
QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS
THROUGH PROCESS CONSTRAINTS

Shazia Sadiq, Maria Orlowska
School of Information Technology and Electrical Engineering
The University of Queensland, St Lucia, Brisbane, Australia

Joe Lin, Wasim Sadiq
SAP Research Centre, Brisbane, Australia

Keywords: Flexible Workflows, Workflow Modelling, Process Constraints

Abstract: Workflow technology has delivered effectively for a large class of business processes, providing the
requisite control and monitoring functions. At the same time, this technology has been the target of much
criticism due to its limited ability to cope with dynamically changing business conditions which require
business processes to be adapted frequently, and/or its limited ability to model business processes which
cannot be entirely predefined. Requirements indicate the need for generic solutions where a balance
between process control and flexibility may be achieved. In this paper we present a framework that allows
the workflow to execute on the basis of a partially specified model where the full specification of the model
is made at runtime, and may be unique to each instance. This framework is based on the notion of process
constraints. Where as process constraints may be specified for any aspect of the workflow, such as
structural, temporal, etc. our focus in this paper is on a constraint which allows dynamic selection of
activities for inclusion in a given instance. We call these cardinality constraints, and this paper will discuss
their specification and validation requirements.

1 INTRODUCTION

Process enforcement technologies have a dominant
role in current enterprise systems development. It
has been long established that automation of specific
functions of enterprises will not provide the
productivity gains for businesses unless support is
provided for overall business process control and
monitoring. Workflows have delivered effectively in
this area for a class of business processes, but typical
workflow systems have been under fire due to their
lack of flexibility, i.e., their limited ability to adapt
to changing business conditions. In the dynamic
environment of e-business today, it is essential that
technology supports the business to adapt to
changing conditions. However, this flexibility
cannot come at the price of process control, which
remains an essential requirement of process
enforcement technologies.

Providing a workable balance between flexibility
and control is indeed a challenge, especially if
generic solutions are to be offered. Clearly there are
parts of the process which need to be strictly
controlled through fully predefined models. There
can also be parts of the same process for which some
level of flexibility must be offered, often because the
process cannot be fully predefined due to lack of
data at process design time. For example, in call
centre responses, where customer inquiries and
appropriate response cannot be completely pre-
defined, or in higher education, where study paths
resulting from individual student preferences cannot
be entirely anticipated.

In general, a process model needs to be capable

of capturing multiple perspectives (Jablonki &
Bussler, 1996), in order to fully capture the business
process. There are a number of proposals both from
research and academia, as well as from industry on
the modelling environment (language) that allows
these perspectives to be adequately described.

29
Sadiq S., Orlowska M., Lin J. and Sadiq W. (2005).
QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS THROUGH PROCESS CONSTRAINTS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 29-37
DOI: 10.5220/0002526900290037
Copyright c© SciTePress

Different proposals offer different level of
expressiveness in terms of these perspectives, see
e.g. (Sadiq & Orlowska, 1999), (Casati et al 1995),
(van der Aalst, 2003), although most focus on the
control flow (what activities are performed and in
what order).

Basically these perspectives are intended to

express the constraints under which the business
process can be executed such that the targeted
business goals can be effectively met. We see two
fundamental classes of these constraints:

Process level constraints: This constitutes the

specification of what activities must be included
within the process, and the flow dependencies within
these activities including the control dependencies
(such as sequence, alternative, parallel etc.) and
temporal dependencies (such as relative deadlines).

Activity level constraints: This constitutes the

specification of various properties of the individual
activities within the process, including activity
resources (applications, roles and performers), data
(produced and/or consumed), and time (duration and
deadline constraints).

