
PROCESS ORIENTED DISCOVERY OF BUSINESS PARTNERS

Axel Martens
IBM T. J. Watson Research Center

Component Systems Group

Keywords: Business Process Modeling, Web Service, BPEL4WS, UDDI, Process Model Matchmaking, Petri nets.

Abstract: Emerging technologies and industrial standards in the field of Web services enable a much faster and easier
cooperation of distributed partners. With the increasing number of enterprises that offer specific functionality
in terms of Web services, discovery of matching partners becomes a serious issue. At the moment, discovery
of Web services generally is based on meta-information (e. g. name, business category) and some technical
aspects (e. g. interface, protocols). But, this selection might be to coarse grained for dynamic application
integration, and there is much more information available. This paper describes a method to discover business
partners based on the comparison of their behavior – specified in terms of their published Web service process
models.

1 INTRODUCTION

To an increasing extend business processes are cross-
ing the borders of individual enterprises. This re-
quires the integration of the underlying business ap-
plications in a reliable but flexible manner. Web ser-
vices (Alonso et al., 2002) provide a stack of closely
related technologies to cover the heterogeneity and
distribution of such processes underneath a homoge-
nous concept of components and composition. Each
self-contained work item or sub-process is wrapped
up and encapsulated as a Web service – a reusable
component with a standardized interface. The distrib-
uted application arises from composition of several
Web services that interact via existing protocols.

1.1 The scenario

In spit of all technical specifications, Web services are
not just another programming paradigm. They are the
core piece of the service oriented architecture SOA
(Alonso et al., 2002) – a philosophy of transforming
business functionality into an article of trade, which
is available through a network, and which can be dis-
covered and integrated into an distributed application
on demand. To provide necessary background infor-
mation, Figure 1 shows the involved actors and their
activities. For one given Web service each participant
plays the role of a provider, a requestor or a broker.

The service provider offers a Web service to poten-
tial users by publishing (1) its description in a reposi-
tory, called UDDI (Bellwood et al., 2002). The Web
service description consists of several parts. Some
parts cover non-operational information (e. g. name,

publish

bind

find

Service
Requestor

Service
Provider

Service
Broker

Web Service

Service
Description

Service
Requirements

Service
DescriptionsRequest

List of 
Services

Environment

Discovery

12

3

4

Figure 1: Service Oriented Architecture (SOA)

address, business category, policies). This paper fo-
cuses of the technical parts, which cover, at the mo-
ment, basically the Web service interface description,
defined in terms of WSDL (Christensen et al., 2001).
As this paper will show, the Web service process
model should be include, as well – defined in terms
of the Business Process Execution Language for Weg
Services BPEL4WS (Andrews et al., 2002).

The service requestor wants to integrate a new Web
service into its application – which is called environ-
ment. Because the resulting composed system should
perform a desired task error free, the requestor de-
mands certain properties from the Web service to
find (2). This paper presents an intuitive way to formu-
late those requirements in terms of a process model.

The service broker manages a repository of pub-
lished Web service description. His task is to dis-
cover (3) those services, which meet the needs of the
service requestor. In general, there might be more

57
Martens A. (2005).
PROCESS ORIENTED DISCOVERY OF BUSINESS PARTNERS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 57-64
DOI: 10.5220/0002527300570064
Copyright c© SciTePress



than one matching service. Hence, the broker presents
the requestor a list of candidates. Finally, the re-
questor chooses one service and integrates it into his
environment. This activity is called binding (4). Due
to the presented discovery mechanisms, compatibility
on the process level between the environment of the
requestor and any discovered service is guaranteed.

1.2 The approach

Apparently, the quality of the matching between a
Web service description and the requested properties
has a strong influence on the convenience and success
of the binding. At the moment, matching of technical
aspects is limited to comparison of the interface de-
scription, which might not gain sufficient precision. It
is possible that the internal structure of a discovered
service does not meet the customers needs although
it has the required interface. For example, a service
requestor is searching a shopping service that delivers
an ordered product and requires payment afterwards.
Focused on the interface only (sending product, re-
ceiving payment), the discovery mechanisms might
point to a service that requires payment first. Obvi-
ously, there is a mismatch between the desired and
the discovered service. In that sense, the matching
criterion is not adequate.

