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Abstract:  Workflow technology has delivered effectively for a large class of business processes, providing the 
requisite control and monitoring functions. At the same time, this technology has been the target of much 
criticism due to its limited ability to cope with dynamically changing business conditions which require 
business processes to be adapted frequently, and/or its limited ability to model business processes which 
cannot be entirely predefined. Requirements indicate the need for generic solutions where a balance 
between process control and flexibility may be achieved. In this paper we present a framework that allows 
the workflow to execute on the basis of a partially specified model where the full specification of the model 
is made at runtime, and may be unique to each instance. This framework is based on the notion of process 
constraints. Where as process constraints may be specified for any aspect of the workflow, such as 
structural, temporal, etc. our focus in this paper is on a constraint which allows dynamic selection of 
activities for inclusion in a given instance. We call these cardinality constraints, and this paper will discuss 
their specification and validation requirements.  

1 INTRODUCTION 

Process enforcement technologies have a dominant 
role in current enterprise systems development. It 
has been long established that automation of specific 
functions of enterprises will not provide the 
productivity gains for businesses unless support is 
provided for overall business process control and 
monitoring. Workflows have delivered effectively in 
this area for a class of business processes, but typical 
workflow systems have been under fire due to their 
lack of flexibility, i.e., their limited ability to adapt 
to changing business conditions. In the dynamic 
environment of e-business today, it is essential that 
technology supports the business to adapt to 
changing conditions. However, this flexibility 
cannot come at the price of process control, which 
remains an essential requirement of process 
enforcement technologies.  

 

Providing a workable balance between flexibility 
and control is indeed a challenge, especially if 
generic solutions are to be offered. Clearly there are 
parts of the process which need to be strictly 
controlled through fully predefined models. There 
can also be parts of the same process for which some 
level of flexibility must be offered, often because the 
process cannot be fully predefined due to lack of 
data at process design time. For example, in call 
centre responses, where customer inquiries and 
appropriate response cannot be completely pre-
defined, or in higher education, where study paths 
resulting from individual student preferences cannot 
be entirely anticipated.  

 
In general, a process model needs to be capable 

of capturing multiple perspectives (Jablonki & 
Bussler, 1996), in order to fully capture the business 
process. There are a number of proposals both from 
research and academia, as well as from industry on 
the modelling environment (language) that allows 
these perspectives to be adequately described. 
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Different proposals offer different level of 
expressiveness in terms of these perspectives, see 
e.g. (Sadiq & Orlowska, 1999), (Casati et al 1995), 
(van der Aalst, 2003), although most focus on the 
control flow (what activities are performed and in 
what order).  

 
Basically these perspectives are intended to 

express the constraints under which the business 
process can be executed such that the targeted 
business goals can be effectively met. We see two 
fundamental classes of these constraints: 

 
Process level constraints: This constitutes the 

specification of what activities must be included 
within the process, and the flow dependencies within 
these activities including the control dependencies 
(such as sequence, alternative, parallel etc.) and 
temporal dependencies (such as relative deadlines).  

 
Activity level constraints: This constitutes the 

specification of various properties of the individual 
activities within the process, including activity 
resources (applications, roles and performers), data 
(produced and/or consumed), and time (duration and 
deadline constraints).  

 
In this paper, we focus on the flexible definition 

of process level constraints. We see the level of 
definition of these constraints along a continuum of 
specification There is the completely predefined 
model on one end, and the model with no 
predefinition on the other. Thus the former only has 
strong constraints (e.g. A and B are activities of a 
given process, and B must follow A), and the latter 
no constraints at all. The former extreme is too 
prescriptive and not conducive to dynamic business 
environments; and the latter extreme defeats the 
purpose of process enforcement, i.e. with 
insufficient constraints, the process goals may be 
compromised and quality of service for the process 
cannot be guaranteed. Finding the exact level of 
specificity along this continuum will mostly be 
domain dependent. However, technology support 
must be offered at a generic level. There is a need to 
provide a modelling environment wherein the level 
of specification can be chosen by the process 
designer such that the right balance between 
flexibility and control can be achieved.  

 
The work presented in this paper basically 

discusses flexible process definition for a particular 
class of constraints. In essence, a small number of 
constraints are specified at design time, but the 
process instances are allowed to follow a very large 
number of execution paths. As long as the given 
constraints are met, any execution path dynamically 

constructed at runtime is considered legal. This 
ensures flexible execution while maintaining a 
desired level of control through the specified 
constraints.  