In this paper, we focus on the flexible definition

of process level constraints. We see the level of
definition of these constraints along a continuum of
specification There is the completely predefined
model on one end, and the model with no
predefinition on the other. Thus the former only has
strong constraints (e.g. A and B are activities of a
given process, and B must follow A), and the latter
no constraints at all. The former extreme is too
prescriptive and not conducive to dynamic business
environments; and the latter extreme defeats the
purpose of process enforcement, i.e. with
insufficient constraints, the process goals may be
compromised and quality of service for the process
cannot be guaranteed. Finding the exact level of
specificity along this continuum will mostly be
domain dependent. However, technology support
must be offered at a generic level. There is a need to
provide a modelling environment wherein the level
of specification can be chosen by the process
designer such that the right balance between
flexibility and control can be achieved.

The work presented in this paper basically

discusses flexible process definition for a particular
class of constraints. In essence, a small number of
constraints are specified at design time, but the
process instances are allowed to follow a very large
number of execution paths. As long as the given
constraints are met, any execution path dynamically

constructed at runtime is considered legal. This
ensures flexible execution while maintaining a
desired level of control through the specified
constraints.

In the following sections, we first present the

modelling framework which allows flexible process
definition. We will then present the details of the
constraint specification and validation. In the
remaining sections, we will present some
background related work to appropriately position
this work, and finally a summary of this work and its
potential extensions.

2 MODELING FRAMEWORK

The modelling framework required for the
specification of process constraints is simple and has
minimal impact on the underlying workflow
management system. We assume that the underlying
WFMS supports a typical graph-based process
model and a state-based execution model. Such
process models support typical constructs like
sequence, fork, choice etc (Figure 1(a)), and activity
execution is based on a finite state machine with
typical states such as available, commenced,
suspended, completed (Figure 1(b)).

Figure 1: (a) Process Model

The workflow model (W) is defined through a

directed graph consisting of nodes (N) and Flows
(F). Flows show the control flow of the workflow.
Thus W = <N, F> is a Directed Graph where N:
Finite Set of Nodes, F: Flow Relation F ⊆ N Χ N.
Nodes are classified into tasks (T) and coordinators
(C), where C ∪ T, C ∩ T = φ.

Task nodes represent atomic manual / automated

activities or sub processes that must be performed to
satisfy the underlying business process objectives.
Coordinator nodes allow us to build control flow
structures to manage the coordination requirements.
Basic modelling structures supported through these
coordinators include Sequence, Exclusive Or-Split
(Choice), Exclusive Or-Join (Merge), And-Split
(Fork), And-Join (Synchronizer), and explicit begin
and end coordinators.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

30

A process model will have several activities. An
activity t ∈ T is not a mere mode in the workflow
graph, but has rich semantics which are defined
through its properties, such as input and output data,
temporal constraints, resources requirements etc.

Figure 1: (b) Activity Execution Model

An instance within the workflow graph
represents a particular case of the process. An
instance type represents a set of instances that follow
the same execution path within the workflow.

Let i be an instance for W.
∀ t ∈ N, we define ActivityState(t, i) {Initial,

Available, Commenced, Completed, Suspened}

We propose to extend the above environment

with the following two functions:

A design time function of constraint

specification. To provide a facility to specify a pool
of activities (including sub-processes) and associated
constraints in addition to the core process model.
These activities are allowed to be incorporated in the
process at any time during execution, but under the
given constraints. The core process defines the un-
negotiable part of the process, and the pool of
activities and associate constraints define the
flexible part – thus attempting to strike a balance
between flexibility and control.

We associate with every process W, these two

additional elements of specification, namely the pool
of activities given by P, and a set of constraints
given by C. The definition of the flexible workflow
Wf is thus given by <W, P, C>.

A run time function of dynamic instance

building. To allow the execution path of given
instance(s) to be adapted in accordance with the
particular requirements for that instance which
become known only at runtime. Thus the process for
a given instance can be dynamically built based on
runtime knowledge, but within the specified
constraint set C.