Instead of considering the Web service interface
description only, this paper presents a matching
mechanism that additionally compares the behavior
of Web services – which is defined by the Web ser-
vice process model. To enable this comparison, three
activities of the service oriented architecture has to
be enhanced as follows: First, the service provider
publishes a BPEL process model as an additional part
of the service description. Second, the service re-
questor models his requirements in terms of an (ab-
stract) BPEL process model as well, similarly to the
Query-By-Example approach of database theory. And
third, the service broker compares the behavior of the
published and requested process models – in addition
to the established discovery mechanisms – which in-
creases the precision dramatically.

This paper explains, how already existing effi-
ciently executable formal methods can be used to per-
form the necessary step. Therefore, Section 2 in-
troduces the Web service process modeling language
BPEL4WS by help of an example and discusses the
matchmaking requirements. Section 3 presents a
formal representation of the Web service behaviors
and derives the property of simulation between two
process models. This properties the foundation of
the proposed matchmaking mechanism. In Section 4,
the integration into the service oriented architecture
is demonstrated in different ways, and more advanced
use cases are discussed. Finally, the conclusion re-
lates this approach to other published research efforts.

2 PROCESS MODELING

The Business Process Execution Language for Web
Services BPEL4WS (Andrews et al., 2002) is in the
very act of becoming the industrial standard for mod-
eling Web service based business processes. Hence,
this language is used in this paper to specify, imple-
ment and compare the behavior of Web services. Fig-
ures 2 and 3 show two BPEL models of two different
Web services processing incoming orders.

2.1 Modeling with BPEL4WS

Basically, a BPEL process model consists of two dif-
ferent kinds of activities: Basic activities are used to
communicate to the outside e. g. receive order, con-
firm order in Figure 2), to manipulate data or to in-
terfere with the control flow, e. g. by signaling faults
(not present in the examples). Structured activities
aggregate other activities and therefore, they are used
to build the control structures of the process: A se-
quence is the simplest structured activity. Alternative
branches can be either based on data (switch on order
status in Figure 2) or based incoming on messages
(pick customer’s message in Figure 3). The parallel
execution of activities might be synchronized by di-
rected links (cf. Figure 8). Moreover, BPEL4WS al-
lows the repeated of activities, which does not appear
in the chosen examples.

Let’s have a closer look on order process 1, shown
in Figure 2. Its structure is quite simple: First, this
service receives an order from a customer. Then, the
service chooses one out of two alternative branches.
Either the order is accepted and a confirmation is send,
or the order is rejected (e. g. because the product is out
of stock). In that case, the customer gets the shop’s
special offers instead. It is not specified, how the de-
cision between these two branches is made.

Let’s assume, this process model was specified by
the service requestor, and therefore, it is called spec-
ification. According to the service oriented architec-
ture, the requestor is looking for a Web service that
could be bind to his environment, such that the result-
ing composed system performs the desired task error
free. In other words: The environment and the dis-
covered Web service have to be compatible – a prop-
erty that could be proven effectively as described in
(Martens, 2005a).

Of course, the BPEL model of order process 1 was
designed such that it specifies the required function-
ality, and it is compatible to the requestor’s environ-
ment. Hence, each Web service that is to be dis-
covered should behave very much like this process
model. If this is the case, the Web service is called
implementation. To verify whether a discovered Web
service is a valid implementation of a specification, in
the next section the notion of simulation between their

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

58



Figure 2: The requested Web service

behavioral models is defined. But before going into
the precise formalism, the overall intuition of simula-
tion shall be explained by comparing the specification
with the BPEL model of order process 2.

