although ODAC is
based on the conceptual framework of RM-ODP, it
does not yet use EDOC. The use of the profiles
proposed by OMG guarantees, in a more extensive
fashion, the interoperability of models proposed by
MDA. Methodologies and tools that assist in the
development of applications and use EDOC or other
sub-profiles proposed by OMG, will have the same
conceptual and notational framework. This aspect
facilitates the reading of models both by
development teams and by process automation tools,
besides which EDOC allows the application to be
seen through high level components as of the initial
models, facilitating the application decomposition
from the perspective of components.The objective of
this article is to present a development process
proposal for distributed applications through MDA
and the EDOC profile. This process was applied to
the development of the InterDoc ((Environment for
Supporting the Interoperability among Collaborative
Document Authoring Tools) (Maciel, 2004). Based
on the experience with the development of InterDoc,
the process is being applied in other environments
for the specification of a complete development
methodology based on EDOC.

The rest of this text is organized as followed: the
next section presents the proposed process overview.
Section 3 presents the main steps for PIM
specification. In the conclusion, we summarize the
contribution of the work presented in this paper.

2 THE DEVELOPMENT PROCESS
OVERVIEW

The process is based on the concept of views
proposed by RM-ODP and its notation originates
from EDOC. A viewpoint is a subdivision of a
complex system specification. It corresponds to a
particular perspective, allowing the system to be
“viewed” from a particular angle, focusing on
specific concerns. Views permit the structuring of
modeling activities for an application. RM-ODP is
an architectural framework and not a methodology,
i.e. it is not prescriptive enough and does not provide
tools such as a notation or a sequence of steps to
specify the viewpoints that would help the software
designers to build the system specification. Three
categories of model should be specified: Domain,
Project and Operational (fig 1).

The Domain model corresponds to the
specification of the Enterprise and Information’s
Views. The scope and responsibilities of the
application are defined in this model via the
functional requirements initially established for the
application. The services to be offers and the
information handled by the application should be
defined in this model. The Project Model describes
the Computational view for the specified Domain
model. This model identifies the components that
will fulfill the requirements established in the
domain model, independently of the platform. The

PIM
Domain Model Design Model

PSM
Operational Model

Engineering
View

Technology
View

Mapping
Rules

Enterprise
View

Information
View

Computational
View

Application
Functional
Requirements

Process
Information’s
Necessity

Information
Model

Business
Process Model

Application Non-Functional Requirements

Component
Structures Models

Platform Facilities Specification

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

4

non-functional requirements of the application
should be observed on this occasion to identify
elements for the performance thereof. The Domain
and Project models form PIM as described in MDA.
The Operational Model describes the application
execution environment on a specific platform and
corresponds to the specification of Engineering and
Technology Views. The characteristics of the
implementation platform chosen are considered in
this model to reflect the real execution environment.
The Operational Model form PSM as described in
MDA.

Table 1 presents a suggestion of a set of
diagrams that should be made to specify the RM-
ODP views and consequently the proposed models.
The EDOC presents several UML sub profiles;
however our process just uses the Business, Entity
and CCA profiles. The application’s objectives,
politics and restrictions specification, that is part of
the Engineering view concepts, should be specified,
respectively, through use case diagrams and a simple
text. These mechanisms are not part of the EDOC
proposal, but they are suggested in the EDOC
specification annexes (OMG, 2002c).

Table 1: Process Diagrams

Engineering View Standard UML and
Business Profile

Objective Definition Use Case Diagram
Main Policies and
Restriction

Text

Business Process
Identification

Collaboration Diagram

Activity Definition Class Diagram
Information View Entity Profile
Entities Data Definition Class Diagram
Composite Data
Definition

Class Diagram

Computational View CCA Profile
Architecture Structure Collaboration Diagram
Component Structure Class Diagram
Protocol Specification Class Diagram
Protocol Structure Class Diagram
Protocol Description Activity Diagram
Protocol Choreography Activity Diagram

3 THE PROCESS GUIDELINES
FOR PIM

The development process was applied to describe
reference architecture and development of the
InterDoc environment. InterDOC should allow the
various asynchronous activities of the authoring
process to be executed in different tools. InterDOC

should be made available as middleware domain-
specific service layer, which when positioned
between collaborative authoring supporting
applications (CASA) and their repositories,
promotes interoperability among these
environments. Groups of authors can hold
synchronous or asynchronous sessions for the
planning, drafting, revision and editing of a
document in their favorite environment. In any
phase of the authoring process, the document can be
made available through InterDOC to another group
of authors that uses another environment, or even an
individual work tool, to perform an activity. For
InterDOC, collaborative authoring is divided into
two large phases: Planning and Writing. The
Planning phase is when an author from the group
provides the basic information for the description of
the authoring project of a document: group of
authors, roles of authors in the group, location of the
repository of shared information etc. The Writing
phase is when authors make versions of the
document available for other authors to execute
activities.

