
TABLE-DRIVEN PROGRAMMING IN SQL FOR ENTERPRISE
INFORMATION SYSTEMS∗

Hung-chih Yang
UCLA Computer Science Department

4732 Boelter Hall, Los Angeles, CA 90095, USA

D. Stott Parker
UCLA Computer Science Department

4732 Boelter Hall, Los Angeles, CA 90095, USA

Keywords: Table-Driven Programming, Object-Relational Databases, Dynamic Method Dispatch.

Abstract: In database systems, business logic is usually implemented in the forms of external processes, stored proce-
dures, user-defined functions, components, objects, constraints, triggers, etc. In this paper, we advocate the
idea of storing business logic – in the form of functions – as data in tables. This idea gives a basis for applying
the software-engineering methodology oftable-driven programming in SQL. The query evaluation process
then needs only to be extended with mechanical evaluation of “joined” data and functions. This approach can
make understanding and maintenance of stored business logic transparent as relational data. In short, data and
functions are integrated in a relational manner. Using a common enterprise application as an example, we
demonstrate this methodology with an existing ORDBMS capable of storing polymorphic objects. We also
discuss this approach’s shortcomings and alternatives.

1 INTRODUCTION

One of the authors once participated in a decision-
support project that involved thousands of forecasting
models. These models were straightforward mathe-
matical formulas generated by a statistical software
package and stored in a relational database. They
were routinely joined with a set of data relations,
then evaluated to produce important business fore-
casts. The formulas were originally created in text
files, and a parser was used to separate coefficients,
variables, and function calls from the formula struc-
tures. The separated formula components were then
stored in several normalized relations in the forms of
numbers, strings, and IDs. Formula structures were
stored in a relation as BLOBs. An external fore-
casting process routinely joined several data relations
with the formula relations and rebuilt forecasting for-
mulas with plugged-in variable values. Forecast val-
ues were then computed in the external process and
stored back in a relation. In order to reduce network
communication, function relations and data relations
were queried separately and a C++-implemented fore-

∗This research was supported by NIH Grant
1P20MH065166-01, NIH Grant 1U54RR021813, and
the UCLA Center for Computational Biology (CCB), an
NIH Center of Excellence.

casting process had to simulate a nested loopjoin in
order to put data and reconstructed functions together.
This experience made us wonder: why can’t a rela-
tional database store formulas in a relation directly,
therefore formula tuples can be joined with data tu-
ples to generate results?

In fact, this functionality that is missing in RDBMS
is a programming methodology calledtable-driven
programming. This methodology is popular in script
programming and in parsers. Its basic principles are
(a) storing data and instructions in tables, and (b) con-
trolling programming logic by using conditions (or
states) that select data and instruction out of the ta-
bles for execution. The mechanism of selecting data
and instuctions is a general-purpose, straightforward,
and mechanical process. Each individual part of pro-
gramming logic can be easily replaced through updat-
ing values in tables. If only data is used to direct the
program logic, then the termdata-driven is a more
precise description. For applying table-driven pro-
gramming in SQL, relational databases could provide
a vast repository for business logic and SQL queries
then offer transparent evaluation of business logic.

In this paper we first discuss a methodology called
table-driven programming in SQL and present a
common enterprise database application that would
greatly benefit from it. Later we discuss how to use

424
Yang H. and Stott Parker D. (2005).
TABLE-DRIVEN PROGRAMMING IN SQL FOR ENTERPRISE INFORMATION SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 424-427
DOI: 10.5220/0002526004240427
Copyright c© SciTePress

ORDBMS to implement table-driven applications and
the drawbacks of this approach.

2 TABLE-DRIVEN
PROGRAMMING IN SQL

One great benefit brought by relational databases is
the clear representation of data and their relationships,
but this benefit does not extend to traditional stored
procedures and functions. Unlike relational tables,
the imperative nature of stored procedures is naviga-
tional. Convoluted subroutines calls make a program
hard to understand and maintain, and business logic
can be hidden beyond recognition, while Object-
Oriented (or Object-Relational) programming hides
meandering navigational behavior behind communi-
cations among objects. In order to make business
logic more transparent, we advocate the introduction
of table-driven programming in relational databases.
The goal is to transform the communications among
functional modules from explicit navigations in stored
procedures to declarative joins in a relational manner.

