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Abstract: A correct system specification is systematically obtained from the essential user requirements model by 
applying a set of rules, which give a formal semantics to the graphical analysis entities of SA/RT. The aim 
of the systematic procedure is to establish the methodological infrastructure necessary for deriving a com-
plete system specification of a given real-time system in terms of CSP+T processes. A detailed complete so-
lution to the Production Cell problem is discussed, showing how the method can be applied to solve a real-
world industrial problem. 

1 INTRODUCTION 

We present a complete bottom-up systematic 
method to derive a correct system specification from 
a semi-formal system requirements specification in 
SA/RT (Hatley 1988, Ward 1985, Svensson 1991) 
by systematically applying a set of transformation 
rules. The method integrates two complementary 
approaches to describe a real-time system: (1) 
SA/RT based notations, and (2) CSP+T process 
terms (Žic, 1994) to model real-time processes, in-
cluding the specification of their timing require-
ments. 

The approach takes advantage of the long tradi-
tion of SA/RT graphical notations and development 
methodologies in the industry and, at the same time, 
aims to foster the use of Process Algebras as an ade-
quate way to overcome the intrinsic imprecision that 
SA models present in describing real-time systems. 

Many proposals have tried to overcome the lack 
of  formal semantics of SA notations. Noteworthy 
among these is the formalization of SA through Z 
and Larch (Semmens, 1990), the translation from 
SA to Communication Processes formalism (Fen-
cott, 1994) and the set of rules to give SA an inter-
pretation by using High-Level Petri nets (Elmstrom, 
1993). However, as Baresi and Pezzè stated 
(Baressi, 1998), all of these proposals irremediably 
damage the flexibility of SA  by assuming a given 
interpretation to the ambiguity of analysis entities, 

some of which should only have a weak semantics in 
order to remain useful as constructs of a process 
description language. 

The objective of our approach follows the guide-
line proposed in the latter reference, namely to over-
come the imprecision and ambiguities that the dif-
ferent families of SA notations present in describing 
real-time systems. However, the proposed method 
does not determine a particular semantics when there 
are several possible ways to solve a given ambiguity 
in an SA analysis entity. It is left up to the analyst to 
select the most appropriate notation semantics, de-
pending on the system that needs to be specified. 
This feature of the method is a result of the flexibil-
ity provided by the CSP+T design notation for real-
time systems. 

The proposed systematic derivation technique 
and the transformational rules can be easily inte-
grated into state-of-the-art SA/RT software tools and 
the complete derivation process can be fully imple-
mented in Java with the support of CTJ (Hilderink, 
2000) or JCSP (Welch, 2001) libraries. The rest of 
this paper is structured as follows: first, we give 
some background on SA models, which is necessary 
to understand the transformation rules. In section 3, 
we describe the system specification method. In sec-
tion 4, using the example of the Production Cell, we 
present a complete system specification. Finally, the 
conclusions and ongoing work lines are presented. 
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2 REAL-TIME STRUCTURED 
ANALYSIS 

The methodologies and notations referred to under 
the generic denomination of Structured Analysis 
(SA) are mainly directed towards specifying the sys-
tem behaviour as a set of data transformations or 
processes, which describe the basic functions of the 
target system. The first was proposed by Ward and 
Mellor (Ward, 1985) and the second by Hatley and 
Pirbhai (Hatley, 1988). A third variation, called the 
Extended System Modeling Language (ESML) 
(Svensson, 1991) is an attempt to combine these two 
approaches to the structured analysis of real-time 
systems.  

Figure  1: The Production Cell. 