 
In the following sections, we first present the 

modelling framework which allows flexible process 
definition. We will then present the details of the 
constraint specification and validation. In the 
remaining sections, we will present some 
background related work to appropriately position 
this work, and finally a summary of this work and its 
potential extensions.  

2 MODELING FRAMEWORK 

The modelling framework required for the 
specification of process constraints is simple and has 
minimal impact on the underlying workflow 
management system. We assume that the underlying 
WFMS supports a typical graph-based process 
model and a state-based execution model. Such 
process models support typical constructs like 
sequence, fork, choice etc (Figure 1(a)), and activity 
execution is based on a finite state machine with 
typical states such as available, commenced, 
suspended, completed (Figure 1(b)). 
 

 
 
 
 
 
 

Figure 1: (a) Process Model 
 
The workflow model (W) is defined through a 

directed graph consisting of nodes (N) and Flows 
(F). Flows show the control flow of the workflow. 
Thus W = <N, F> is a Directed Graph where N: 
Finite Set of Nodes, F: Flow Relation F ⊆ N Χ N. 
Nodes are classified into tasks (T) and coordinators 
(C), where  C ∪ T, C ∩ T = φ. 

 
Task nodes represent atomic manual / automated 

activities or sub processes that must be performed to 
satisfy the underlying business process objectives. 
Coordinator nodes allow us to build control flow 
structures to manage the coordination requirements. 
Basic modelling structures supported through these 
coordinators include Sequence, Exclusive Or-Split 
(Choice), Exclusive Or-Join (Merge), And-Split 
(Fork), And-Join (Synchronizer), and explicit begin 
and end coordinators.   
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A process model will have several activities. An 
activity t ∈ T is not a mere mode in the workflow 
graph, but has rich semantics which are defined 
through its properties, such as input and output data, 
temporal constraints, resources requirements etc.  

 
 
 
 
 
 
 

 
 

Figure 1: (b) Activity Execution Model 
 

An instance within the workflow graph 
represents a particular case of the process.  An 
instance type represents a set of instances that follow 
the same execution path within the workflow.  

 
Let i be an instance for W.  
∀ t ∈ N, we define ActivityState(t, i)  {Initial, 

Available, Commenced, Completed, Suspened} 
 
We propose to extend the above environment 

with the following two functions: 
 
A design time function of constraint 

specification. To provide a facility to specify a pool 
of activities (including sub-processes) and associated 
constraints in addition to the core process model. 
These activities are allowed to be incorporated in the 
process at any time during execution, but under the 
given constraints. The core process defines the un-
negotiable part of the process, and the pool of 
activities and associate constraints define the 
flexible part – thus attempting to strike a balance 
between flexibility and control.  

 
We associate with every process W, these two 

additional elements of specification, namely the pool 
of activities given by P, and a set of constraints 
given by C. The definition of the flexible workflow 
Wf is thus given by <W, P, C>.  

 
A run time function of dynamic instance 

building.  To allow the execution path of given 
instance(s) to be adapted in accordance with the 
particular requirements for that instance which 
become known only at runtime. Thus the process for 
a given instance can be dynamically built based on 
runtime knowledge, but within the specified 
constraint set C.  

 
In order to provide explicit terminology, we call 

the instance specification prior to building, an open 

instance. The instance specification after building 
we call an instance template. Thus the instance 
template is a particular composition of the given 
activities within the flexible workflow Wf. The 
instance templates in turn have a schema-instance 
relationship with the underlying execution. In 
traditional terms, the instance template acts as the 
process model for the particular instance. Execution 
takes place with full enforcement of all coordination 
constraints as in a typical production workflow. 
However, template building is progressive. The 
process may be changed several times through the 
available pool of activities and associated 
constraints. As such the template remains open until 
the process has reached completion.  

Available Commenced

Suspended

Completed

Initial

Available Commenced

Suspended

Completed

Initial

 
The main feature of this approach is the 

utilization of the constraint set C. In previous work, 
we proposed the use of so called structural and 
containment constraints for flexible workflows 
(Sadiq et al, 2001), (Sadiq et al, 2004). The 
constraints belonging to the structural class impose 
restrictions on how activities can be composed in the 
templates. The constraints belonging to the 
containment class identify conditions under which 
combinations of activities can(not) be contained in 
the templates.  