In order to provide explicit terminology, we call

the instance specification prior to building, an open

instance. The instance specification after building
we call an instance template. Thus the instance
template is a particular composition of the given
activities within the flexible workflow Wf. The
instance templates in turn have a schema-instance
relationship with the underlying execution. In
traditional terms, the instance template acts as the
process model for the particular instance. Execution
takes place with full enforcement of all coordination
constraints as in a typical production workflow.
However, template building is progressive. The
process may be changed several times through the
available pool of activities and associated
constraints. As such the template remains open until
the process has reached completion.

Available Commenced

Suspended

Completed

Initial

Available Commenced

Suspended

Completed

Initial

The main feature of this approach is the

utilization of the constraint set C. In previous work,
we proposed the use of so called structural and
containment constraints for flexible workflows
(Sadiq et al, 2001), (Sadiq et al, 2004). The
constraints belonging to the structural class impose
restrictions on how activities can be composed in the
templates. The constraints belonging to the
containment class identify conditions under which
combinations of activities can(not) be contained in
the templates.

For example serial is a type of structural

constraint, where given activities must be executed
serially, i.e. not concurrently. However the choice of
order remains flexible and is determined by the user
during the build. A practical example of a serial
constraint can be found in healthcare. Pathologies
and medical imaging labs need to schedule a large
number of tests in different departments. A number
of tests can be prescribed for a given patient e.g.
blood test, X-Ray, ECG. These tests can be done in
any order but only one at a time. A serial constraint
on these activities will ensure this for a given patient
or instance.

In this paper, we introduce a new class of

constraints for flexible workflows. We call these
cardinality constraints. This new class is especially
interesting, because it provides a new means of
dealing with two well known challenges in
workflow specification, namely n-out-of-m joins and
implicit termination. In the sections below, we
introduce the framework for the specification of
cardinality constraints in flexible workflows. We
will also present a means of validating the
dynamically built instance (templates) against the
specified constraints.

QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS THROUGH PROCESS CONSTRAINTS

31

3 CARDINALITY CONSTRAINTS

Cardinality constraints basically define the set of
tasks that must be executed within the process, to
guarantee that intended process goals will be met. In
other words, which tasks must essentially be
executed for a process to be considered complete.

The completion of W is explicit due to the
presence of an end coordinator and also since the
tasks within an instance type are pre-determined.
However, completion of Wf is not explicit, since the
user may make different selections at run time from
the available pool of activities.

To further explain this, we define the function
Complete (W, i) {True, False}, where

Complete (W, i) = True iff
∀ t ∈ T, ActivityState(t, i) = Completed | Initial
 AND ∃ t ∈ T, ActivityState(t, i) = Completed

Complete (Wf, i) = True iff
Complete (W, i) = True

AND ∃ Pk ⊆ P, such that
∀ t ∈ Pk, ActivityState(t, i) = Completed

 The interesting question is, how to define the

set of tasks that constitute Pk. This requires
consideration at both the conceptual and
implementation level. As an example, consider the
tertiary education domain.

Today’s student communities are constantly
changing, with more and more part time, mature age
and international students with a wide variety of
educational, professional and cultural backgrounds.
These students have diverse learning needs and
styles. Where as degree programs are generally well
defined in terms of overall process constraints, it is
difficult to judge the quality of specific choices
made by students. Tertiary programs often offer a
diverse collection of courses that allow
specialisation on various aspects of a program. The
wide variety of valid combinations of courses that
satisfy a particular program’s requirement indicates
a high degree of flexibility.

The study of a simple program structure was
conducted. The program consisted of nine courses of
compulsory material and a further three courses of
elective material which are selected from a schedule
of 14 available electives. This was found to yield a
total of some 364 instance types, when considering
also the sequence in which the courses can be taken.
A further illustration considers a less structured
program, such as Arts or Science, where some 20 to
30 courses are required from a schedule that can
contain thousands of courses. A number of factors
impact on the choices made by the students

including changing areas of interest, changing
workload requirements and changing program rules.
The multiplicity of valid combinations of courses
that can be undertaken, and ensuring that these
satisfy the requirements of programs, particularly
where these requirements have changed during the
duration of the student’s enrolment constitute a
complex problem.