2.2 Matching process models

Figure 2 shows the process model of a published Web
service. The structure of this process model differs
a lot from the previously explained order process 1,
and so does the behavior. Similarly to the specifica-
tion, order process 2 is able to receive an order from
the customer right at the beginning. But, it also can re-
ceive the payment. In case of an order, order process 2
performs an internal activity and sends always a con-
firmation. It does neither have the possibility to reject
an order nor to send some special offers instead.

In spite of all differences, it is reasonable to
call order process 2 a valid implementation of order
process 1. To prove this statement, the compatible en-
vironments of order process 1 have to be considered.
Each of those environments always will send an order
to the service, because this is the only message that
could be received by order process 1. This message
could be received by order process 2,
as well. After sending the order, an compatible
environment has to be able to receive a confirma-
tion, because order process 1 could decide to send
this message. Because this is the only response or-
der process 2 is able to send, the environment is per-
fectly compatible to order process 2. Moreover, such
an environment is not able to see any difference be-
tween those two Web services.

This example already poses some requirements to
the notion of simulation. The implementing service
has to be able to accept at least those messages, the
specifying service can accept, and the implementing
service is allowed to produce at most those messages,
the specifying service can produce – always in re-
spect of the current state, i. e. the history of com-
munication. Nevertheless, the implementing service

Figure 3: A published Web Service

does not need to cover all behavior of the specifying
service, and the implementing service might provide
additional behavior. The next section pinpoints the
common pattern. At least, there must be a subset of
the specifying service’s behavior that is performed in
the same manner by the implementing service. In the
chosen example, the sequence of receiving and con-
firming an order is such a subset.

3 COMPARING BEHAVIOR

The presented approach to Web service discovery is
based on the comparison of the behavior – specified
in terms of their published BPEL process models. But,
the semantics of BPEL4WS so far is defined only by
English prose or encoded into middleware compo-
nents, more ore less accurately. To reason precisely
about the current state and activated actions, and to
prove properties like the simulation of two models,
a formal and explicit semantics of the language is
needed. This paper is based on a formal Petri net
semantics (Schmidt and Stahl, 2004) for BPEL4WS,
which enables the automatic generation of an explicit
behavioral model. This section gives a short overview
on the algorithmic steps related to the examples, and
refers to detailed explanations in other publications.

3.1 BPEL transformation

Petri nets are a well established method for mod-
eling and analyzing (cross-organizational) business
processes (van der Aalst, 1998a; van der Aalst,
1998b). Beside the already mentioned BPEL seman-
tics, other recent research projects apply Petri nets to
Web Services (Hamadi and Benatallah, 2003).

Basically, a Petri net consists of a set of transitions
(boxes), a set of places (ellipses), and a flow relation
(arcs) (Reisig, 1985). A transition represents a dy-
namic element, i. e. an activity of a business process

PROCESS ORIENTED DISCOVERY OF BUSINESS PARTNERS

59



(e. g. receive order). A place represents a static ele-
ment, i. e. the causality between activities or a mes-
sage channel (e. g. order). The state of a Petri net
is represented by black tokens distributed over the
places. While transforming a BPEL process into a
Petri net, each element of the source language is rep-
resented by a modular Petri net pattern. Hence, the
process structure is still visible in the resulting net.

In contrast to the original BPEL process, the re-
sulting Petri net abstracts from data aspects, i. e.
each data driven decision is mapped into a non-
deterministic choice. This is a usual procedure in the
field of computer aided verification. On the one hand,
a model without data has the disadvantage of less pre-
cision (i. e. a more general behavior). But on the other
hand, this enables analysis methods yielding impor-
tant results that are not applicable to models with full
expressive power of arbitrary data objects.

Because of the possible loss of information, the im-
plemented transformation provides the feature of user
interaction. On specific points that a crucial for the
process’ behavior, the user may add structure to the
Petri net. Thereby, data dependencies are transformed
into control dependencies (cf. Section 4.2).