2.1 Production Cell Example 

This well-known case study (Lewerentz, 1995), 
Fig.1, presents a realistic industry-oriented problem, 
where safety requirements play a significant role and 
can be met by the application of formal methods. In 
the fundamental configuration, the production cell 
processes metal blanks that are conveyed to a press 
by a feed belt. The first robot arm takes each blank 
from the feed belt and places it in the press. Because 
the belt and the robot are at different heights, there is 
an elevating rotating table which is designed to give 
blanks to the robot. The press forges a new metal 
blank and opens again. Forged metal plates are taken 
out of the press and put on a deposit belt by a second 
robot arm. Since the robot is fitted with two arms, 
the utilization of the press is enhanced, thus making 
it possible for the first arm to pick up the next blank 
while the press is forging another plate with the pre-
vious blank.  

2.2 System Requirements Model  

The model consists of a hierarchy of transformation 
schemes rooted on the System Context Diagram 
(SCD). Each scheme “explodes” into a State Transi-

tion Diagram (STD) or into a Data Flow Diagram 
(DFD). The scheme denoted as SCD defines the 
border between the system and the environment, 
comprising the external entities (or terminators) to 
the system. Fig. 2 shows an example of SCD. DFDs 
may explode into new, more detailed DFDs. 
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Figure 2: Production Cell SCD. 

The DFD transformation scheme in the SA/RT 
notations must include at least one Data Transfor-
mation Process (DTP), whose role is to change the 
input data or event flows (control) into output flows 
with no relation between the number of inputs and 
outputs. The same output can be sent to several 
analysis entities and a DTP must have at least one 
output flow.  
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Figure 3: First level Production Cell DFD. 

Control Transformation Processes (CTPs) serve 
to transform inputs into output event flows. They 
cannot accept or generate any type of data flow and 
are formally specified by means of a State Transi-
tion Diagram (STD). STDs should be deterministic 
Moore or Mealy automata, and they describe a se-
quence of state transitions of the system that cause 
the execution of DTPs to be triggered. Different out-
put events can be specified in an STD to activate the 
DTPs it controls. Enable/disable events indicate that 
the DTP will execute between the enable and disable 
signals. Trigger events indicate that the time needed 
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by the DTP to perform its action is unknown. These 
types of events cannot be used to model terminator 
activation, since event flows towards them must 
only be signals that switch on the device.  Data 
stores (DS) loosely represent data of a certain type 
that cannot be considered structured. Destructive 
readings over a DS cannot be assumed and DS can-
not be directly inter-connected, since the movement 
of data is only performed by the DTP in diagrams. 
The DFD for the complete Production Cell Control 
System is shown in Fig. 3. 

2.3 Flaws of SA/RT as a Specification 
Notation for RTS 

Some WM and HP analysis entities do not have a 
concrete semantics, thereby causing imprecision in 
the specification, which may confer non-
predictability on a final real-time system at a later 
development stage: 
a) Lack of any rule for defining primitive process 

specifications (PSPECs) in DTP schemes. PSPECs 
are purely functional descriptions. However, in re-
alistic applications, DTPs not only describe the 
purely functional behaviour of processes but often 
also include control and timing information. 

b) The enabling conditions of processes are not 
fixed. The SA rationale is that processes are en-
abled whenever “sufficient data” appear in any of 
their input flows. Nevertheless, the rules do not 
clearly indicate the expected behaviour of a proc-
ess when more than one of its input flows have 
values. 

c) Execution time requirements for processes are 
excluded. These requirements, when applied to 
practical cases, are used to specify a maximum or 
minimum time to be associated with the execution 
of a process. 

d) The number and the type of the input flows enter-
ing a process are described in vague terms. To ob-
tain predictability in real-time applications, when 
there are multiple input flows entering a process, it 
is necessary to define whether all the inputs (syn-
chronous) or only a subset (asynchronous case) are 
needed. 

e) Simultaneous events awakening more than one 
transition. This possibility is excluded from 
SA/RT notations. However, there should be no ob-
jection to allowing nondeterministic selections of 
transitions in notations for soft real-time systems. 
Such imprecisions can be solved by giving a se-
mantic interpretation to the SA entities that ex-
clude any of these ambiguities. These interpreta-
tions can be easily programmed in CSP+T by us-
ing a set of rules which translate each SA entity 
into a pattern that defines a CSP+T process. 