 
For example serial is a type of structural 

constraint, where given activities must be executed 
serially, i.e. not concurrently. However the choice of 
order remains flexible and is determined by the user 
during the build. A practical example of a serial 
constraint can be found in healthcare. Pathologies 
and medical imaging labs need to schedule a large 
number of tests in different departments. A number 
of tests can be prescribed for a given patient e.g. 
blood test, X-Ray, ECG. These tests can be done in 
any order but only one at a time. A serial constraint 
on these activities will ensure this for a given patient 
or instance. 

 
In this paper, we introduce a new class of 

constraints for flexible workflows. We call these 
cardinality constraints. This new class is especially 
interesting, because it provides a new means of 
dealing with two well known challenges in 
workflow specification, namely n-out-of-m joins and 
implicit termination. In the sections below, we 
introduce the framework for the specification of 
cardinality constraints in flexible workflows. We 
will also present a means of validating the 
dynamically built instance (templates) against the 
specified constraints.  

QUALITY OF SERVICE IN FLEXIBLE WORKFLOWS THROUGH PROCESS CONSTRAINTS

31



 

3 CARDINALITY CONSTRAINTS 

Cardinality constraints basically define the set of 
tasks that must be executed within the process, to 
guarantee that intended process goals will be met. In 
other words, which tasks must essentially be 
executed for a process to be considered complete.  

The completion of W is explicit due to the 
presence of an end coordinator and also since the 
tasks within an instance type are pre-determined. 
However, completion of Wf is not explicit, since the 
user may make different selections at run time from 
the available pool of activities.  

To further explain this, we define the function 
Complete (W, i)  {True, False}, where   

 
Complete (W, i) = True iff 
∀ t ∈ T, ActivityState(t, i) = Completed | Initial 
 AND ∃ t ∈ T, ActivityState(t, i) = Completed 
 
Complete (Wf, i) = True iff 
Complete (W, i) = True  

AND ∃ Pk ⊆ P, such that  
∀ t ∈ Pk, ActivityState(t, i) = Completed 

 
 The interesting question is, how to define the 

set of tasks that constitute Pk. This requires 
consideration at both the conceptual and 
implementation level. As an example, consider the 
tertiary education domain.  

Today’s student communities are constantly 
changing, with more and more part time, mature age 
and international students with a wide variety of 
educational, professional and cultural backgrounds. 
These students have diverse learning needs and 
styles. Where as degree programs are generally well 
defined in terms of overall process constraints, it is 
difficult to judge the quality of specific choices 
made by students. Tertiary programs often offer a 
diverse collection of courses that allow 
specialisation on various aspects of a program. The 
wide variety of valid combinations of courses that 
satisfy a particular program’s requirement indicates 
a high degree of flexibility.  

The study of a simple program structure was 
conducted. The program consisted of nine courses of 
compulsory material and a further three courses of 
elective material which are selected from a schedule 
of 14 available electives. This was found to yield a 
total of some 364 instance types, when considering 
also the sequence in which the courses can be taken. 
A further illustration considers a less structured 
program, such as Arts or Science, where some 20 to 
30 courses are required from a schedule that can 
contain thousands of courses. A number of factors 
impact on the choices made by the students 

including changing areas of interest, changing 
workload requirements and changing program rules. 
The multiplicity of valid combinations of courses 
that can be undertaken, and ensuring that these 
satisfy the requirements of programs, particularly 
where these requirements have changed during the 
duration of the student’s enrolment constitute a 
complex problem.  

Although academic courses are not currently 
deployed as workflow tasks in the typical sense, the 
appropriateness of workflow modelling concepts has 
been demonstrated (Sadiq & Orlowska, 2002). 
Academic courses equate to process tasks, these 
courses are interdependent and the academic 
program represents a long duration business process. 
At the same time, there is an inherent flexibility in 
these processes, required for diverse student 
requirements, which makes their modelling in 
traditional prescriptive process definition languages 
very difficult.  

In the sections below, we will demonstrate how 
the use of cardinality constraints within a flexible 
workflow modelling framework provides an elegant 
means of capturing the requirements of such 
processes. Furthermore, the presented framework 
also provides a simple means of ensuring that the 
specified constraints are met for a given instance, 
thus providing the essential validation support.  