Figure 4 shows a screenshot of the Web service
analysis tool WOMBAT4WS (WOMBAT4WS, 2003, ). In
the left half, it shows the generated Petri net model of
the order process 1 (cf. Figure 2). Based on the trans-
formation into Petri net, WOMBAT4WS provides sev-
eral analysis methods for BPEL processes: the check
of usability of a given Web services (Martens, 2004),
the check of compatibility (Martens, 2003) of two
Web services, the automatic generation of an abstract
process model for a given Web service, and the check
of simulation between two Web services (Martens,
2005b) – which is the base for presented discovery
mechanisms. The following two paragraphs reflect
the idea of simulation and its verification.

3.2 Behavioral model

In this approach, the comparison of the behavior is
not defined on the generated Petri net models directly.
This is because those models reflect the entire struc-
ture of the corresponding BPEL processes, and there-
fore they might contain details that have no direct im-
pact on the communication with the environment. In-
stead, an explicit representation of the externally vis-
ible behavior is derived – called the communication
graph (c-graph) of a BPEL process. A c-graph is a
finite deterministic automaton. In the right half, Fig-
ure 4 shows the c-graph of the order process 1.

The nodes of a c-graph are divided into two classes:
visible nodes (white ellipses) and hidden nodes (black
dots), and its edges are labeled with messages either
received (e. g. order) or send (e. g. confirm) by the
process. A visible node represents a state in which

Figure 4: Transformation into a behavioral model

the process is either waiting for an input message or
already terminated. Hence, the c-graph’s initial node
and its final nodes are visible. A hidden node repre-
sents a state in which the process is able to produce
an output message. Each visible node is followed by
a hidden node and vice versa. A path from the initial
node to the final node represents a communication se-
quence between the process and its environment.

Because a BPEL process is able to consume mes-
sages from the environment and to produce answers
depending on its internal state, the state of the process
is important – simple message traces do not pro-
vide the same precision (cf. (van Glabbeek, 1990)).
But, an environment, which wants to use this process,
has no explicit information on its internal state. In-
stead, an environment can derive information from the
process model by considering the history of commu-
nication, only. Consequently, an environment might
gain implicit information. Exactly that kind of infor-
mation is represented within the c-graph of the BPEL
process.

In general, the c-graph of a BPEL process may con-
tain multiple leaf nodes. But in each c-graph, there
is at most one leaf node, which is labeled with the
proper final state of the Petri net model. All other
leaf nodes contain at least one state, where there are
messages left, or which marks a deadlock state of the
Petri net. If an environment was communicating with
the process according to a path towards such a leaf
node, the composed system of the process and the en-
vironment will end up in an erroneous situation. The
elimination of all such erroneous sequences yields a
(possibly empty) subgraph that can be regarded as
an user manual of the module – called the usabil-
ity graph (u-graph). A c-graph may contain several
u-graphs, in general. In all chosen examples, the
whole c-graph also is one u-graphs of the correspond-
ing BPEL process. The precise, mathematical defini-
tion of all notions mentioned above and a discussion
on the complexity of the generating algorithms is pre-
sented in (Martens, 2005a).

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

60



payment

receipt

order

confirm

order

specialsconfirm

initial

final

initial

final

order process 1 order process 2

Figure 5: Simulation between c-graphs

3.3 Defining simulation

Intuitively, one BPEL process simulates another BPEL
process if in a comparable situation the first process
behaves like the second process. There are count-
less approaches published dealing with the compari-
son of behavior in terms of simulation or equivalence,
respectively. This variety results from different in-
terpretations of the terms “comparable situation” and
“behave like”. To find the appropriate terms, first of
all, a semantic definition of simulation should be de-
rived from the field of application. In a second step, a
proving method can be developed.