 We will use InterDoc, more precisely the
planning phase, to illustrate how the methodology
can be applied. The example focus will be the PIM
specification

3.1 Enterprise View

In this view the communities must be identified,
their business-oriented objectives, processes and the
main constraints. The Enterprise view describes
interactions among the different InterDocs and
interactions between the applications, repositories
and the InterDocs.

Step 1. Objective and Constraints Definition.
InterDoc has just one community type: the
Authorship community. The Authorship community
involves the authors and the applications used for
writing documents. The main InterDoc’s constraints
refer to the community that registers a project to be
the same that hosts the repository of documents for
the group.

The EDOC does not specify a notation to identify
the objectives of a community. One use case
diagram was used and ten use cases were identified:
Design a Project, Define a Group, Define Author,
Define Role, Define Activity, Delegate an Activity,
Register an Activity, Notifies Authors, Retrieve
Documents, Communication with other Domains.

Step 2. Business Process and Activity
Identification. In this step should be identified and
detailed the processes that accomplish the objectives
of the application defined in the step 1.

AN MDA-EDOC BASED DEVELOPMENT PROCESS FOR DISTRIBUTED APPLICATIONS

5

Figure 2: Business Process Design a Project

The Business Process Profile was the EDOC
sub-profile used to model the Enterprise view. This
sub-profile permits design models that present the
structure and behavior of the application in the
environment where it is inserted. The functionalities
that InterDoc realized are described in terms of
Business Process (BP) that specifies a complete
business task. A BP may contain Activities, which
are the pieces of work required to complete a task.
Data flows connect different BPs, and Activities in a
BP, defining temporal and data dependencies
between this elements. These data are modeled as
communication ports. InterDOC has two major BPs:
Design a Project and Writing that specify the
situations described in the beginning of this section.
Figure 2 presents the diagram of Design a Project.

Design a Project has two Activities: Form a
Group and Register a Project. To initiate this
process, first it is necessary to define a group with
the authors’ information and the roles they will play
in the project. The Port Authors and Role
Information fulfill these data. This process is
finished when a group reference, that identifies the
group uniquely, is generated. To initiate the Register
of a Project, it is necessary the group reference and
the information about the workspace that will store
the shared information. The activities are
decomposed up all the objectives specified in the
Enterprise View (use cases) were reached.

3.2 Information View

The Information view models data (Entity) and their
relationships. Entities represent concepts of the
problem domain. The resulting models present the
structure of used objects that represents the concepts
of the business in the computational environment.
The description of objects that InterDoc will handle
internally was provided.

The Entities Profile was the EDOC sub-profile
used. A central concept of the Entities Profile is an
EntityData. An EntityData is a structure of data that
represents one definitive concept of the problem
domain, or either an Entity. An EntityData is
equivalent to an entity or a relation in the relational
model. CompositeData are derived from the
EntityData to group data used in the component’s
ports.

Step1 – Entity and Composite Data
Identification. EntityData and their relationships
should be specified though a class diagram (Figure
3).For the InterDoc was defined the following
Entitydata: Project - a certain authorship project;
Repository - storage of the project information; File
- file stored in the repository; Document and
Comments - specializations of File to represent
documents and their respective comments; Activity -
activities that the authors accomplish in a document;
Author – user-author; Group - authors' group and
Role - the authors' role in a group.

A project has a repository of associated files and
belonging to a certain group of authors. These
authors can play different roles in different projects.
The role has associated to them certain actions.
Actions will be registered in the environment. After
revising a document, an author can save in the
repository a new version of these documents.
Authors revise documents producing comments (or
annotations) or versions of these documents.
Therefore, a document can be a version of another
one, and a comment is associated to a document.

3.3 Computational View

The Computational view is a viewpoint on the
system and its environments that enable distribution
through functional decomposition of the system into
components that interact at interfaces. Component
Collaboration Architecture (CCA) was the EDOC
sub-profile used for modeling this view.

Design a Project

Form a Group

Register a ProjectAuthors – Role
Informations

Workspace
and Project

Information

Group Reference

Project Reference

Project
Reference

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

6

Activity
<<EntityData>>

Author
<<EntityData>>

Repository
<<EntityData>>

File
<<EntityData>>

0..* 0..*0..* 0..*

edit

Group
<<EntityData>>

0..*

1..*

0..*

1..*

form

Project
<<EntityData>>

1..*1..*

store

0..*0..*

has

1..*1..*

belong

Action
<<EntityData>>

Role
<<EntityData>>

1..*

1..*

1..*

1..*

permit

Comments
<<EntityData>>

Document
<<EntityData>>is related

is version

RealizedDelegated

Figure 3: InterDoc Information Model

Step 1. Arquitecture Definition (Component
Overview Definition). The structure of the
component in terms of communication that will form
InterDOC, as well the interfaces and the data that
these components handle, are described in the
models of this view. Figure 4 shows an overview of
the InterDoc’s component structure model in terms
of Process Components (PC). A PC represents an
active processing unit that has a group of ports to
interact with another PC. Each PC will execute one
or more Activities identified in the Enterprise
View. Activities with correlate information were
grouped into only one PC. InterDOC has six major
PCs:

• DocumentSharingService: manages the
access to the information that is stored in the
repositories;
• ProjectManagerService: manages the
access to the project’s information.
• AuthoringActivitiesService: manages the
delegation and registration of authoring
activities;
• ActivitiesNotificationService: performs
the notification of an author’s activity to the
members of a group;
• AuthorGroupService: manages access to
authors and groups information.

• InterDomainCommunicationService: is a
wrapper service component that formats
messages for the interoperability protocol
used by the domain.

The InterDOC reference architecture also
describes two client-side components that use its
services: the CASA components and the Repository
component. These components are, respectively,
ApplicationClient and RepositoryClient
ProcessComponent.

The interfaces are conceived through the Facade
design pattern. The IApplicationService is a
generalization of all the communication interfaces
among ApplicationClient the InterDoc. The same
design is applied to IRepositoryService that
generalized the communication between the
InterDoc and repositories; and IInterDomainService
that generalized the communication among different
InterDoc.

Step 2. Protocol and Component Structure
Specification. A protocol specifies what messages
the component sends and receives when it
collaborates with another component. For each
activity that a PC performs, a protocol was defined.
Figure 5 describes the RegisterProjectProtocol.

AN MDA-EDOC BASED DEVELOPMENT PROCESS FOR DISTRIBUTED APPLICATIONS

7

IRepositoryService

AplicationClient
<<ProcessComponent>>

RepositoryClient
<<ProcessComponent>>

IAplicationService

InterDoc
<<ProcessComponent>>

IInterDomainService

ActivitiesNotificationService
(f rom Inte rDoc)

<<ProcessComponent>>

AuthorGroupService
(from InterDoc)

<<ProcessComponent>>

AuthoringActivitiesService
(f rom Inte rDoc)

<<ProcessComponent>>

DocumentSharingService
(f rom InterDoc)

<<ProcessComponent>>

InterDomainsComunicationService
(from InterDoc)

<<ProcessComponent>>

PlanningService
(from InterDoc)

<<ProcessComponent>>

Figure 4: InterDoc Components Structure Overview.

Planning Server
<<ProcessComponent>>

ReceiveProjectInformation
<<Protocol Port>> <<Responds>>

ApplicationClient
<<Process Component>>

SendProjecInformation
<<Protocol Port>> <<Initiates>>

RegisterProjectProtocol
<<Protocol>>

Figure 5: Register Project Protocol Specification (external view).

This protocol specifies the interaction among the
components PlanningServer and ApplicationClient
for the accomplishment of the activity Register a
Project of BP Design a Project. In this diagram type
it is specified which component initiates
(<<initiates>>) the protocol and which component
answers (<< responds>>) though Protocols Ports.
So this diagram describes the protocol’s external
view.

The Protocol structured diagram details the
protocol’s internal view. It describes the data
involved in a Protocol and the ports type. Each port

has an association to a Composite Data derived from
the Entities Data defined in the Information View.
Figure 6 shows the protocol structure for the
RegisterProjectProtocol. The Protocol Port
ReceiveProjectInformation (fig 5) is composed of
two Flows Ports: GroupReference and Project
Information (fig 6). SendProjectInfo Protocol Port
is composed of ProjectReference and
ProjectDeclinedType Flow Ports. A Flow Port is
port that which defines a data flow in or out of a port
on behalf of the owning component or protocol.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

8

Project_Identification

Project_ID

<<CompositeData>>

Group Identification

Group_ID

<<CompositeData>>

Registrat ion Project
Informations

Project Name
Project Description
StartDate
FinishDate
Project_Owner_ID
Supported Extensions
Project Workspace

<<CompositeData>>

Group Reference
<<FlowPort>>

Project Reference
<<FlowPort>>

Project Informat ion
<<FlowPort>>

RegisterProjectProtocol
<<Protocol>>

<<Responds>>

<<Initiates>>

<<Responds>>

Project Denied Reference
<<FlowPort>>

<<Initiates>>

Project Denied Type

ProjectDeniedData

<<CompositeData>>

Figure 6: Register Project Protocol Structured (internal view)

Each component is detailed in terms of ports and
a set of protocols it implements. Figure 7 describes
the PlanningService component structure. This
component answers to seven protocols through the
specified interfaces. These interfaces are
IApplication Interface specializations (fig 4). An
Interface is a protocol (protocol stereotype)
constrained to match the capabilities of the typical
object interfaces. PlanningService begins two other
protocols: Notify Information and Comunication
InterDomain. The protocol Notify Information
establishes a communication with the component
ActivitiesNotification for notification of delegated
and realized activities in a text. The protocol
Comunication InterDomain links two
InterComunicationDomain components for
communication establishment with different
InterDocs.

