
APPROACHES OF WEB SERVICES COMPOSITION
Comparison between BPEL4WS and OWL-S

Daniela Barreiro Claro1 2, Patrick Albers
1 4 rue Merlet de la Boulaye, BP 30926 49009 Angers cedex 01, France

Jin-Kao Hao
2University of Angers Faculty of Sciences – LERIA 2, Boulevard Lavoisier, 49045 Angers Cedex 01 - France

Keywords: Web Services composition, semantic web, owl-s, bpel4ws

Abstract: Web Services technologies allow interaction between applications. Sometimes a single service given alone
does not meet user’s needs. In this case, it is necessary to compose several services in order to achieve the
user’s goal. For composing web services, we developed an example using two main approaches: the first
one is BPEL4WS, a Business Process composition, and the other is OWL-S, an ontology specifically for
web services composition. In this paper we explain and compare the features of these two approaches and
the manner of each one does a web service composition.

1 INTRODUCTION

Many services are available around the Web and
people start using them to achieve their goals and
facilitate interaction between systems.

A web service can be characterized as a method
that is available on Internet and that does not have
any graphics interface. For instance we can
enumerate many web services like: zip code web
service in which an user sends a zip code, and it
returns the streets name; booking a flight, in which a
user gives the day periods and the web service
returns the flight numbers; a fiscal note integration
between e-business negotiations, in which an
enterprise A sends a purchase note to enterprise B,
and this enterprise B can check online the amount
and the quantity available and do the payment as
soon as possible, minimizing time between e-
business (Schroeder, 2004).

Nevertheless there are many services around the
web, each one, taken alone, has a limited utility. For
example, if a user wants to travel, it is not only
sufficient to book a flight, but also to care about
reserving a hotel, renting a car, getting entertained,
and so on. The user needs to execute all these
services manually and these tasks can take long time
and effort.

For that reason, the notion of composite services
starts being used as a collection of services in order

to achieve a particular goal. Indeed, this composition
may utilize as many web services as necessary to
achieve one goal (Berargi, 2003).

In order to integrate complex services, industry
proposed, at first, technologies such as: WSCI (Web
Service Choreography Interface), XLANG, WSFL
(Web Service Flow Language), WSCL (Web
Service Composition Language) and more recently
BPEL4WS (Business Process Execution Language
for Web Service) (Curbera, 2003). The later is a
combination of Microsoft’s XLang and IBM’s Web
Service Flow Language (Peltz, 2003).

On the other hand, the semantic web approach
has increased and has taken a considerable position
in web services composition. The advance of OWL-
S allows an unambiguous web service description
avoiding problems of retrieving wrong services
(OWL-S, 2004) (McIlraith, 2001).

As far as composing web services, we have
implemented an example in which an airplane ticket
and hotel can be booked and a car rented through a
travel agency. Indeed, we have three autonomous
web services, each independently executing an
activity. In our composition, we compose these
services in a special way: the first two services,
bookAirplane and bookHotel will be executed in
parallel because the inputs given by the user will be
the same for both services. Thus, we can execute
them at the same time and profit from a quicker

208
Barreiro Claro D., Albers P. and Hao J. (2005).
APPROACHES OF WEB SERVICES COMPOSITION - Comparison between BPEL4WS and OWL-S.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 208-213
DOI: 10.5220/0002522202080213
Copyright c© SciTePress

execution. Conversely, the third service for renting a
car needs to be executed after the bookHotel service.
This is mandatory because we consider that anybody
that will rent a car does not want to reach the car
rental company. Thus, thinking like that, we
proposed that the service bookHotel will have as
output the area where it is located. The rentCar
service will have as input this area parameter, so the
company’s car will be located in the same area as
the hotel. As a result, the bookHotel service and
rentCar service in our composition must be executed
in sequence to assure that the output “area” will be
available and passed correctly. The figure 1 shows
this schema.

In this paper we propose a web service composition
schema in order to show the characteristics between
composing using the two ongoing processes:
BPEL4WS and OWL-S.

This paper is organized as follow: the second
section describes a composition using BPEL4WS.
The third one shows this composition using OWL-S,
including semantic effects. The fourth section
explains the comparison between these technologies.
Finally we show our conclusions.

2 COMPOSING USING BPEL4WS

The web services composition using BPEL4WS
allows the manipulation of services as activities and
processes. Actually, the BPEL4WS language is a
merge between Microsoft’s XLang and IBM’s
WSFL, but all of them are considered as a web
service flow language (van der Aalst, 2003).