2.4 Real-time Systems Specification 
with CSP+T 

Many proposals have tried to overcome the problem 
of SA imprecision by complementing it with formal 
methods. The use of extensions of algebraic process 
description languages, such as CSP (Hoare, 1985), 
CSP+T (Žic, 1994), the standard specification lan-
guage LOTOS (Eijk, 1989), can give a precise and 
flexible interpretation to SA entities. 

In the group of CSP derivatives to describe time 
intervals, we could mention Timed CSP (Hoare, 
1985) and CSP+T, the latter being a simpler ap-
proach, although still powerful enough to formally 
describe a set of deterministic processes with time 
constrained behaviour. The syntax of CSP+T has 
been adapted to our method so as not to include 
nondeterministic operators for the moment, since 
real-time controllers are deterministic pieces of 
software, due to predictability is preferred to pro-
grammability in these systems. The adapted notation 
is described as follows: 

-Every process P defines its own set of commu-
nication symbols, termed the communication alpha-
bet α(P). These communications represent the 
events that the process P receives from its environ-
ment or that occur internally, such as the event τ that 
is not visible in the environment. Any type of event 
causes a change of state of the process. 

-The communication interface comm_act(P) of a 
given process P contains all the CSP-like (Hoare, 
1978) communications ({?, !}) in which P can en-
gage and the alphabet α(P). 

-A new operator  (star) denotes process instan-
tiation. Given P’, the timed version of P, which is 
instantiated at time 1, s is a time stamp associated to 
a, and the specification of P’ is, 

P’= 1. →s.a→STOP, where s∈[1,∞) 
The instantiation event is unique in the system, 

since it represents the origin of time at which the 
processes can start their execution. 

-A new event operator >< is introduced, to be 
used jointly with a marker variable to record the 
time instant at which the event occurs. ev>< v 
means that the time at which ev is observed is in the 
variable v. The value of time stamps is taken from 
the set of positive real numbers, so that successive 
events form a non-decreasing monotonic sequence.  

P= 1. →a>< var→STOP  
For each execution of P, the time stored in the 

variable will always satisfy var≥ 1. The scope of 
marker variables is limited to one sequential process.  

-Each event is associated with a time interval, 
which is called the event-enabling interval.  

P= 0. →[1,2] a >< v→ STOP 
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The value of the marker variable v satisfies the 
inequality 1≤ v ≤ 2. Only during this continuous 
time interval is the event available to the process and 
its environment. A process is considered to be the 
STOP process if it cannot engage in any communi-
cation or synchronize in any event within the inter-
val that precedes the event. 

-The enabling intervals can also be defined in 
terms of functions over a set of marker variables,  

P = ... E.P’ .    E = {s  | s ∈ rel(x, v)} 
The bound variable x sets the upper limit of the 

interval. If the preceding event occurs at time t0, then 
rel(x,v) = [v-t0, x+v-t0, ], since the times for events 
are absolute and the times for intervals are relative to 
the preceding event. When there are no marker vari-
ables referenced, the enabling interval is defined 
relative to the immediate preceding event. 

-Finally, it should be noted that only determinis-
tic processes can be described in CSP+T formal de-
scription language. 

In order to obtain a CSP+T model of the system, 
it is necessary to represent every analysis entity of 
the System Requirements Model (SRM) by a class 
of CSP+T processes. Following this approach, we 
intend to write a process CSP+T prototype for every 
DTP, CTP, DS, CS, continuous data flow, etc. 

3 A FORMAL SPECIFICATION 
FROM THE SRM 

A series of transformation rules will allow us to cre-
ate a CSP+T model for every transformation scheme 
that appears in any diagram of the SRM. 