Two activity diagrams describe the dynamic
aspects of a protocol (not shown in this text). One of
this activity diagrams describes the protocol
choreography to sequence the actions of the ports
within one component. Another one describes the
messages sequence between two or more
components.

4 CONCLUSIONS AND FUTURE
WORKS

This article presented a proposal for the distributed
application development process through the MDA
approach. The process was applied to the
development of the InterDoc environment that is
implemented in CORBA/CCM. The main activity of
the application development approach through MDA
is the production of system models through UML
profiles. The MDA profiles only make elements
available for the specification of applications, which
do not track methodologies for the software.
Methodologies leverage productivity as similar
development processes can be applied to various
systems. Developers need methodologies to
facilitate their work, leaving them free to focus their
attention on the functional requirements of the
application.

The use of EDOC as a sub-profile for the
production of models proved helpful in the process
of breaking down a system into standalone
components, since InterDoc was designed as a set of
components from the initial phases of the project.
Accordingly, the mapping of components for the
CCM platform was facilitated due to the use of the
same approach. At the same time EDOC provides
sundry sub-profiles that can be combined in different
ways. The combination of the profiles used, as well
as the diagrams chosen to comprise the process,
resulted in a smooth process that does not
overburden the developer.

AN MDA-EDOC BASED DEVELOPMENT PROCESS FOR DISTRIBUTED APPLICATIONS

9

Register Project Interface
<<Interface>>

Search Group Interface
<<Interface>>

Search Project Interface
<<Interface>>

Define Author-Role
Interface

<<Interface>>

Form Group Interface
<<Interface>>

Define Role Interface
<<Interface>> Searh Role Interface

<<Interface>>

Notification Protocol
<<Protocol>>SearchGroupInformation

<<Protocol Port>>
Register Project

<<Protocol Port>>

SearchProjectInformation
<<Protocol Port>>

SearchRoleInformation
<<Protocol Port>>

DefineRoleInformation
<<Protocol Port>>

Form Group
<<Protocol Port>>

DefineAuthorRoleInformation
<<Protocol Port>> Notify Information

<<Protocol Port>>

PlanningService
<<ProcessComponent>>

<<Responds>>
<<Responds>>

<<Responds>>

<<Responds>>

<<Responds>>
<<Responds>>

<<Responds>>

<<Ini tiates>>

Comunicat ion InterDomain
<<Protocol Port>>

<<Initiates>>

Comunication
Inter-Domain Protocol

<<Protocol>>

Figure 7: PlanningService Component Structure.

 The report on the development process, through a
sequence of steps and guides to the mapping of
concepts, is a stage for the specification of an
application development methodology based on
components that utilize EDOC as a conceptual
framework. These steps and guides are being used in
other applications for review and consolidation of
the development methodology. After consolidation,
the methodology will be applied in the development
of applications using MDA tools that support the
automation of the application development process.

REFERENCES

Bernstein, P., 1996. Middleware: A Model for Distributed
System Services. Communication of the ACM. New
York. v 39. n 2. p 86-98. February.

ISO, 1995. Basic Reference Model of Open Distributed
Process, ISO/IECIS 10746. Partes 1-4.

Gervais, M., 2002. Towards MDA-Oriented Methodology.
In: Annual International Computer Software and
Applications Conference, England, August, p 265-270.

Maciel, R.; Ferraz, C.; Rosa, N., 2004. INTERDOC:
Interoperable Services in Collaborative Writing
Environments. In: 8 th IASTED International
Conference on Software Engineering and Application -
SEA, Cambridge,Ma -USA.

OMG, 2002. CORBA Component Model v3.0 full
specification. OMG Adopted Specification (formal/02-
06-05).

OMG, 2002. UML Profile for Enterprise Distributed
Object Computing Specification. OMG Adopted
Specification (ptc/02-02-05).

OMG, 2002. UML Profile for Enterprise Distributed
Object Computing Specification – Part II. Supporting
Annexes. OMG Document (ad/2001-08-20).

OMG, 2003. MDA Guide Version 1.0. OMG Document.
Shannon, B., 2003. Java 2 Platform Enterprise Edition

Specification v 1.4. [s.l.]. Sun Microsystems.
Wang, H.; Zhang, D., 2003. MDA-based Development of

E-Learning System, In: 27th International Computer
Software and Applications Conference, IEEE Press,
Nov., p. 684-689.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

10