As an executable process implementation
language, the role of BPEL4WS is to define a new
web service by composing a set of existing ones.
The interface of the composite service is described
as a collection of WSDL PortTypes.

A BPEL4WS process defines the roles involved
in a composition as abstract processes. A buyer and
a seller can be represented by two roles. They are
expressed using partner link definitions. We can
have a role for each web service that is composed

and does some activity. In order to integrate
services, they are treated as partners that fill roles
(Mandell, 2003). BPEL4WS depends directly on the
WSDL of the service. A business process defines
how to coordinate the interactions between a process
instance and its partners. Thus, a BPEL4WS process
provides one or more WSDL services. The
BPEL4WS process is defined only in an abstract
manner, allowing only references to service
portTypes in the partnerLink (Andrews et al, 2004).
Each partner is characterized by a partner link and a
role name. In summary, the main idea of business
process is to create an organizer that points to each
service endpoint that will be actually executed.

2.1 Characteristics WS Composition
Airplane

The distinction between roles and partners in a
business process is an important characteristic of
BPEL4WS. This allows more simple and intuitive
integration between enterprises. Another important
characteristic of BPEL4WS is the fault handlers.
Faults handlers have the ability to catch errors in
BPEL4WS. Another characteristic from BPEL4WS
is message correlation that allows processes to
participate in stateful conversations. It can be used to
match returning or known customers to long-running
business process. Furthermore, correlation
mechanisms allow interaction between a service
instance and a partner. BPEL4WS addresses
correlations scenarios by providing a declarative
mechanism to specify correlated groups of
operations within a service instance (Andrews et al,
2004).

RentCar
area

Hotel

Figure 1: WS Composition example

 In a BPEL4WS process we define the interactions
between these activities that compose the service.
Thus, there are some types of interaction like
sequence, flow, switch, pick, moreover, each one
can be combined.

2.2 Implementation

We developed a prototype using BPEL4WS. We
created our composition based on our model defined
in the introduction. Our composed service has three
services: bookAirplane, bookHotel and rentCar. In
our example, we have merged our activities
execution. We put the sequence (each service is
executed in a sequence way) with the flow (the
services are executed in parallel). We chose this
approach, because two activities could be executed
in parallel (S1, S2), but the last one needs a
dependency response from one of these two, so it
must be executed in sequence (S3 depends on S2).
We have defined four partners: the client, the
airplane company, the hotel and the car rental

APPROACHES OF WEB SERVICES COMPOSITION - Comparison between BPEL4WS and OWL-S

209

company. Thus, airplane company (S1) and the hotel
(S2) could be executed in parallel because they have
the same input types given by the client. However,
the rentcar (S3) service needs one of the hotels
output called “area” as mentioned earlier. In

BPEL4WS we define a service, such as Travel by
describing which others services it contains.

Figure 2, adapted from (Khalaf, 2004), shows
the relation between the Travel service and the
others that compose it.
After constructing the composition, we need to
deploy our travel service; making it available for
execution. At this moment, the deployment engine
will require the WSDL files that were related on
partner’s links. As we have an interaction with each
service developed, we must have a WSDL for each
one. We have to mention in each WSDL the
grounding tag in order to actually find the service.
Additionally, we invoke the composition using an
API created by IBM called BPWS4J1.1 (BPWS4J,
2004). Using this API to execute our composite
service, we call a broker, “axisengine”, and we use
the endpoint given by the Travel deployment to do
the connection between the client and services’
providers. Using the endpoint, the broker can find
the service, and then it can pass the first parameters
that are sent by the client.

3 COMPOSING USING OWL-S

The process of composing services using a semantic
web language like OWL-S increases the automatic
discovery and composition process. In fact, OWL-S
is based on ontology and OWL. This means that
OWL-S is also based and constructed using
resources and hierarchical concepts. With such a
language, software agents can find services based on
their computer-interpretable description.

 The main motivating task for OWL-S was the
ability to automatically discover web services. Other
motivating tasks are automatic invocation of a
service, with which a software agent can interpret
markup to understand what input is necessary for the
service call, what information will be returned and
how to execute the service. Travel Service

Additionally, the composed web service is
actually an abstract service. In fact, the composition
file has only the service calls. In OWL-S each
service that is part of composition has the same
structure of the composed one.