Although academic courses are not currently
deployed as workflow tasks in the typical sense, the
appropriateness of workflow modelling concepts has
been demonstrated (Sadiq & Orlowska, 2002).
Academic courses equate to process tasks, these
courses are interdependent and the academic
program represents a long duration business process.
At the same time, there is an inherent flexibility in
these processes, required for diverse student
requirements, which makes their modelling in
traditional prescriptive process definition languages
very difficult.

In the sections below, we will demonstrate how
the use of cardinality constraints within a flexible
workflow modelling framework provides an elegant
means of capturing the requirements of such
processes. Furthermore, the presented framework
also provides a simple means of ensuring that the
specified constraints are met for a given instance,
thus providing the essential validation support.

3.1 Specification

The specification of the task set Pk that satisfies the
completion condition for Wf can be done in three
ways:
1. Providing a static set of mandatory tasks which

must all be performed in a given instance. In
this case, the flexibility is found only in when
these tasks will be executed, not which ones.
We call this constraint include. Specification on
include is rather straightforward and can be
made as include: Pk

2. Providing a set of tasks, together with a minimal
cardinality for selection, that is at least n out of
m tasks must be performed in a given instance.
We call this constraint select. Specifying select
is also simple and can be made by providing the
set of tasks, together with an integer n, i.e.
select: (P, n), where P is the available pool of
activities for the flexible workflow. In this case
Pk, is any subset of P where |Pk| = n

3. Providing a set of tasks, a minimal cardinality
for selection, as well as prescribing some tasks
as mandatory. Thus, at least n tasks must be
preformed for a given instance, but this
selection of n tasks must include the prescribed

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

32

mandatory tasks. We call this constraint
minselect.

Specifying minselect requires further

consideration, which we present below.
We first introduce the notion of a family of set A,

as a collection of subsets of A. A notation to
represent a family of set A is given by (A`, k; A) and
is defined as follows:

|A| = n
A`⊆A such that |A`| = m,
Let k be such that m+k ≤ n,
(A`, k; A) = { A`∪ B | B ∈ 2A\A` and |B| = k}

(A`, k; A) represent a collection of subsets of set
A, such that each member of the collection is
composed from A` and B. To illustrate further, we
present the following simple example:

Let A = {a, b, c, d} and family F = (A`, k; A)
where A` = {a, b} and k = 1,

then F = {{a, b, c}, {a, b, d}}

There are number of elemental

subsets in the (A`, k; A) family. i.e. the cardinality
of the family can be computed by |(A’, k; A)| = (n –
m)!/k!(n – m – k)!.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−mn

k

The notation of (A`, k; A) has the expressive
power to represent a collection of subsets without
listing every single one. Basically all members of
(A`, k; A) family shares the common subset A` in
the set, and the remaining subset is selected from the
power set of the set difference A\A` where
cardinality equals to k. Thus A’ represents the
mandatory selection.

Since the list of all elements within the (A`, k;
A) family may become very large, modelling the
minselect constraint as (A`, k; A), provides an
effective means of capturing a large number of
choices effectively. Thus specification of this
constraint can be given as minselect: (P`, k; P),
where P is the available pool of activities for the
flexible workflow.

For example, the higher education degree
program referred to earlier has 14 courses to select
from (n = 14, i.e. |A| = n), 9 of which are
compulsory courses (m = 9, i.e. |A’| = 9), and with a
requirement to take at least 12 courses, students can
choose any three, or at least three from the
remaining courses, which indicates k = 3.

3.2 Validation

Once the flexible workflow has been defined,
including the core process, pool of activities, and
process constraints (which may include a number of
structural, cardinality or other constraints), instances
of the workflow may be created. Instance execution
will take place as in typical workflow engines, until
the time when a special purpose build function is
invoked. This function basically allows the instance
template to be modified. The next section will
elaborate further on how the flexible workflow is
managed by the WFMS.