Definition 1. Given the set of SA/RT analysis 
entities E, proc an injective application, such that 
P= proc(E) ∈ CSP +T, we define, 

Interface(P) ⊆  comm_act(P) – {τ }, 
as a set of actions that model the data or control 
flows on which the analysis entity interacts with its 
environment. P is a syntactically correct process 
term of CSP+T that models the entity E. 

Modelling process interface (rule 1). inter-
face(P) is made up of an input communication sym-
bol for every entity O, which is the origin of a com-
munication towards P, and, vice-versa, of an output 
communication for every destination entity D, where 
O and D are analysis entities with the only limitation 
being that both of them cannot be of type DS. 

Renaming is obviously necessary when several 
entities D1, D2, …, Dn on a DFD accept the same 
input flow and, vice-versa, when several entities, O1, 
O2, …, On accept the same output flow, as otherwise 
the CSP communications could deadlock. The con-
trol transformation process (CTP) interface is mod-
elled in the same way by including events with a 

special meaning in comm_act. These are called e, d, 
t, after the SA/RT synchronization events enable, 
disable, trigger, that a CTP uses to control its DTPs. 

Modelling continuous data flows (rule 2). Con-
tinuous data flows cannot be directly modelled by 
means of communication events in CSP+T, since in 
the latter the communication is understood to be a 
synchronous message passing between 2 processes 
and a continuous flow of data denotes an uninter-
rupted communication between different processes. 
It is therefore necessary to write an extra process 
(termed S in the rule) for each continuous data flow.   

Modelling State Transition Diagrams (rule 3). 
Every CTP, called P, of the lower level in the SRM 
hierarchy is represented by a unique STD from the 
point of view of control specification. An STD can 
be defined as a tuple (Q, C, A, T, q) in which:  

− Q is a set of states. 
− C is a set of conditions, i.e., every condition 

denotes the occurrence of an external event, which 
corresponds to an input flow of control in P, or to 
the occurrence of an internal event which is different 
from any internal control flow in P, such as the in-
ternal action τ. 

− A is a set of actions. An action causes the exe-
cution of an activity in the system. It can be easily 
identified since it corresponds to an output control 
flow in a DTP, or to the occurrence of an internal 
event of an STD. 

− T is a set of transitions. A transition is a tuple 
of the form (ql, c, a, q2) in which q1, q2 ∈ Q, c∈ C or 
is null, a∈ A or is null, and its interpretation is: if in 
state q1, condition c is satisfied, then action a will be 
performed and also a change to state q2 will occur. 
Either c or a can be nul. 

− q is the initial state of the STD and q∈ Q. 
The transition concept can be extended to spec-

ify timing constraints in the system by describing 
enabling intervals and marker events. 

Timing constraints. These constraints can be 
described as a set R of tuples (e1, I, e2) in which e1∈ 
(C ∪A), and e1 receives the name of the marker 
event, I is a real number interval of the form [ α, β ], 
where α, β ∈ R+, and α≤β or I is an interval relative 
to the preceding event or to the event e1. I(e1) de-
notes the interval I in the following text and e2 ∈ C 
or e2 ∈ A receives the name of a restricted event. 
The interpretation of a timing constraint R is as fol-
lows: event e2 can only occur within the interval of 
time I from the occurrence of event e1, where both 
events can represent the satisfaction of a condition c  
or the execution of an action a.  

If the restricted event coincides with condition c, 
this means that the condition is satisfied during the 
time interval I to which it is restricted, the satisfac-
tion of the condition outside the interval not being 
considered. In the case of the restricted event being 
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action a, the system is forced to carry out this action 
within the interval I to which it is restricted, or oth-
erwise the process in which the restricted event is 
programmed fails.  

Modelling timed Control Transformation 
Processes. A timed STD is therefore considered as 
the tuple (Q,C,A,T,q,R), i.e. an initial STD plus the 
timing constraints imposed on the system. The proc-
ess that models the STD is the process associated to 
the initial state of the system, i.e. it is activated when 
the system starts. According to the SA/RT rationale, 
transitions exiting the same state are associated with 
different events. The deterministic choice operator | 
is used to represent different outgoing transitions 
from a given process state. 