Sequence Airplane
Service

3.1 Characteristics

OWL-S is composed of three other structures called:
service Profile, service Model and service
Grounding, used to describe different aspects of the
service, see figure 3 (OWL-S, 2004).
The service Profile is responsible for presenting the
service to other services or agents that want to use it.
It describes the service in order to facilitate the
search process, specifying what organization
provides the service and what functions the service
provides. The service Model describes the service
with regards to its inputs, outputs, effects and
preconditions parameters. Furthermore, the process
model is the core of OWL-S architecture, it defines
how the process will be executed. Services can be
composed using a combination of atomic, simple or
composite services. This implies that a composition
can have services that are themselves composed.
Additionally, in the service model we can say how
the services will be executed: in a sequence manner
(sequence) or in a parallel manner (split/split+join)
or some other way (OWL-S, 2004).

The service grounding is responsible for giving
the endpoint of a service. A service grounding can
be thought of a mapping between an abstract and a
concrete specification (OWL-S, 2004). It is also in
the grounding that we put the reference to each
WSDL document.

3.2

In ou
we d
three

Figure 2: Internal view of Travel Service

Client receive

reply

Hotel
Service invoke

RentCar
Service

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

210
Figure 3: Top level of service ontology
Implementation

r implementation using OWL-S composition,
efined the Travel service as being composed of
 atomic services called Airplane, Hotel and

RentCar services. We have also determined that the
first two services will be executed in parallel using a
“split+join”, but the last one should be executed on a
sequence form.

We must define the OWL file for each atomic
service. Furthermore, in these files we must put the
grounding reference positioning exactly where the
service is running. The Travel.owl file is only an
abstract service where we define the input/output
parameters and also which service will effectively
do the tasks. Figure 4 shows the internal view of
Travel service.

Furthermore, we can pass parameters between the
services that compose the abstract service, for
example, the “area” parameter is passed from the
hotel service to the RentCar service.

After creating the OWL-S file containing the
three services above, we need to execute the travel
service, sending it the parameters: date_arrival,
date_departure, destination_city and country. As a
result we will obtain the flights, hotels and car rental
information. In order to execute the travel service,
we have used OWL-S API (Mindswap, 2004). For a
client side, we defined an endpoint called Travel as
the name of our service. Continue the execution, we
invoke the Travel service and the OWL-S works on
executing the others services that belongs to this
composition.

4 COMPARISON BETWEEN
BPEL4WS AND OWL-S

Nowadays the ongoing approaches for composing
web services are: BPEL4WS and OWL-S. There are
some differences between them concerning
composition. However, many concepts that are used
in these two implementations are similar. Here, we
compare them based on the way used to compose

web services. To create a composite service we must
first create the services that will actually execute or
do the tasks. The same services of the composition
can be used from BPEL4WS or OWL-S without any
changes. In fact, the manner how the service was
actually created does not matter. After that, we can
create an abstract service that will coordinate these
services. However the process is executed, with both
approaches we have an API that invokes the abstract
service and the other invocations will be done by
each one of the technologies used. We have used for
executing web services composition an API but in
fact, any user can create her/him own manipulation
form. Travel Service

In order to make a distinction between what is or
is not a service, in BPEL4WS we use the notion of
activities to represent a service while implementing.
In BPEL4WS the activity that actually calls a
service is invoke. For instance, the activity invoke
has the partner link, actually the service’s point, as
mentioned in the second section of this paper.
However, in BPEL4WS invoke, receive, reply are
also considered as activities. Conversely with OWL-
S, a service could be seen as an AtomicProcess,
because it is where we put the service’s resource
invocation. As a result, we consider that a service in
BPEL4WS is a set of activities including invoke. On
the other hand, in OWL-S, we consider that a service
is represented by atomicProcess or derivations. In
the section above we will highlight some features
that are different in both approaches.

Airplane

4.1 Semantic features

The semantic feature is characterized as giving the
resource meaning interpreted by a hierarchical
structure. Moreover, using semantic description, we
can allow automatic discovery of services by agents.
Many features from the service are described in
OWL-S using the service profile (as described
earlier), containing information as functional
description, enterprise contacts, category that the
service belongs to. Using this feature or more, using
a language that has this characteristic we can avoid
problems like similar service descriptions that use an
ambiguous word, like bank, standing for its
economical meaning, or bank, sand accumulated on
a river (Claro, 2004). In other words, related to
semantics features, the OWL-S approach treats and
allows automatic web services discovery.
Conversely, BPEL4WS using BPWS4J does not
allow that. Indeed, there are some works increasing
the functionalities of BPEL4WS semantic features,
as seen in (Mandell, 2003) that enable automatic
semantic discovery automatic. However, it is clear
that this is an add-on to BPEL4WS specification.