In this section we are interested in what happens,
once the build function is invoked, and the instance
template has been modified. Clearly the ability to
modify the instance template on the fly provides the
much desired flexibility. However, the question is,
does the modification conform to the prescribed
process constraints?

Thus validating an instance template against a
given set of constraints needs to be provided. In the
context of cardinality constraints, this can be
achieved as follows.

In order to validate a dynamically built instance
template, we have to ensure that all tasks in Pk are
part of the node set of the newly defined instance
template. This is required since the condition for
completeness of an instance of Wf is dependent on
the task set Pk. It can be observed that determining
Pk in case of include and select constraints is a
relatively straight forward procedure. In the case of
minselect, Pk is defined as an element in the family
of set P. That is, an instance i of Wf , for which a
constraint of type minselect has been defined, can be
guaranteed to complete satisfactorily under the
following conditions:

Complete (Wf, i) = True iff
Complete (W, i) = True
AND ∃ Pk ⊆ P, such that

Pk ∈ (P`, k; P)
AND ∀ t ∈ Pk, ActivityState(t, i) = Completed

A very important question to ask is: what

happens if we want to specify several cardinality
constraints for the same workflow? Could potential
conflicts or redundancy arise within the constraint
set itself. If so, it must be resolved at design time,
that is before any instance templates are built under
that constraint set.

A number of relationships may exist between
constraints. For example two minselect constraints
may be specified:

minselect1: (P1’, k; P1)
 minselect2: (P2’, k; P2)

QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS THROUGH PROCESS CONSTRAINTS

33

where P1 and P2 are subsets of P, the given pool
of activities for Wf.

How do we reason with the constraint set when

P1∩ P2 ≠φ. The full scope of this reasoning is
beyond the scope of this paper, however, (Lin &
Orlowska, 2004), presents an investigation into
dependencies between an arbitrary pair of (A’, k; A)
families. Three relationships have been identified
and analysed, namely Equivalent, Subsume and
Imply. This reasoning provides the first step towards
a complete analysis of the set of cardinality
constraints, in particular minselect.

Another important question to be asked is, when
is the instance template validated against prescribed
process constraints? Clearly, this must be done prior
to the instance resuming execution. In the next
section, we will provide a detailed view of the
procedure to manage the flexible workflow Wf.

3.3 Managing Wf

Below we explain the functions of the flexible
workflow management system based on the
concepts presented in this paper. The discussion is
presented as a series of steps in the specification and
deployment of an example process. Figure 2
provides an overview diagram of these steps and
associated functions of the flexible workflow engine.

Process
Modeling Tool

Constraints
Validation

Engine

Process
Verification

Engine
Process

Enactment
Engine

Worklist
Manager

Process
Designer

Dynamic Instacne
Builder

Workitem
Performers

2,7
1

7

3

4

Applications /
Users Creating

Process Instances

5,6

5

6

6
8

6

Figure 2: Deployment of a Flexible Workflow

Step 1: The definition of the (flexible) workflow
model takes place. The core process, pool of
activities and associated constraints are defined.

Step 2: The process is verified for structural
errors. The validation of the given constraint set may
also takes place at this time.

Step 3: The process definition created above is
uploaded to the workflow engine. This process
model is now ready for deployment.

Step 4: For each case of the process model, the
user or application would create an instance of the
process model. On instantiation, the engine creates a
copy of the process definition and stores it as an
instance template. This process instance is now
ready for execution.

Step 5: The available process activities of the
newly created instance are assigned to performers
(workflow users) through work lists and activity
execution takes place as usual, until the instance
needs to be dynamically adapted to particular
requirements arising at runtime.

Step 6: The knowledge worker or expert user,
shown as the dynamic instance builder, will invoke a
special build function, and undertake the task of
dynamically adapting the instance template with
available pool of activities, while guided by the
specified constraint set. This revises the instance
template.