3.1 Specification 

The specification of the task set Pk that satisfies the 
completion condition for Wf can be done in three 
ways: 
1. Providing a static set of mandatory tasks which 

must all be performed in a given instance. In 
this case, the flexibility is found only in when 
these tasks will be executed, not which ones. 
We call this constraint include. Specification on 
include is rather straightforward and can be 
made as include: Pk 

2. Providing a set of tasks, together with a minimal 
cardinality for selection, that is at least n out of 
m tasks must be performed in a given instance. 
We call this constraint select. Specifying select 
is also simple and can be made by providing the 
set of tasks, together with an integer n, i.e. 
select: (P, n), where P is the available pool of 
activities for the flexible workflow. In this case 
Pk, is any subset of P where |Pk| = n 

3. Providing a set of tasks, a minimal cardinality 
for selection, as well as prescribing some tasks 
as mandatory. Thus, at least n tasks must be 
preformed for a given instance, but this 
selection of n tasks must include the prescribed 
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mandatory tasks. We call this constraint 
minselect.  

 
Specifying minselect requires further 

consideration, which we present below. 
We first introduce the notion of a family of set A, 

as a collection of subsets of A. A notation to 
represent a family of set A is given by (A`, k; A) and 
is defined as follows: 

 
|A| = n 
A`⊆A such that |A`| = m,  
Let k be such that m+k ≤ n, 
(A`, k; A) = { A`∪ B | B ∈ 2A\A`  and |B| = k} 
 

(A`, k; A) represent a collection of subsets of set 
A, such that each member of the collection is 
composed from A` and B. To illustrate further, we 
present the following simple example: 

Let A = {a, b, c, d} and family F = (A`, k; A)  
where A` = {a, b} and k = 1,  

then F = {{a, b, c}, {a, b, d}}  
 

There are   number of elemental  
 
subsets in the (A`, k; A) family. i.e. the cardinality 
of the family can be computed by |(A’, k; A)| = (n – 
m)!/k!(n – m – k)!. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−mn

k

The notation of (A`, k; A) has the expressive 
power to represent a collection of subsets without 
listing every single one. Basically all members of 
(A`, k; A) family shares the common subset A` in 
the set, and the remaining subset is selected from the 
power set of the set difference A\A` where 
cardinality equals to k. Thus A’ represents the 
mandatory selection.  

Since the list of all elements within the (A`, k; 
A) family may become very large, modelling the 
minselect constraint as (A`, k; A), provides an 
effective means of capturing a large number of 
choices effectively. Thus specification of this 
constraint can be given as minselect: (P`, k; P), 
where P is the available pool of activities for the 
flexible workflow.  

For example, the higher education degree 
program referred to earlier has 14 courses to select 
from (n = 14, i.e. |A| = n), 9 of which are 
compulsory courses (m = 9, i.e. |A’| = 9), and with a 
requirement to take at least 12 courses, students can 
choose any three, or at least three from the 
remaining courses, which indicates k = 3.  

3.2  Validation 

Once the flexible workflow has been defined, 
including the core process, pool of activities, and 
process constraints (which may include a number of 
structural, cardinality or other constraints), instances 
of the workflow may be created. Instance execution 
will take place as in typical workflow engines, until 
the time when a special purpose build function is 
invoked. This function basically allows the instance 
template to be modified. The next section will 
elaborate further on how the flexible workflow is 
managed by the WFMS.  

In this section we are interested in what happens, 
once the build function is invoked, and the instance 
template has been modified. Clearly the ability to 
modify the instance template on the fly provides the 
much desired flexibility. However, the question is, 
does the modification conform to the prescribed 
process constraints?  

Thus validating an instance template against a 
given set of constraints needs to be provided. In the 
context of cardinality constraints, this can be 
achieved as follows. 

In order to validate a dynamically built instance 
template, we have to ensure that all tasks in Pk are 
part of the node set of the newly defined instance 
template. This is required since the condition for 
completeness of an instance of Wf is dependent on 
the task set Pk. It can be observed that determining 
Pk in case of include and select constraints is a 
relatively straight forward procedure. In the case of 
minselect, Pk is defined as an element in the family 
of set P. That is, an instance i of Wf , for which a 
constraint of type minselect has been defined, can be 
guaranteed to complete satisfactorily under the 
following conditions:  

Complete (Wf, i) = True iff 
Complete (W, i) = True  
AND ∃ Pk ⊆ P, such that 

Pk ∈ (P`, k; P) 
AND ∀ t ∈ Pk, ActivityState(t, i) = Completed 

 
A very important question to ask is: what 

happens if we want to specify several cardinality 
constraints for the same workflow? Could potential 
conflicts or redundancy arise within the constraint 
set itself. If so, it must be resolved at design time, 
that is before any instance templates are built under 
that constraint set.  

A number of relationships may exist between 
constraints. For example two minselect  constraints 
may be specified: 

minselect1: (P1’, k; P1) 
 minselect2: (P2’, k; P2) 
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where P1 and P2 are subsets of P, the given pool 
of activities for Wf.  