Modelling data and control storages (rule 4). 
A Data Store (DS) in the SRM is simply a class of 
entities capable of storing pieces of information for 
which we cannot assume any structure or formal 
definition. Therefore, no mechanism to specify data 
or to retrieve/insert data from/into a DS has been 
anticipated in the SRM of a system.  

In our system specification model, a DS or a CS 
is modelled as a CSP+T process capable of accept-
ing information by communicating with other proc-
esses, or capable of offering its stored data through 
another communication.  

Modelling of Transformation Specifications 
(rules 5 and 6). There is no agreement on how to 
perform the correct specification of a PSPEC (primi-
tive DTP) in SA/RT. The specification of PSPECs is 
usually carried out in pseudocode, structured Eng-
lish, pre/post-conditions, etc. In this respect, we as-
sume that the functionality of primitive DTPs is sim-
ple enough to allow us to obtain a model for each 
DTP as a single CSP+T process. There is, therefore, 
room for the analyst to set the concrete semantics 
that any primitive DTP should have, according to the 
system being modelled. 

A primitive CTP in a DFD is specified by means 
of an STD, in such a way that any flow of events 
that occur in a CTP results in a condition or action in 
its associated STD. 

Hierarchic integration of the entities of a dia-
gram (rule 7). Since we follow a bottom-up design 
method, we begin by applying the above rules to the 
lower level schemes of the SRM of the system. 
When all the entities in which a diagram explodes 
have been modelled from its component processes, 
we are able to obtain the complete diagram repre-
sented by a complex CSP+T process term. The defi-
nition of the interface is not recursive, since the term 
interface (CTP) on the right side of the equation is 
previously calculated by rule 1. The functioning of 
the method is based on an iterative composition of 
the constituent processes and on the abstraction of 
their internal communications. The iterative process 

finishes when the context diagram of the system is 
obtained. 

Systematic derivation process 
The above set of transformation rules are the ba-

sis of our complete top-down systematic specifica-
tion technique, and are listed in Table I. In general, 
the following steps are taken: 
1) Prepare the analysis schemes for carrying out the 

transformation. It may be necessary to rename 
some analysis entities to avoid conflicts (i.e., un-
wanted synchronizations) when constructing their 
model in CSP+T. 

2) Transform the control transformation (CTP) and 
data transformation (DTP) schemes of the lower 
level, i.e. those that do not explode into other 
schemes, into CSP+T processes. 

3) Select the other schemes in ascending order, i.e. a 
CSP+T process for each Data Storage (DS), Con-
trol Storage (CS), Continuous Flow of Data, DTP 
or CTP that appears in the scheme, and build a 
CSP+T process for each entity within the scheme. 

4) Once the CSP+T model has been obtained for all 
the entities in a scheme, one CSP+T process is de-
fined to model the complete scheme. If this 
scheme is already included in a CTP or a DTP of a 
higher level, repeat from step (3), thus progres-
sively integrating the CSP+T model of the system 
in an ascending way. 

Robot
Arm 1

Control

Robot
Arm 2

Control

Robot
Turn

Control
a2_readya1_finish

a1_ready

a2_finish

plate_picked
blank_picked

plate_dropped

blank_dropped

db_w_robottable_w_robot

pos_arm1

arm1_move

press_status
press_status

pos_arm2

arm2_move

robot pos_robot turn_

 
Figure 4: 2nd level DFD for a generic Robot Control P. 

5) The process of hierarchic integration of transfor-
mation schemes finishes when the model of the 
System Context Diagram is obtained. 