The build function is thus the key feature of this
approach which requires extension of the typical
WFMS functionality to include this additional
feature. Essentially the build function is the
capability to load and revise instance templates for
active instances.

Step 7: The next step is to verify the new
template, to ensure that it conforms to the
correctness properties of the language as well as the
given constraints.

Step 8: On satisfactory verification results the
newly defined (or revised) instance template
resumes execution. Execution will now continue as
normal, until completion or until re-invocation of the
build function, in which case steps 6-8 will be
performed again.

4 RELATED WORK

There have been several works reported in research
literature that aim towards providing the necessary
support for flexible workflows. So much so, that the
term flexible workflows has become rather
overloaded. It can range from process evolution, to
dealing with workflow exceptions, to flexible
modelling frameworks. We position this work in the
area of flexible modelling frameworks.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

34

Where as there has been substantial work on the
first two aspects, namely process evolution, see e.g.
(Ellis, Keddara and Rozenberg, 1995), (Joeris and
Herzog, 1998), (Kradolfer and Geppert, 1999),
(Sadiq, Marjanovic and Orlowska, 2000). and
exception handling, see e.g. (Reichert and Dadam,
1998), (Casati and Pozzi, 1999). In the area of
flexible workflow definition, the closest to our
approach is the approach followed by rule-based
workflows.

(Knolmayer, Endl and Pfahrer, 2000), for
example provides a rule based description of a
business process and transforms it, by applying
several refinement steps, to a set of structured rules
which represent the business process at different
levels of abstraction.. The underlying concept of
developing a workflow specification from a set of
rules describing the business processes is similar in
principle to the work presented here. However the
approach is primarily directed towards the
development of coordinated processes that span
enterprise boundaries by providing a layered
approach that separates the transformation of
business (sub-) processes and the derivation of
workflow specifications and does not address the
issue of catering for processes that cannot be
completly predefined.

Moving to the other end of our continuum for
organisational processes that spans from highly
specified and routine processes to highly unspecified
and dynamic processes we acknowledge the
significant work that has been performed in the
coordination of collaboration intensive processes in
the field of CSCW, see e.g. (Bogia and Kaplan,
1995). The complete relaxation of coordination, to
support ad-hoc processes is not conducive to the
processes targeted by our work.

However, structured ad-hoc workflows, where
patterns can be derived form the activities in the
process as a result of underlying rules to achieve
certain goals, have also been proposed (Han and
Shim, 2000). This allows the workflow system to
derive the workflow incrementally from workflow
fragments and avoids the need to predefine the
process prior to enactment. The completion of a
structured ad-hoc workflow instance allows flows to
be derived for other instances of workflows that
share the same process rules. Although defining
parts of a process incrementally rather than enacting
on a predefining process is similar to the underlying
assumption in our work. However the development
of this concept to address the modeling of processes
that cannot be eloquently predefined contains
significant differences as a result of the rules being
more explicit and consistent across instances.

Rule based approaches that make use of
inference mechanisms have also been proposed for

flexible workflows, (Abrahams, Eyers, and Bacon,
2002), (Kappel, Rausch-Schott, and Retschitzegger
2000), (Zeng et al, 2002). For example (Zeng et al,
2002) proposes PLM Flow, which provides a set of
business inference rules designed to dynamically
generate and execute workflow. The process
definition in PLMflow is specified as business rule
templates, which include backward-chain rules and
forward-chain rules. PLM Flow is a task centric
process model. The workflow schema is determined
by inferring backward-chain and forward-chain tasks
at runtime.

Some researchers have also made use of agent
technologies for flexible workflow definition e.g.
ADEPT (Jennings et al, 2000), AgFlow (Zeng et al,
2001), and RSA (Debenham, 1998). We present
brief summaries below.

ADEPT provides a method for designing agent-
oriented business process management system. It
demonstrates how a real-world application can be
conceived of as a multi-agent system.