The design process of a table-driven system in-
cludes two stages:factor and assemble (or join).
Since this two-stage process is to apply the relational
model on programming code, we call itrelational
programming as well.

• The Factor Stage
In this stage, a monolithic system of rules is split
into simple rules and formulas that can be stored
in attributes of normalized relations. After being
stored in a relation, they can be easily located and
manipulated just like other data. By contrast, main-
taining formulas in a lengthy procedure like the one
in figure 1 could be quite tedious and cumbersome.

• The Assemble (or Join) Stage
In the assemble stage, users can write declarative
queries to join tables of rules, formulas, and data
together to find results. The query shown in figure 2
needs only join operations and evaluation of stored
functions.

Notice that in both stages, we utilize only SQL
constructs: functions of SQL expressions in the fac-
tor stage for storing granular business logic and SQL
queries in the assemble stage for a table-driven com-
puting process.

Developers may start a software project following
the traditional database design and analysis process.
During the design process, some of the relations
may contain function attributes. Once a schema is
ready, developers can build business logic working
on queries and views that join data and functions
together, rather than coding complicated imperative
stored or external procedures. Individual rules and

Table 1: Schema for a bonus computation system
Employees

EmployeeID EmployeeName Department BaseSalary

EmployeeBonus

EmployeeID BonusName BonusArgument

formulas can be easily replaced and redefined dynam-
ically, while the overall picture of the business logic
stays unchanged in easy-to-understand queries. In a
traditional database design, the whole business logic
and subroutines may require rewriting if there is any
specification change (even a minor one) and only data
can be dynamically changed (because data is defined
relationally, not code).

3 EXAMPLE: COMPUTING
YEAR-END BONUS

Computing an employee’s pay has become more and
more complicated. Many kinds of deductions, re-
imbursements, direct transfers, and bonuses can be
added to an employee’s paycheck before or after tax.
Also there are a lot of company and government regu-
lations and ever-changing tax laws to consider. Worst
of all, all these factors can differ from person to per-
son because of the positions they have and the loca-
tions of their work, and those conditions are never
static. A common way of dealing with this pay-
check computing problem is to store numbers of rates,
bonuses, deductions, and direct transfers in relations
and use one or more stored or external procedures
to query these relations and calculate the final pay-
check amount. In order to achieve correctness, great
scrutiny is needed for the flowchart of the computing
process, and the procedures need to be reexamined,
maintained, and reloaded frequently for any change –
even a minor one.

In this section we will present an enterprise bonus
computation system implemented in both traditional
monolithic and table-driven manners. The nature
of bonus calculation is quite similar to the forecast-
ing process described at the beginning of this paper
– there are lots of straightforward rules dictating how
computing should be done.

3.1 A Monolithic Implementation

A common way to compute values like bonuses is to
store business logic in one or a small number of com-
plicated internal or external procedures – thus it is
monolithic. We start by implementing a couple of ta-
bles for this application: Employees, EmployeeBonus
(see table 1). In order to calculate a year-end bonus
for every employee, we also define a stored function

TABLE-DRIVEN PROGRAMMING IN SQL FOR ENTERPRISE INFORMATION SYSTEMS

425

CREATE OR REPLACE FUNCTION
GetBonus(EmployeeID IN INTEGER,

Department IN VARCHAR,
BaseSalary IN NUMBER,
BonusName IN VARCHAR,
BonusArgument IN NUMBER)

RETURN NUMBER AS
BEGIN

IF(Department=’CEO’)
THEN RETURN 2000000; END IF;
IF(BonusName=’Bonus for managers’) THEN

RETURN BaseSalary * (0.10 +
(CASE WHEN BonusArgument >= -0.05
THEN BonusArgument ELSE 0 END));

END IF;
IF(BonusName=’Bonus for Sales personnel’)
THEN RETURN BonusArgument; END IF;
IF(BonusName=’Bonus for Production personnel’)
THEN RETURN BaseSalary * (0.02 +

(CASE WHEN BonusArgument >= -0.005
THEN BonusArgument ELSE 0 END));

END IF;
IF(BonusName=’Bonus for R&D personnel’)
THEN RETURN 1000 * BonusArgument; END IF;
IF(BonusName=’Bonus for HR personnel’)
THEN RETURN 500; END IF;
IF(BonusName=’Personal Achievement Bonus’)
THEN RETURN 1000; END IF;
RETURN NULL;

END GetBonus;

Figure 1: The GetBonus stored function.

called GetBonus. This function takes several argu-
ments which can be used for different scenarios. The
bonus computing process is then a query that joins
Employee and EmployeeBonus and applies GetBonus
on their attributes.