 
How do we reason with the constraint set when 

P1∩ P2 ≠φ. The full scope of this reasoning is 
beyond the scope of this paper, however, (Lin & 
Orlowska, 2004), presents an investigation into 
dependencies between an arbitrary pair of (A’, k; A) 
families. Three relationships have been identified 
and analysed, namely Equivalent, Subsume and 
Imply. This reasoning provides the first step towards 
a complete analysis of the set of cardinality 
constraints, in particular minselect.  

Another important question to be asked is, when 
is the instance template validated against prescribed 
process constraints? Clearly, this must be done prior 
to the instance resuming execution. In the next 
section, we will provide a detailed view of the 
procedure to manage the flexible workflow Wf. 

3.3 Managing Wf  

Below we explain the functions of the flexible 
workflow management system based on the 
concepts presented in this paper. The discussion is 
presented as a series of steps in the specification and 
deployment of an example process. Figure 2 
provides an overview diagram of these steps and 
associated functions of the flexible workflow engine. 
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Figure 2: Deployment of a Flexible Workflow 
 

Step 1: The definition of the (flexible) workflow 
model takes place. The core process, pool of 
activities and associated constraints are defined.  

Step 2: The process is verified for structural 
errors. The validation of the given constraint set may 
also takes place at this time.  

Step 3: The process definition created above is 
uploaded to the workflow engine. This process 
model is now ready for deployment.  

Step 4: For each case of the process model, the 
user or application would create an instance of the 
process model. On instantiation, the engine creates a 
copy of the process definition and stores it as an 
instance template. This process instance is now 
ready for execution. 

Step 5: The available process activities of the 
newly created instance are assigned to performers 
(workflow users) through work lists and activity 
execution takes place as usual, until the instance 
needs to be dynamically adapted to particular 
requirements arising at runtime.  

Step 6: The knowledge worker or expert user, 
shown as the dynamic instance builder, will invoke a 
special build function, and undertake the task of 
dynamically adapting the instance template with 
available pool of activities, while guided by the 
specified constraint set. This revises the instance 
template.   

The build function is thus the key feature of this 
approach which requires extension of the typical 
WFMS functionality to include this additional 
feature. Essentially the build function is the 
capability to load and revise instance templates for 
active instances.  

Step 7: The next step is to verify the new 
template, to ensure that it conforms to the 
correctness properties of the language as well as the 
given constraints.  

Step 8: On satisfactory verification results the 
newly defined (or revised) instance template 
resumes execution. Execution  will now continue as 
normal, until completion or until re-invocation of the 
build function, in which case steps 6-8 will be 
performed again.  

4 RELATED WORK 

There have been several works reported in research 
literature that aim towards providing the necessary 
support for flexible workflows. So much so, that the 
term flexible workflows has become rather 
overloaded. It can range from process evolution, to 
dealing with workflow exceptions, to flexible 
modelling frameworks. We position this work in the 
area of flexible modelling frameworks.  

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

34



 

Where as there has been substantial work on the 
first two aspects, namely process evolution, see e.g. 
(Ellis, Keddara and Rozenberg, 1995), (Joeris and 
Herzog, 1998), (Kradolfer and Geppert, 1999), 
(Sadiq, Marjanovic and Orlowska, 2000). and 
exception handling, see e.g. (Reichert and Dadam, 
1998), (Casati and Pozzi, 1999). In the area of 
flexible workflow definition, the closest to our 
approach is the approach followed by rule-based 
workflows.  

(Knolmayer, Endl and Pfahrer, 2000), for 
example provides a rule based description of a 
business process and transforms it, by applying 
several refinement steps, to a set of structured rules 
which represent the business process at different 
levels of abstraction.. The underlying concept of 
developing a workflow specification from a set of 
rules describing the business processes is similar in 
principle to the work presented here. However the 
approach is primarily directed towards the 
development of coordinated processes that span 
enterprise boundaries by providing a layered 
approach that separates the transformation of 
business (sub-) processes and the derivation of 
workflow specifications and does not address the 
issue of catering for processes that cannot be 
completly predefined.  

Moving to the other end of our continuum for 
organisational processes that spans from highly 
specified and routine processes to highly unspecified 
and dynamic processes we acknowledge the 
significant work that has been performed in the 
coordination of collaboration intensive processes in 
the field of CSCW, see e.g. (Bogia and Kaplan, 
1995). The complete relaxation of coordination, to 
support ad-hoc processes is not conducive to the 
processes targeted by our work.  