AgFlow is an agent-based workflow system built
upon a distributed system. The system contains a
workflow specification model and the agent-based
workflow architecture. The process definition is
specify by defining the set of tasks and the workflow
process tuple. The control flow aspects can be
reflected in the task specific ECA rule.

RSA is an experimental distributed agent-based
system based on a 3-layer Believe-Desire-Intension
(BDI) architecture, hence the process definition is
reflected by the conceptual architecture of the
system as a whole.

Inspite of substantial interest from research
communities, our study shows that industry
acceptance of rule based approaches has been low.
Most commercial products continue to provide much
more visual languages for workflow specification.
Often some variant of Petri-nets, these languages
have the dual advantage of intuitive representation
as well as verifiability. A key distinguishing feature
of our approach from typical rule based approaches
is that the the core process as well as the instance
template can still be visualized in a graphical
language, as well as be supported by essential
verification.

5 CONCLUSIONS

Difficulties in dealing with change in workflow
systems has been one of the major factors limiting
the deployment of workflow technology. At the
same time, it is apparent that change is an inherent
characteristic of today’s business processes. In this
paper we present an approach that recognizes the

QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS THROUGH PROCESS CONSTRAINTS

35

presence of change, and attempts to integrate the
process of defining a change into the workflow
process itself. Our basic idea is to provide a
powerful means of capturing the logic of highly
flexible processes without compromising the
simplicity and genericity of the workflow
specification language. This we accomplish through
process constraints in workflow specifications,
which allow workflow processes to be tailored to
individual instances at runtime.

Process constraints can be defined for a number
of aspects of workflow specification, including
selection of activities, as demonstrated in this paper.
In addition to selection, they can be defined for
structural, resource allocation, as well as temporal
constraints for and between workflow activities. One
can observe that the design of an appropriate means
to facilitate the specification of process constraints is
an interesting and challenging issue.

Another interesting and beneficial outcome of
the above approach is that ad-hoc modifications can
also be provided through essentially the same
functionality. Ad-hoc modification means that any
unexecuted part of the instance template may be
modified at runtime. This is possible since the
workflow engine provides the facility to modify
instance templates even in the absence of process
constraints. However, it is important to point out
that we advocate the approach using process
constraints over ad-hoc modification because it
provides greater control over allowable changes at
runtime.

The key feature of this approach is the ability to
achieve a significantly large number of process
models, from a relatively small number of
constraints. Extensions to the constraint set may be
envisaged, although it is arguable if such a complete
and generic set can be found, and hence achieving
flexibility still remains a matter of degree.

REFERENCES

van Der Aalst, W. M. P., ter Hofstede, A. H. M.,
Kiepuszewski, B., Barros, A. P. Workflow Patterns,
Distributed and Parallel Databases, vol.14 no.1, p.5-
51, July 2003.

Abrahams, A., Eyers, D., and Bacon, J. An asynchronous
rule-based approach for business process automation
using obligations. ACM SIGPLAN workshop on Rule-
based programming, 2002.

Casati, F., Ceri, S., Pernici, B., Pozzi, G. Conceptual
Modeling of Workflows. Proceedings of the 14th
International Conference on Object-Oriented and
Entity-Relationship Modelling, vol. 1021 LNCS,
pages: 341 – 354, Springer-Verlag, 1995.

Casati, F., Pozzi, G. Modeling Exception Behaviors in
Commercial Workflow Management Systems.
Proceedings of the Fourth IFCIS International
Conference on Cooperative Information Systems
(CoopIS99). Edinburgh, Scotland. Sep 2-4, 1999.

Debenham, J. Constructing an Intelligent Multi-agent
Workflow System. Lecturer Notes in Computer
Science: vol. 1502, Springer Verlag, 1998, pp. 119 -
130.

Ellis, S., Keddara, K., Rozenberg, G.. Dynamic Changes
within Workflow Systems. Proceedings of ACM
Conference on Organizational Computing Systems
COOCS 95 (1995).