Definition 3.1 (Simulation/Equivalence).
A BPEL process A simulates a BPEL process B if
each compatible environment of process B is an com-
patible environment of process A, too. Two BPEL
processes A and B are called equivalent, if process
A simulates process B and vice versa. �

This definition meets the requirements of an discov-
ery mechanism in the service oriented architecture.
A service requestor has an environment, and he de-
fines an abstract process such that it is compatible to
this environment. Hence, if the service broker points
him to a published service that simulates the abstract
service, the compatibility with the requestor’s envi-
ronment is guaranteed. To illustrate the verification
of this property, Figure 5 shows the c-graphs of both
order processes introduced in Section 2. As men-
tioned before, order process 2 is a valid implementa-
tion of order process 1. Hence, in Figure 5, the pat-
tern of simulation can be seen. The order process 2
can accept at least those messages, order process 1
can accept (message order). Once the message was
received, order process 2 produces at most those mes-
sages, order process 1 can produce (message con-
firm). To emphasize the connection to the process dis-
covery, P refers to the published service and R refers
to the requested service.

Activated input: Given a visible node of an u-
graph, a bag of messages is an activated input in this
node if the node has an outgoing edge that is labeled
with this bag of messages.

Communication step: Given a visible node v of a
c-graph and a bag of messages m, the tuple (v, i, o, v′)
is a possible communication step, if there is an edge in
the c-graph from v to a hidden node h that is labeled
with the a bag of messages i, there is an edge from
h to a visible node v′ that is labeled with a bag of
messages o, and m greater or equal to i. Two steps
are called similar if the labels are identically.

Definition 3.2 (Simulation).
A c-graph C(P ) simulates a c-graph C(R) if both
graphs contain a non-empty u-graph, and the root
node of C(P ) simulates the root node of C(R).
A visible node p of C(P ) simulates a visible node r
of C(R) if the following requirements are fulfilled:

(i) For each activated input in r and for each pos-
sible communication step in p (with this input),
there is a similar communication step in r and
the target node r′ simulates the target node p′.

(ii) If r is a leaf node, then p is a leaf node, too.
(iii) If i is an activated input in p, and i is a subset

of any activated input in r, then i is an activated
input in r, too. �

Requirement (i) has been motivated before: If a BPEL
process P shall simulate a BPEL process R, then P
has to accept at least those messages R accepts, and
P has to produce at most those messages R produces.
The proper simulation of terminal states is guaranteed
by requirement (ii). Finally, the process P must not
respond to a smaller bag of messages than R does,
e. g. sending a product without receiving the com-
plete payment. Such behavior can yield to a dead-
lock, e. g. some customers might refuse to complete
the payment after receiving the product.

Regarding to the examples of Figure 5, it is easy
to prove that the right u-graph simulates the left u-
graph. The presented definition of simulation be-
tween c-graph is a sufficient criterion for simulation
between BPEL processes. Hence, the simulation re-
lation between order process 2 and order process 1 is
proven. In (Martens, 2005b), this simplified definition
is extended to communicating pathes instead of com-
munication steps. With this extension, the following
theorem holds:

Theorem 3.1 (Simulation).
A BPEL process P simulates a BPEL process R iff the
c-graph C(P ) simulates the c-graph C(R). �

As a result, simulation of BPEL processes can be de-
cided effectively. The entire proof, a detailed dis-
cussion, and precise definition of all notions can be

PROCESS ORIENTED DISCOVERY OF BUSINESS PARTNERS

61



found in (Martens, 2005b). Now, all prerequisites are
given to build the simulation analysis into the discov-
ery mechanism.

4 DISCOVERY

The simulation analysis build the formal backbone of
the presented discovery mechanism. To gain an in-
tegrated solution, some design issues have to be de-
cided: Who is responsible for the generation of the
behavioral model? When will the simulation check
take place? What changes to the existing architecture
has to be made? This section sketches two different
implementations and one combined approach. Sup-
plementary, it deals with the problem of data depen-
dencies that are crucial to the process’ behavior.