Figure 4: Internal view of Travel Service.

Client Travel Input

Travel Output

process:composedOf

process:AtomicProces

processModel
Service

Hotel
Service

RentCar
Service

APPROACHES OF WEB SERVICES COMPOSITION - Comparison between BPEL4WS and OWL-S

211

4.2 Correctness

In order to increase the discovery process of
BPEL4WS, augmenting services probability to be
adequate to a specific task, we have proposed to
improve the quality model proposed by many
authors (Sreenath, 2004) (Zeng, 2004). Correctness
is quality criterion that measures how adequate the
service is to execute a specific task. We can treat
that using a probability that measures how many
times an s service was invoked and was appropriate
to be executed. Indeed, we measure if the service
executed correctly the task that was determined for
it. In fact, this criterion is necessary only when using
BPEL4WS for composing web services, because it
does not treat semantics concepts. As a result we
measure the success of the service’s execution for a
limited time. Our criterion can be defined as:

where xij is 0 or 1 if service s executes task t. The
measure of how adequate a service is for a task is
given by fst which means the integral of the success
frequency. And l is the minimal boundary of
adequate measure, normally given by a system
administrator.

4.3 Fault Handler

Fault handler is a BPEL4WS characteristic that is
very important concerning developing compositions.
It means the ability to catch errors that have
occurred for any reason when executing the process
or when services are being invoked. The handling of
some situations usually affects a set of activities that
are associated with each other. In BPEL this is done
by enclosing them in a scope structure activity. A
scope provides the context for the activities nested
within it and is where fault handlers are defined
(Khalaf, 2004). A handler must contain a reply
activity to notify a partner if an error has occurred.
As explained above, this feature is not yet
implemented in OWL-S.

4.4 Compensation

The compensation mechanism is present in
BPEL4WS composition and can undo some
committed task when we need to cancel some
procedures. In fact, some activities that have been
completed might later be undone because they
belong to a long transaction. This can be easily
compared to the rollback function in a transactional
database environment. It is implemented as an

activity that we have to put into our block where we
probably want to assure that if something occurs, the
others will be undone. Indeed, compensation
features work also with the notion of scope. We can
define a scope of activities and then we say that the
compensation will work in this scope. It is important
that the scopes that might be undone have a name
because that is how the compensate activity
identifies them (Khalaf, 2004) (Khalaf & Nagy,
2004). When a compensation activity is reached, it
runs the compensation handlers on a specified scope.

4.5 IOPE

The IOPE (Input, Output, Preconditions and Effects)
is one important feature present in OWL-S as
process’ parameters. The input and output specifies
the data transformation produced by a process. The
input specifies the information that the process
requires for its execution. For atomic process this
information must come from the client. Concerning
composed services, some inputs come directly from
the client but others come from previous services
execution. If a process has a precondition, it cannot
be performed successfully unless the precondition is
true. Additionally, the performance of a process may
result in changes of the world’s state (effects). And
the acquisition of information by the agent
performing it (output). Thus, effects describe
conditions in the world while output describes
information (OWL-S 1.1beta, 2004). In BPEL4WS
we do not have the concept of preconditions and
effects, we only work using inputs and outputs.

∑∑
= =

≥
n

s

m

t
stst lfx

1 1

4.6 Basic structures

Structured activities (BPEL4WS), also called control
constructs (OWL-S) are the mechanisms used to
order the service calls and thus their executions.
Using these structures, it is possible, for instance, to
determine if a service will be executed in sequence
or in parallel. Some of these structures are similar in
OWL-S and in BPEL4WS, for instance, Sequence
which represents the fact that the services will be
performed sequentially in the same order they are
listed. The While (BPEL4WS) and Repeat-While
(OWL-S) have similar functionalities, both test the
condition before executing the loop. OWL-S offers
another similar structure Repeat-Until which
executes the loop and then tests the condition. In
spite of parallel executions, OWL-S offers
Split+Join and BPEL4WS treats it using Flow, but
both provide concurrency and synchronization.
Another structure that we can compare is Choice
(OWL-S) and Switch (BPEL4WS) which each call a
structure from a given set of possibilities.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

212

5 CONCLUSION

In this paper we have exposed the two ongoing
approaches used to compose web services, also we
have explained their features and compared their
main characteristics. We have created an example
that we developed using BPEL4WS and OWL-S
allowing the comparison between these two
languages. We have highlighted some important
points from each approach giving a user the notion
of what and how he/she can use and which features
are present or not. Although they are evolving
technologies, the BPEL4WS has some features not
envisioned by OWL-S Coalition and vice-versa.
This is because, even though, both languages have
the same goal concerning composition, they have
different goals about the manner to compose. In our
opinion, OWL-S is more worried about automatic
service discovery for composition whereas
BPEL4WS is more concerned about composition
process and how the composition is actually done.
Additionally, we have proposed some new features
to compensate the missing one in each language,
such as our correctness characteristic.