3.2 An ORDBMS Table-Driven
Implementation

An alternative design is to follow the table-driven
methodology. Besides the tables defined in section
3.1, another table namedBonuses (see table 3) is cre-
ated to store bonus information that includes a func-
tion attribute called BonusFunction. It has a type of
(NUMBER, NUMBER) → NUMBER which means
that a bonus formula takes two NUMBER arguments
and returns a NUMBER as the result. However, if
we use object types to emulate function attributes
(see section 4 and figure 3), then the business logic
is wrapped in object instances. For this emulation,
the base object type,Bonus, contains a method called
eval. During computing, a query will choose actual
arguments to join with bonus formulas. In this de-
sign, we stipulate that the first argument is the base
salary of an employee (from Employees.BaseSalary)
and the second is an additional factor (from Employ-
eeBonus.BonusArgument). Some sample data for
Bonuses is listed in table 2. From the sample data,
a great diversity of bonus formulas can be devised
for employees in different positions and departments.
The formulas can also be easily modified through
DML operations. Finally, the qeury defined in figure
2 is used to compute bonuses. It is a simple aggregate
that joins Employees, EmployeeBonus, and Bonuses

Table 3: Table BonusesBonuses

BonusName BonusFunction Description

SELECT
Employees.EmployeeID EmployeeID
,SUM(Bonuses.BonusFunction.eval(

Employees.BaseSalary,
EmployeeBonus.BonusArgument)) BonusSum

FROM Employees
LEFT JOIN EmployeeBonus ON

Employees.EmployeeID = EmployeeBonus.EmployeeID
LEFT JOIN Bonuses ON

EmployeeBonus.BonusName = Bonuses.BonusName
GROUP BY Employees.EmployeeID;

Figure 2: A table-driven query to compute bonuses.

and applies BonusFunction.eval on attributes.
Comparing the monolithic implementation (section

3.1) and table-driven implementation (section 3.2), it
is quite obvious that the table-driven design can pro-
vide real great advantage in modeling and mainte-
nance – data and functions are integrated in a rela-
tional manner.

4 TABLE-DRIVEN
PROGRAMMING IN ORDBMS

In section 3.2, we have seen an enterprise application
implemented in the table-driven style. A natural ques-
tion is: how can we implement this application in an
existing relational database? To support table-driven
programming, a relational database must be able to
store business logic – in the form of function – as an
attribute of a table. As alluded in section 3.2, one
answer is to use an ORDBMS that supportsdynamic
method dispatch (or polymorphism). Among com-
mercial and publicly available ORDBMS systems, we
found that ORACLE (ORACLE et al., 2003) and IBM
DB2 (IBM et al., 2002), to our best knowledge, are
the only two supporting dynamic method dispatch.
The first step of implementing table-driven program-
ming in an ORDBMS is to create an object hierarchy.
Taking the object hierarchy of figure 3 as an exam-
ple, a base object typeBonus is created with a method

Bonus

eval()

CEOBonus

eval()

ManagerBonus

eval()

SalesBonus

eval()

ProductionBonus

eval()

R&DBonus

eval()

HRBonus

eval()

PersonalAchievementBonus

eval()

Figure 3: An object hierarchy for computing year-end
bonuses for a table-driven payroll system.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

426

Table 2: Sample data for the Bonuses table
Bonus Name Bonus Formula ((NUMBER, NUMBER)−→NUMBER) Description

Bonus for the CEO (DummyArgument0, DummyArgument1)−→ 2,000,000 The year-end bonus for the CEO is $2,000,000.
Bonus for managers (BaseSalary, Performance)−→ BaseSalary× (0.10 + (CASE WHEN Per-

formance≥ -0.05 THEN Performance ELSE 0 END))
The year-end bonus for a manager is determined by a function of
their Performance.

Bonus for Sales personnel (DummyArgument0, Commission)−→ Commission The year-end bonus for Sales personnel is a lump sum commission
Bonus for Production person-
nel

(BaseSalary, Performance)−→ BaseSalary× (0.02 + (CASE WHEN Per-
formance≥ -0.005 THEN Performance ELSE 0 END))

The year-end bonus for Production personnel is determined by a
function of their Performance.