4 SPECIFICATION EXAMPLE: 
THE PRODUCTION CELL 

Let us first present a detailed modelling of the Robot 
Control Process (RC) of the Production Cell Control 
System, since it is the process with the richest func-
tionality among those conforming its design. We 
assume that table, press and belt control processes 
are already modelled, since they do not contribute 
additional design strategies to the general compre-
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hension of the method. Finally, the integration of all 
the derived schemes is obtained to show that the 
interface of the unique process coincides with the 
data+control flows shown in the SCD of Fig. 2.  
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Figure 5: STD for Robot Turn Control. 

Robot Turn Control (RTC) 
The flows accepted by this process, Fig. 4, en-

sure that the robot arms are able to reach the posi-
tions established as safety positions in the produc-
tion cell specification (Lewerentz, 1995), i.e., there 
are no collisions between robot arms and belts, 
blanks cannot fall from the table or the press, etc. 
The robot’s safe positions are named in the sequel, 
robot_pos_0 (initial position with arms retracted), 
robot_pos_1 (arm 1 is placed in front of the rotating 
table and is prepared to extend and pick up a blank), 
robot_pos_2 (arm 2 points towards the press and is 
prepared to initiate picking up a plate), robot_pos_3 
(arm 2 points to the deposit belt to place a plate on 
it), finally robot_pos_4 (arm 1 is prepared to extend 
and deposit the blank on the press). The latter robot 
arms positions are specified by the STD shown in 
figure 5. 

Firstly, we need to identify the marker event, i.e. 
robot_pos_1, of the syntactic CSP+T term named 
RTurnCW. The latter represents the subprocess of 
RTC controlling the clockwise (CW) movement of 
robot arm 1; then the event a1__finish in the term 
POS_1 reports that arm 1 is positioned and has 
reached the point POS_1. On reaching this point, 
there are two alternative cases to consider: either a 
blank is on the table and the arm 1 gripper picks it 
up within the deadline T, or no new blanks have 
prompted before the deadline expired and therefore 
there needs to be a timeout. Since we must model a 
process with 2 alternatives, rule 3 must be applied in 
order to construct it, 
Robot_Turn_Control→RTC 
RTC=start→actions(start) →RTurnCW 
RTurnCW=(robot_pos_1><t→    ac-
tion(RturnCW)→POS_1 
| robot_pos’?robot_pos→RTurnCW) 
POS_1=(I1 (robot_pos_1, a1_finish)→ 

    actions(POS_1_CCW) →RTurnCCW 
| I2(robot_pos_1, a1_finish)→ 
    action(blank_timeout)→RTurnCCW 

Its associated enabling intervals are defined as fol-
lows,  
I1(robot_pos_1, a1_finish) = [t, t+T] 
// the robot arm 1 has picked up a 
blank from the table. 
I2(robot_pos_1, a1_finish)= (t+T, ∞) 
// there was no blank to pick up 
within time T. 

action(event) is a notation used to summarize all the 
actions associated with a transition, event represents 
the condition or the process term in which it is de-
fined, for instance, action(RturnCW)= acti-
vate_stop_turn; t:=gettime().  

After arm 1 picks up a blank from the table, we 
use the syntactical term RTurnCCW to indicate that 
the rotation of robot arms then becomes counter 
clockwise (CCW),   
RTurnCCW=  
(robot_pos_2_&_press_full→ 
     action(POS_2)→POS_2 
 | robot_pos_3_&_a2_full→  
     action(POS_3)→POS_3 
 | robot_pos_4→action(POS_4)→POS_4 
 | robot_pos’?robot_pos→RTurnCCW) 
POS_2=a2_finish→action(POS_2_CCW)→ 
                   RTurnCCW 
POS_3= (a1_full_&_a2_finish→ 
    action(POS_3_CCW)→RTurnCCW 
  | a1_empty_&_a2_finish→ 
      action(POS_3_CW) → RTurnCW) 
POS_4= a1_finish→action(POS_4_CW)→ 
      RTurnCW 