4.1 Discovery architectures

Given an extensive repository of published Web ser-
vice, the first step of selecting possible candidates of-
ten is based on non-operational information: A ser-
vice requestor is looking for a partner that runs his
business in a certain domain, that is located in a cer-
tain area or that has a certain amount of expertise
(references) in providing the required functionality.
This discovery step is either implemented by help
of a hierarchically structured catalogue (i. e. taxon-
omy (Boubez and Clément, 2002)) or through seman-
tic net of notions, relations and dependencies (i. e. on-
tology (Paolucci et al., 2002; Web-Ontology Working
Group, 2004)). Assuming an efficient way of per-
forming step one is available, this paper focusses on
the second step – based on the operational Web ser-
vice description.

Server based approach Figure 6 visualizes the first
– so called server based approach. The service
provider has created a BPEL process model of his Web
service. He transforms the process model into a Petri
net and generates the behavioral model (1a), i. e. the
c-graph of the BPEL process. Built into an end-user
process modeling tool, the transformation and gener-
ation are performed on the backend in such a way that
the user only has to deal with BPEL process models.
The service provider publishes the behavioral model
(1b) – which also contains the interface description
and refers to the actual service implementation – into
the repository.

The service requestor behaves almost similarly.
But, his BPEL process models describes the required
behavior. He also generates the behavioral model (2a)
and submits it, together with the non-operational re-
quirements, to the service broker (2b). After the ser-
vice broker has performed the first discovery step (see

publishfind

Service
Requestor

Service
Provider

Service
Broker

Behavioral
Model

Behavioral
Model

Service
DescriptionsRequest

List of 
Services

Discovery

1b

3

Process
Model 

Process
Model 

1a2a

2b

Figure 6: A server based approach

publish

Service
Description

1publish

Service
Description

1

Discovery
Service

Service
Requestor

Service
Provider

Service
Broker

Service
DescriptionsRequest

List of 
Services

Discovery

Process
Model 

3b

List of 
Candidates

Behavioral
Model

Behavioral
Model

3a

find

2b 2a

Figure 7: A service based approach

above), he compares the interfaces of the remaining
published services with the request. If a published
service has a matching interface, the service broker
checks whether it simulates the requested behavior.
Only if this check yields true, the published service is
appended to the list of services that is presented to the
requestor.

In this approach, both process modeling parties (the
provider and the requestor) have direct influence on
the generation of the behavioral model. This fact that
will be appreciated in the next section. But this ap-
proach poses some none trivial challenges: It requires
mayor changes to the UDDI specification – which
has to be done anyhow, because the representation of
BPEL4WS in the repository is not solved sufficiently,
yet. Moreover, the issues of scalability and perfor-
mance are not sufficiently examined yet.

Service based approach Figure 7 visualizes an al-
ternative – so called service based approach. In this
approach, the service provider just publishes his Web
service description (1), as required in the service ori-
ented architecture (cf. Figure 1). The discovery runs
into two steps: First the service requestor builds a
standardized request from his abstract process model
and submits it to the broker (2a). The broker discovers

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

62



a list of candidates (3a), basically based on the inter-
face description. The requestor redirects this list to-
gether with his process model (2b) to an external dis-
covery service. This service generates the behavioral
model of the requested process and all selected candi-
dates. Then, it performs the simulation analysis, such
that a smaller list of services is finally presented to the
requestor (3b). A mayor advantage of this approach is
the relatively small changes to the established discov-
ery mechanisms (only the requestor has to change his
behavior). Moreover, this architecture provides a sim-
ulation check on demand and has the build-in feature
of scalability.

Hybrid approach The discovery service has to
generate the behavioral model of a published Web ser-
vice without the possibility of interacting with the ser-
vice provider. This might be a disadvantage of this
approach in some cases, as explained in the follow-
ing paragraph. To overcome this problem, a kind of
hybrid approach might be considered: The service
provider and the service requestor generate their be-
havioral models, as shown in the server based ap-
proach. The provider publishes this model supple-
menting the Web service description. The broker
ignores the behavioral model while performing dis-
covery, but includes it when returning the list of can-
didates. The requestor submits his behavioral model
to the discovery service, as well. In result, the discov-
ery service only has to perform the simulation check.
Such an approach combines modeler’s direct influ-
ence on the behavioral model generation and scala-
bility – without mayor changes to existing discovery
architectures.