However, structured ad-hoc workflows, where 
patterns can be derived form the activities in the 
process as a result of underlying rules to achieve 
certain goals, have also been proposed (Han and 
Shim, 2000). This allows the workflow system to 
derive the workflow incrementally from workflow 
fragments and avoids the need to predefine the 
process prior to enactment. The completion of a 
structured ad-hoc workflow instance allows flows to 
be derived for other instances of workflows that 
share the same process rules. Although defining 
parts of a process incrementally rather than enacting 
on a predefining process is similar to the underlying 
assumption in our work. However the development 
of this concept to address the modeling of processes 
that cannot be eloquently predefined contains 
significant differences as a result of the rules being 
more explicit and consistent across instances.  

Rule based approaches that make use of 
inference mechanisms have also been proposed for 

flexible workflows, (Abrahams, Eyers, and Bacon, 
2002), (Kappel, Rausch-Schott, and Retschitzegger 
2000), (Zeng et al, 2002). For example (Zeng et al, 
2002) proposes PLM Flow, which provides a set of 
business inference rules designed to dynamically 
generate and execute workflow. The process 
definition in PLMflow is specified as business rule 
templates, which include backward-chain rules and 
forward-chain rules. PLM Flow is a task centric 
process model. The workflow schema is determined 
by inferring backward-chain and forward-chain tasks 
at runtime.  

Some researchers have also made use of agent 
technologies for flexible workflow definition e.g. 
ADEPT (Jennings et al, 2000), AgFlow (Zeng et al, 
2001), and RSA (Debenham, 1998). We present 
brief summaries below. 

ADEPT provides a method for designing agent-
oriented business process management system. It 
demonstrates how a real-world application can be 
conceived of as a multi-agent system.  

AgFlow is an agent-based workflow system built 
upon a distributed system. The system contains a 
workflow specification model and the agent-based 
workflow architecture. The process definition is 
specify by defining the set of tasks and the workflow 
process tuple. The control flow aspects can be 
reflected in the task specific ECA rule. 

RSA is an experimental distributed agent-based 
system based on a 3-layer Believe-Desire-Intension 
(BDI) architecture, hence the process definition is 
reflected by the conceptual architecture of the 
system as a whole.  

Inspite of substantial interest from research 
communities, our study shows that industry 
acceptance of rule based approaches has been low. 
Most commercial products continue to provide much 
more visual languages for workflow specification. 
Often some variant of Petri-nets, these languages 
have the dual advantage of intuitive representation 
as well as verifiability. A key distinguishing feature 
of our approach from typical rule based approaches 
is that the the core process as well as the instance 
template can still be visualized in a graphical 
language, as well as be supported by essential 
verification.  

5 CONCLUSIONS 

Difficulties in dealing with change in workflow 
systems has been one of the major factors limiting 
the deployment of workflow technology. At the 
same time, it is apparent that change is an inherent 
characteristic of today’s business processes. In this 
paper we present an approach that recognizes the 
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presence of change, and attempts to integrate the 
process of defining a change into the workflow 
process itself. Our basic idea is to provide a 
powerful means of capturing the logic of highly 
flexible processes without compromising the 
simplicity and genericity of the workflow 
specification language. This we accomplish through 
process constraints in workflow specifications, 
which allow workflow processes to be tailored to 
individual instances at runtime. 

Process constraints can be defined for a number 
of aspects of workflow specification, including 
selection of activities, as demonstrated in this paper. 
In addition to selection, they can be defined for 
structural, resource allocation, as well as temporal 
constraints for and between workflow activities. One 
can observe that the design of an appropriate means 
to facilitate the specification of process constraints is 
an interesting and challenging issue.  

Another interesting and beneficial outcome of 
the above approach is that ad-hoc modifications can 
also be provided through essentially the same 
functionality. Ad-hoc modification means that any 
unexecuted part of the instance template may be 
modified at runtime. This is possible since the 
workflow engine provides the facility to modify 
instance templates even in the absence of process 
constraints.  However, it is important to point out 
that we advocate the approach using process 
constraints over ad-hoc modification because it 
provides greater control over allowable changes at 
runtime. 

The key feature of this approach is the ability to 
achieve a significantly large number of process 
models, from a relatively small number of 
constraints. Extensions to the constraint set may be 
envisaged, although it is arguable if such a complete 
and generic set can be found, and hence achieving 
flexibility still remains a matter of degree.  
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