Having reached the control position described by 
the RTurnCCW process term, the robot enters into 
POS_2 only if there is a forged plate on the press, 
otherwise it goes directly into position 4. The com-
munication robot_pos’?... representing the flow of 
the same name in Fig. 4 continuously informs the 
control process of the current position of both arms. 
After picking up a forged plate from the press, arm 2 
turns towards the belt and gets the state given by 
POS_3. The first alternative of POS_3 represents the 
case in which there is also a blank in arm 1. In this 
case, it continues to turn CCW so that arm 2 can put 
the plate on the deposit belt and arm 1 can then drop 
the new blank on the press; the second alternative 
addresses the case in which there is no blank in arm 
1, in which case the plate in arm 2 is dropped onto 
the deposit belt and the robot turning state changes 
to clockwise (CW) in order to return both robot arms 
to the control state given by RTurnCW, i.e. the state 
previous to entering into POS_1. 

In position 4, only arm 1 has a blank to drop 
onto the press, turning afterwards to position 1 when 
it finishes the dropping action, thereby preventing an 
unnecessary turn (CCW) towards the deposit belt of 

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

70



arm 2 that would have been compulsory if arm 2 had 
held a forged plate in this position. 

Robot Arms Control (RA1, RA2) 
As in the specification of the above control proc-

ess, we also need to apply rules 3.1 and 3.2 to derive 
these processes, which model the robot arms’ exten-
sion, contraction and actions on the electromagnet to 
pick up blanks from the belts. 

Robot Control (RC) 
Following the ascending order of the hierarchy 

of schemes within the SR model, we must now 
model the higher abstraction scheme, the SA/RT 
Robot Control entity in Fig. 3, from its integrating 
processes in Fig. 4. RC must offer its users a simpler 
communication interface than the union of the inter-
faces of RTC, RA1C and RA2C. Rule 7 addresses 
this case in order to obtain the parallel compounded 
CSP+T term named RC and its interface from its 
subprocesses. This rule takes advantage of the com-
positionality of process terms and their algebraic 
properties in order to obtain new processes seam-
lessly from their parts. All the internal events (start, 
aX_finish, aX_ready, robot_pos’, pos_armX’) of the 
RC process term must be hidden, so that the inter-
face of RC coincides with the flows in Fig. 3. 
Robot_Control≡ RC 
RC = (RTC\{start, a1_finish, a1_ready, 
a2_finish, a2_ready, robot_pos’} || 
RA1\{start, a1_finish, a1_ready} || 
RA2\{start, a2_finish, a2_ready } || 
RTP\{robot_pos’} || RAP1\{pos_arm1’} 
|| RAP2\{pos_arm2’}) 

As fig.4 shows, the above control processes (RAC1, 
RAC2, RTC) receive three continuous data flows 
(robot_pos, pos_arm1 and pos_arm2) reporting the 
current robot position and the horizontal positions of 
the arms, respectively, it is therefore necessary to 
write 3 synchronization processes (RTP, RAP1, 
RAP2), in addition to the above ones, to model the 
continuous data flows, according to rule 2. 

Table, Press, Feeding Belt, Deposit Belt Con-
trol (TC, PRC, FBC, DBC) 

The same transformational approach can be ap-
plied to the Table Control Process (TC) and to its 
components, i.e. the Press Control (PRC), the Feed-
ing Belt Control (FBC) and the Deposit Belt Control 
(DBC) process. 

The Production Cell 
The complete system is finally obtained by inte-

grating all the elements, together with a PS 
(PressStatus) process. The PS process is used to 
keep updated the press position that is received as a 
continuous data flow by the robot arm control proc-
esses. Finally, we can integrate the entire Production 
Cell Control System by parallel composition of the 
derived process terms, 
Production_Cell≡PC 

PC=(FBC\{failure, start } || 
TC\{start, table_turn, turn_stop, ta-
ble_move, move_stop } || RC\{ start} 
|| PRC\{start} || DBC\{start} || 
PS\{start} ) 