Bonus for R&D personnel (DummyArgument0, NumberOfProjectsCompleted)−→ 1000 × Num-
berOfProjectsCompleted

The year-end bonus for R&D personnel is determined by a function
of the number of completed research projects.

Bonus for HR personnel (DummyArgument0, DummyArgument1)−→ 500 The year-end bonus for a HR personnel is $500.
Personal Achievement Bonus (DummyArgument0, DummyArgument1)−→ 1000 The personal achievement bonus is $1,000.

calledeval. The overriding child implementations of
this method can be dynamically dispatched and used
for table-driven programming.

Using ORDBMS’s dynamic method dispatch is a
natural solution to implement table-driven program-
ming in SQL. However, object types were not de-
signed specifically for table-driven programming and
thus there are some limitations with this approach:

• Object type is quite heavy. Object types are cre-
ated and maintained in data definition language
(DDL) and stored in system catalog. A table-driven
application may possess thousands or even millions
of items of business logic. Creating millions of ob-
ject types to wrap this business logic can create a
great burden on the database system catalog.

• Code wrapped in objects is still not data. Be-
cause code wrapped in methods are attached to ob-
jects, they are not data (Gray et al., 2003) in the
sense that they cannot be accessed or manipulated
like ordinary data.

• Dynamic dispatch process is complex. To dy-
namically look for a pertinent method in an ob-
ject type hierarchy, an ORDBMS execution engine
would search either from the root object (DB2’s
approach) or from leaf objects (ORACLE’s ap-
proach). Either way is quite complex.

5 RELATED WORK

The idea of storing functionalexpressions (not func-
tions) as data values has been proposed before. Stone-
braker’s “Quel as a Data Type” (Stonebraker et al.,
1984; Stonebraker et al., 1987) treated QUEL queries,
statements and commands as a specialized kind of
string. A stored query could be used to represent a
set of records. The paper appeared just as the object-
oriented database movement started to gain momen-
tum, and perhaps for this reason failed to be imple-
mented in commercial systems.

The work of SQL Spreadsheets (Witkowski et al.,
2003) introduces spreadsheet-like computations into
RDBMS through SQL extensions. It provides an
efficient alternative to simplify complicated OLAP

queries that otherwise are implemented in nested
views, subqueries, and complex joins. However
spreadsheet formulas are statically embedded in new
SQL clauses, making it difficult to handle either dy-
namically changing formulas or a large number of
business formulas.

6 CONCLUSIONS

In this paper, we discuss the idea of applying the
table-driven programming methodology in SQL for
enterprise database applications. The main goal is to
integrate data and functions within a RDBMS in a re-
lational manner. Using an existing ORDBMS, devel-
opers can use a flat object type hierarchy with poly-
morphic methods embedded in child types to emulate
this table-driven design. However, code wrapped in
an object is still not data and heavy – management of
object methods relies on DDL statements, instead of
DML. To avoid ORDBMS limitations, we currently
work on puttinglightweight functions in RDBMS to
allow direct table-driven programming in SQL.

REFERENCES

Gray, J. et al. (2003). The Lowell Report. In Halevy, A. Y.,
Ives, Z. G., and Doan, A., editors,SIGMOD 2003,
page 680. ACM.

IBM et al. (2002).IBM DB2 Universal Database SQL Ref-
erence Volume 1 Version 8. IBM.

ORACLE et al. (2003).Oracle Database Application De-
veloper’s Guide - Object-Relational Features 10g Re-
lease 1 (10.1). Oracle.

Stonebraker, M., Anderson, E., Hanson, E. N., and Ruben-
stein, W. B. (1984). Quel as a Data Type. In Yor-
mark, B., editor, SIGMOD 1984, pages 208–214.
ACM Press.

Stonebraker, M., Anton, J., and Hanson, E. N. (1987). Ex-
tending a Database System with Procedures.TODS,
12(3):350–376.

Witkowski, A. et al. (2003). Spreadsheets in RDBMS for
OLAP. In Halevy, A. Y., Ives, Z. G., and Doan, A.,
editors,SIGMOD 2003, pages 52–63. ACM.

TABLE-DRIVEN PROGRAMMING IN SQL FOR ENTERPRISE INFORMATION SYSTEMS

427