4.2 Discovery challenges

Regarding to the chosen example, the objected preci-
sion of discovery is obtained only if the behavioral
models of both processes reflect the behavior ade-
quately. As mentioned already, the transformation
from BPEL4WS to Petri nets abstracts form data as-
pects. In result, the arising Petri net has a more gen-
eral behavior than the actual BPEL process. In most
cases, this still is an adequate approximation. But for
some process model, the behavior of generated Petri
net might be too arbitrary. Figure 8 shows a third or-
der process that has an area of parallel activities, par-
tially synchronized.

The order process 3 shown in Figure 8 receive
the order and contacts three contractors in paral-
lel to check the availability of the requested prod-
uct. In the published process model, those activities
(call contractor..) are empty activities instead a ac-
tual invoke activities, because they do not communi-
cate with the customer. Each of them has to outgo-

Figure 8: Another published Web service

ing links: If a contractor has the requested product in
stock, the link towards the activity confirm order is set
to true, and the other link is set to false. Otherwise,
the values of the links are flipped. The activity con-
firm order is activated if at least one incoming link has
the value true. The activity submit special offer is ac-
tivated if all incoming links have the value true – i. e.
no contractor has the requested product in stock.

Due to this structure, the process models an exclu-
sive choice between the activities confirm order and
submit special offer. But, because predicates on real
data are used to specify the link values (called tran-
sition condition) and the join behavior (called join
condition), a pure non-deterministic transformation
into a Petri net would not yield an good approxima-
tion. Instead, the tool WOMBAT4WS asks the process
modeler to choose a more appropriate pattern, e. g. a
xor-split replacing the transition conditions and an or-
join or an and-join replacing the join conditions. By
help of pattern, each boolean combination can be ex-
pressed (cf. (Martens, 2005a) for more details). If
the process modeler can’t be contacted, the algorithm
tries to choose a pattern automatically. Obviously this
does not yield the same precision. But, current re-
search on static program analysis aims to improve the
quality of mapping BPEL4WS into Petri nets.

Once the data dependencies are transformed into
control structures, the c-graph of order process 3
could be generated. It looks exactly like the c-
graph of order process 1 (cf. Figure 5). Hence, or-
der process 3 simulates order process 1, i. e. the ser-
vice requestor who has specified order process 1 will
be totally satisfied binding its environment to the or-
der process 3. This result has not been achieved with-
out interaction of the process modeler.

5 CONCLUSION

This paper presents a method to discover business
partners based on the comparison between the re-
quired behavior and the behavior implemented by an
offered service. This method is an extension to es-

PROCESS ORIENTED DISCOVERY OF BUSINESS PARTNERS

63



tablished discovery mechanisms that uses available
information and existing formal methods to gain a
higher level of precision. The presented approach is
based on a formal Petri net semantic (Schmidt and
Stahl, 2004) for the modeling language BPEL4WS.
Consequently, the method is directly applicable to
real world examples. The existing tool WOMBAT4WS

proves it effectiveness (WOMBAT4WS, 2003, ).
The current work was inspired by many other

approaches, dealing with behavioral comparison of
process models. Some of them also use Petri nets
for process modeling (van der Aalst, 1998a; Hamadi
and Benatallah, 2003). Those publications, of course,
had influence on the current approach. But, none
of them presents such a focussed view on a compo-
nents externally visible behavior as the communica-
tion graph does. Concerning matchmaking of Web
services, there are recent results published, which em-
ploy finite state automata to solve a similar prob-
lem (Wombacher et al., 2004). This approach seems
to yield similar theoretical results, whereas the appli-
cation to a real world modeling language is not pro-
vided, yet.

Currently, the simulation between process models
is based on the assumption of one environment that
uses all interfaces of the process. But, a BPEL process
might interact with several partners, and therefore it
is reasonable to have several abstract models of the
same process. Each abstract model emphasizes only
those interactions of one specific partner. In the next
step, the notion of the communication graph and the
definition of simulation will be adopted to meet the
requirement of this scenario.