The bottom-up design process is completed by 
defining the following instantiated CSP+T process 
that models the whole system and is derived from 
the previous PC term, 
Production_Cell_Context=PCC 
PCC=0. →PC\{start, db_w_robot, 
plate_dropped blank_dropped, 
plate_picked, table_w_robot, 
blank_picked, table_w_fb, 
blank_loaded} 

in which the hidden events correspond to internal 
communication flows between the processes appear-
ing on the DFD of Fig. 3. By applying rule 7, these 
events must appear hidden in the final process de-
scribing the whole system, so that only the flows 
connecting the system and its environment remain in 
PCC, according to the system context diagram, as 
shown in Fig. 2. As this latter condition is the final-
ization condition of the proposed method, we can 
conclude that a consistent and detailed design of the 
Production Cell Example has been derived. 

5 CONCLUSIONS 

We have presented a systematic transformation pro-
cedure to obtain a correct system specification of a 
real-time system (The Production Cell) from a semi-
formal SA/RT system user requirements essential 
model. Our methodological scheme is based on a set 
of rules that are able to transform SA/RT entities 
into a formal specification made up of CSP+T proc-
ess terms. This system specification is used to over-
come the intrinsic imprecision that SA models pre-
sent in describing real-time systems, by giving a 
formal modelling framework that permits the analyst 
to define the expected behaviour and functionality of 
all the primitive processes in a system design, and 
also to define the time requirements for processes by 
making use of the enabling interval and marker 
event. Our method complements the SA/RT methods 
modelling facilities by using ad hoc CSP+T con-
structs, so that hard timing constraints on the execu-
tion of a target system under development can be 
reflected in its formal specification. The method has 
been defined in such a way that it can be easily inte-
grated within current Automated Software Engineer-
ing (ASE) environments and/or formal tools based 
on SA/RT. 
 

TRANSFORMING SA/RT GRAPHICAL SPECIFICATIONS INTO CSP+T FORMALISM - Obtaining a formal
specification from semi-formal SA/RT essential models

71



 

Table I: Transformation rules for RT/SA entities 

rule SA/RT entities  CSP+T model   
1.1 
 
1.2 

Discrete data flow f of x, with 
origin O and target D. 

Or discrete event flow e.  

(interface(proc(O)) ∪ {f ! x})∧( interface(proc(D)) ∪ {f ? x}) 
 
(interface(proc(O)) ∪ {e})∧( interface(proc(D)) ∪ {e}) 

2 Continuous flow f of x, with 
origin O and destination D 

P= proc( f ) 
P= f ? x → S ;  S=( f ? x → S | f !  x → S) 

3.1 
      
 
3.2 

STD defined as (Q, C, A, T, q), 
∀ (qi, c, a, qj)∈ T, c ∈ C ∪ {λ}, a 
∈ A∪ {λ} 

a and/or c are marker events 
with marker variables ma, mc. 

P= proc(qi) , Q= proc(qj) 
P= c→ (a→Q) or P= a→Q, c=λ or P= c→Q, a=λ 
P= c>< mc→ (a>< ma→Q) or P= a>< ma→Q, c=λ    
or P= c>< mc→Q, a=λ . 

4 
Data storage DS with input 

flows {fi1, ...fin} and output flows 
{fo1, ...., fom} 

P= proc(DS) 
interface (P)= {fi,... fin,  fo ..., fom} 

5 Data Transformation Process 
DTP 

P=proc (DTP) (a DTP can explode in additional entities).  
interface (P)= interface (DTP) 

6 Control Transformation Proc-
ess CTP  

Q= proc (CTP) ∨ Q= proc (STD) (Q can model the STD associated to 
a primitive CTP or its explosion) 

interface (CTP)= Q\{alphabet (Q)-interface (CTP)}  
7 E1, E2,..., Ep, SA/RT entities in 

the same scheme S 
interface(S)= E1\{alphabet(E1)-interface(S)}|| E2\{alphabet(E2)-

interface(S)}|| ... Ep\{alphabet(Ep)-interface(S)} 
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