Han, D. and Shim, J. Connector-oriented workflow system
for the support of structured ad hoc workflow,
Proceedings of the 33rd Hawaii International
Conference on System Sciences. 2000

Herrmann, T. Evolving workflows by user-driven
coordination, Proceedings of DCSCW, Munich,
Germany, 102–114, September 2000

Jablonski, S., Bussler, C. Workflow Management-
Modeling, Concepts, Architecture and
Implementation, International Thomson Computer
Press, 1996.

Jennings, N. R., Faratin, P., T. Norman ,J., O'Brien, P.,
Odgers, B., and Alty, J. L. Implementing a Business
Process Management System using ADEPT: a Real-
World Case Study. International Journal of Applied
Artificial Intelligence, vol. 14, pp. 421--463, 2000

Joeris, G., Herzog, O.. Managing Evolving Workflow
Specifications. Proceedings of the third IFCIS
International Conference on Cooperative Information
Systems (CoopIS 98). NewYork, USA. Aug (1998).

Kappel, G., Rausch-Schott, S., and Retschitzegger, W. A
Framework for Workflow Management Systems
Based on Objects, Rules and Roles. ACM Computing
Surveys, vol. 32, pp. 27 - 27, 2000.

Knolmayer, G., Endl R. and Pfahrer, M. Modeling
processes and workflows by business rules, van der
Aalst W. et al. (Eds.) Business Process Management,
LNCS 1806: 16–29. 2000

Kradolfer, M., Geppert, A.. Dynamic Workflow Schema
Evolution based on Workflow Type Versioning and
Workflow Migration. Proceedings of the Fourth
IFCIS International Conference on Cooperative
Information Systems (CoopIS99). Edinburgh,
Scotland. Sep 2-4, 1999.

Lin, J., Orlowska, M. A new class of constraints for
business process modelling. School of Information
Technology and Electrical Engineering, The
University of Queensland. Technical Report No. 453.
Nov 2004.

Reichert, M., Dadam, P. ADEPTflex - Supporting
Dynamic Changes of Workflow without loosing
control. Journal of Intelligent Information Systems
(JIIS), Special Issue on Workflow and Process
Management 1998.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

36

Sadiq W., Orlowska, M. On capturing Process
Requirements of Workflow Based Information
Systems. Proceedings of the 3rd International
Conference on Business Information Systems (BIS
’99), Poznan, Poland. April 14-16, 1999.

Sadiq, S., Marjanovic, O., Orlowska, M. Managing
Change and Time in Dynamic Workflow Processes.
The International Journal of Cooperative Information
Systems. Vol 9, Nos 1&2. March-June 2000.

Sadiq, S., Sadiq, W., Orlowska, M. Pockets of Flexibility
in Workflow Specifications. 20th International
Conference on Conceptual Modeling, ER’2001,
Yokohama Japan, 2001.

Sadiq, S., Sadiq, W., Orlowska, M. Workflow Driven e-
Learning – Beyond Collaborative Environments.
Networked Learning in a Global Environment.
Challenges and Solutions for Virtual Education.
Berlin, Germany May 1 - 4, 2002.

Sadiq, S., Sadiq, W., Orlowska, M. Specification and
Validation of Process Constraints for Flexible
Workflows. Information Systems (To appear).

Zeng, L., Flaxer, D., Chang, H., and Jeng, J.. PLMflow:
Dynamic Business Process Composition and
Execution by Rule Inference. 3rd VLDB Workshop on
Technologies for E-Services (TES'02), HongKong
P.R.China, 24-25 Aug 2002.

Zeng, L., Ngu, A., Bentallah, B., and O'Dell, M. "An
agent-based approach for supporting cross-enterprise
workflows," presented at 12th-Australasian-Database-
Conference.-ADC-2001, 2001.

QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS THROUGH PROCESS CONSTRAINTS

37