The presented algorithms is already prototypically
implemented. The current work is focussed on im-
proving the algorithms’ efficiency by the application
of partial order reduction techniques (Valmari, 1988;
Schmidt, 2002). Moreover, up to a certain degree
the integration of data aspects into the formalism is
planned. Especially the dependencies between the
content of incoming message and internal decisions
made by the process are the focussed target. Ap-
plying technologies of static program analysis (e. g.
slicing (Nielson et al., 1999)), it seems possible, to
achieve a higher level of precision in mapping a given
process model into a Petri net, without loosing the
possibility of efficient analysis.

REFERENCES

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2002).
Web Services. Springer-Verlag.

Andrews et al. (2002). BPEL4WS – Business Process Exe-
cution Language for Web Services. OASIS, Standard
proposal, Version 1.1.

Bellwood, T., Clément, L., and von Riegen, C. (2002).

UDDI – Universal Discovery, Description, and Inte-
gration. UDDI.org, Version 3.0, Standard.

Boubez, T. and Clément, L. (2002). UDDI Registry tMod-
els. Technical contribution, Version 2.03, OASIS.

Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. (2001). WSDL – Web Services Descrip-
tion Language. W3C, Standard, Version 1.1.

Hamadi, R. and Benatallah, B. (2003). A Petri Net based
Model for Web Service Composition. In Proc. of ADC
2003. Australian Computer Society, Inc.

Martens, A. (2003). On Compatibility of Web Services.
Petri Net Newsletter, 65:12–20.

Martens, A. (2004). On Usability of Web Services. In
Calero, Diaz, and Piattini, editors, Proc. of WISE 2003
Workshops, Rome, Italy. IEEE Computer Society.

Martens, A. (2005a). Analyzing Web Service based Business
Processes. In Proc. of FASE’05, Edinburgh, Scotland.
Springer-Verlag, LNCS. to appear.

Martens, A. (2005b). Consistency between Executable and
Abstract Processes. In Proc. of IEEE EEE’05, Hong
Kong. IEEE Computer Society. to appear.

Nielson, F., Nielson, H. R., and Hankin, C. (1999). Princi-
ples of Program Analysis. Springer-Verlag.

Paolucci, M., Kawamura, T., Payne, T., and Sycara, K.
(2002). Importing the Semantic Web in UDDI. In
Proc. of CAiSE 2002, Toronto, Canada.

Reisig, W. (1985). Petri Nets. Springer-Verlag.

Schmidt, K. (2002). Explicit State Space Verification. Post-
doctoral thesis, Humboldt-Universität zu Berlin.

Schmidt, K. and Stahl, C. (2004). A Petri net semantic for
BPEL4WS. In Proc. of 11th Workshop AWPN. Univer-
sity Paderborn, Germany.

Valmari, A. (1988). State Space Generation – Efficiency
and Practicality. PhD thesis, Tampere University.

van der Aalst, W. (1998a). Modeling and Analyzing Interor-
ganizational Workflows. In Proc. of CSD’98. IEEE
Computer Society.

van der Aalst, W. (1998b). The Application of Petri Nets to
Workflow Management. Journal of Circuits, Systems
and Computers, 8(1):21–66.

van Glabbeek, R. (1990). The Linear Time - Branching Time
Spectrum. LNCS 458. Springer-Verlag.

Web-Ontology Working Group (2004). Ontology Web Lan-
guage for Web Services. W3C, OWL-S 1.1 Release.

Wombacher, Fankhauser, Mahleko, and Neuhold (2004).
Matchmaking for Business Processes. In Proc. of
IEEE EEE-04. IEEE Computer Society.

WOMBAT4WS (2003). Workflow Modeling and Business
Analysis Toolkit for Web Services. Tool hompage,
http://www.informatik.hu-berlin.de/
top/wombat/.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

64