As future works, we have planned to further
develop and increase the quality model. Another
work envisioned is to measure the execution time of
each approach.

ACKNOWLEDGEMENT

Daniela Barreiro Claro is supported by a research
scholarship given by the Région des Pays de la Loire
(2003-2006).

REFERENCES

Andrews, T.,Curbera, F., Dholakia, H. et al. 2003.
Specification: BPEL4WS Version 1.1. Retrieved
November 26, 2004, from http://www-128.ibm.com/
developerworks/webservices/library/ws-bpel/.

Berargi, D., Calvanese, D., De Giacomo, G. & Mecella,
M.,2003. Reasoning about actions for e-Services. In
ICAPS Workshop on Planning for Web Services,
Trento, Italy.

BPWS4J, 2002. BPWS4J API. Retrieved November 26,
2004, from http://www.alphaworks.ibm.com/tech/
bpws4j.

Claro, D.B., Albers, P., Hao, J-K. 2004. Web Services
Composition using Reactive Planning. In ICKEDS’04
International Conference on Knowledge Engineering
and Decision Support, Porto, Portugal.

Curbera, F., Khalaf, R., Mukhi, N., Tai,S. &
Weerawarana, S. 2003. The next step in Web Services.
In Communication of the ACM, October, Vol.46, Nº10.

Khalaf, R., 2004. Business Process with BPEL4WS:
Learning BPEL4WS, Part2. Retrieved October 27,
2004, from http://www-128.ibm.com/developerworks/
webservices/library/ws-bpelcol2/

Khalaf, R.; Nagy, W.A. 2004. Correlation, Fault Handler
and Compensation: Business Process with BPEL4WS,
Learning BPEL4WS Part 6. Retrieved October 27,
2004, from http://www-106.ibm.com/developerworks/
webservices/library/ws-bpelcol6

Mandel, D.J., McIlraith, S.A.2003. Adapting BPEL4WS
for the Semantic Web Bottom-up Approach to Web
Service Interoperation. In proceedings of the Second
International Semantic Web Conference(ISWC 2003),
Sanibel Island, Florida.

McIlraith, S., Son; T.C., Zeng, H. 2001. Semantic Web
Services. In IEEE Intelligent Systems, Stanford
University .

Mindswap G., 2004. Maryland Information and Network
dynamics lab semantic web agents projects. Retrieved
October 28, 2004, from http://www.mindswap.org/
2004/owl-s/api/index.shtml

OWL-S, 2004. OWL-S: Semantic Markup for Web
Services. OWL Services Coalition. Retrieved
November 08, 2004, from http://www.daml.org/
services/owl-s/1.0/.

OWL-S 1.1beta: Semantic Markup for Web Services,
Retrieved November 08, 2004, from
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-
s.html.

Peltz, C., 2003. Web Services Orchestration and
Choreography. Computer Magazine, Octobre 2003,
Volume 36, Number 10, pages 46-52.

Schroeder, R., Claro, D. B., Matarazzo, C., 2004. ERP
Systems Integration using Web Services. UDESC –
State University of Santa Catarina. Joinville, Brazil(in
portuguese).

Sreenath, R.M., Singh, M.P., 2004. Agent-based service
selection. In Web Semantics: Science, Service and
Agents on the World Wide Web, pp.261-279.

van der Aalst, W.M.P.,2003. Don't go with the flow: Web
services composition standards exposed. IEEE
Intelligent Systems, 18(1):72-76.

Zeng, L.,Benatallah,B., Dumas,M., Kalagnanam,J., Sheng,
Q.Z., 2003. Quality Driven Web Services
Composition, In proceedings of the Twelfth
International Conference of WWW, May 20-24,
Budapest, Hungary.

APPROACHES OF WEB SERVICES COMPOSITION - Comparison between BPEL4WS and OWL-S

213

