
SOFTWARE PROJECT DRIVEN ANALYSIS AND
DEVELOPMENT OF PROCESS ACTIVITIES SUPPORTING

WEB BASED SOFTWARE ENGINEERING TOOLS

Shriram Sankaran, Joseph E. Urban
Department of Computer Science and Engineering, Arizona State University, Tempe, Arizona 85287 USA

Keywords: Software engineering methodologies, Web based, Software engineering tool, Software process

Abstract: The field of software engineering has seen the development of software engineering tools that allow for
distributed development of software systems over the web. This paper covers analysis and process activities
for a web based software design tool that served as the basis for software requirements formulation of a
software process tracking tool. These software tools are an outgrowth of a software engineering project
capstone. The discussion focuses on those development activities that assisted the front end of the
development through software requirements formulation. This paper describes the background for the
software engineering projects, software tool development processes, and the developed software tools.

1 INTRODUCTION

Software applications on the Internet have been
proliferating. However, there is a need to provide
effective software engineering tool support for the
benefit of software engineers, project managers, and
end users involved in the development of these web
based applications. For the most part, software
engineering tools have migrated to the web either as
standalone applications or for use in distributed
development environments.
 On an international level, there are two efforts
that have provided major contributions to software
engineering methodologies, tools, and processes.
The IEEE Standards Activities has developed a
comprehensive set of software engineering
standards. The Software Engineering Institute’s
Capability Maturity Model has been beneficial in
assisting organizations with providing a means to
baseline efforts in key process areas, as well as
providing the means for process improvement
(Paulk, 1993).

There is an upper level undergraduate software
engineering project capstone course sequence that is
offered as a set of technical electives in the
Department of Computer Science and Engineering at
Arizona State University. The Software Engineering
Project I and Software Engineering Project II
courses are referred to below as SEP1 and SEP2,
respectively. Starting in the Spring 1999 semester,

these courses have been taught by the second author
on a Spring / Fall sequence. These course sequences
have focused on the development of web based
software tools to support software engineering
standards (Ahamed, 2000).

The remainder of this paper includes a
description of both the SEP1 and SEP2 software
development activities. One particular instance of
software engineering standard tool development was
selected for inclusion in this paper (IEEE, 1997c,
1997d). These activities lead to software process
improvement and software requirements for a
process tracking tool, which is described next and
then a summary and future research.

2 BACKGROUND

A comprehensive set of software engineering
standards has been developed, maintained, and
continues to evolve through the IEEE Standards
Activities. These software engineering standards
have served as the basis for development of a set of
web based software engineering tools that was the
outcome of a two course capstone sequence in an
undergraduate computer science degree program.
This paper describes experience with the
development and implementation of one of six IEEE
Software Engineering Standards that were developed
as web based software tools.

478 Sankaran S. and E. Urban J. (2005).
SOFTWARE PROJECT DRIVEN ANALYSIS AND DEVELOPMENT OF PROCESS ACTIVITIES SUPPORTING WEB BASED SOFTWARE ENGI-
NEERING TOOLS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 478-481
DOI: 10.5220/0002527804780481
Copyright c© SciTePress

The first course, SEP1 focused on software
requirements formulation / analysis, specification,
and architectural design. The software design and
implementation was conducted in SEP2 with testing
activities integrated throughout the software
development. Experience with two different
development methods occurs over the two semester
capstone sequence. The concept of a software
engineering standards based project in a capstone
course or course sequence is a novel approach for
applying software engineering concepts in software
engineering tools. More typically, research papers
show that upper level undergraduate computer
science and engineering project courses develop
systems in a wide variety of application domains.

During the first semester of the two course
sequence, the students follow a waterfall process
model, which proceeds from software requirements
formulation and analysis though overall architectural
design with the detailed design and implementation
of one module. A majority of the students only take
one semester of the two semester capstone sequence,
which facilitates carrying out the development effort
in this narrowing of scope manner.

The software engineering standards that were
used over the past six years were: ANSI/IEEE Std.
830-1993, IEEE Recommended Practice for
Software Requirements Specifications (IEEE,
1997a); ANSI/IEEE Std. 1058.1-1987 (Reaffirmed
1993), IEEE Standard for Software Project
Management Plans (IEEE, 1997b); ANSI/IEEE Std.
1016-1987 (Reaffirmed 1993) IEEE Recommended
Practice for Software Design Descriptions (IEEE,
1997c) combined with ANSI/IEEE Std. 1016.1-
1993, IEEE Guide to Software Design Descriptions
(IEEE, 1997d); IEEE Std. 829-1998, IEEE Standard
for Software Test Documentation (IEEE, 1998a);
IEEE Std. 1219-1998, IEEE Standard for Software
Maintenance (IEEE, 1998b); and IEEE Std. 1012-
1998, IEEE Standard for Software Verification and
Validation (IEEE 1998c) that was developed by the
Life Cycle Data Harmonization Working Group of
the Software Engineering Standards Committee of
the IEEE Computer Society. The first software tool
developed through these courses was in support of
the IEEE Standard 830-1993 – Software
Requirements Specifications (Ahamed, 2000).

In the Spring of 2001, SEP1 began software tool
development in order to support the ANSI/IEEE
standard 1016-1987 and 1016.1-1993 (IEEE, 1997c,
IEEE, 1997d). The developers were formed into six
groups of five to six members in each group. Each
group selected a different software design method as
the basis for tool development to meet the standard.

An evaluation was conducted in SEP2 of the
software projects developed in SEP1. An object
oriented tool was selected by the developers of SEP2

for complete software development of detailed
design through implementation. This tool essentially
consisted of four modules: server, graphics, user
interface, and database.

3 PROCESS ACTIVITIES

The developers were given the outline of a project
that had to be developed in terms of the use cases,
design, algorithms, test data, and also code one of
the modules. The groups had to choose one
programming model and then incorporate the model
in the design of the tool.

3.1 Process Activities for SEP1

There were eight major process activities that had an
impact on each student. These activities included
meetings, tasks, file management, resource
allocation, project management, tools,
communication, and evaluation.

The groups met twice weekly in class during part
of the class hours and then outside class depending
upon the need and the schedule of the members. The
activities for the upcoming week were charted out in
advance by the leader of each group and then
divided among the members based on expertise.

The documents and files were made available to
every member of the group by using a web-based
file management system, such as, the course
management tool provided by Blackboard or Yahoo!
Groups. The files were available to every member of
the group for read-only purposes. Modifications to a
file could only be carried out with the consent of the
author of the file. In case of major modifications, the
version of the file was incremented. Every member
of the group had authority to download and upload
files. Email messages were sent out to inform the
group on each uploaded file.

The meetings were expected to be conducted in a
professional manner in the meeting rooms made
available to the students by the University. The
students had access to computer facilities in the
University. Some students made use of computers
outside the University campus.

Confidential weekly status reports were required
of all members of the groups to be submitted to the
course instructor. These reports had provisions to
evaluate the status of the project, other members of
the group, time sheets and also a self-evaluation.
These reports gave the instructor sufficient data to
analyze the performance of the groups and take any
necessary action. Early on in the course, the groups
had to come up with their own risk management
plans based on their perceived risks. This task was

SOFTWARE PROJECT DRIVEN ANALYSIS AND DEVELOPMENT OF PROCESS ACTIVITIES SUPPORTING
WEB BASED SOFTWARE ENGINEERING TOOLS

479

useful later in the course especially in scenarios
where the group had predicted the risk.

The following tools were made available by the
instructor for use to the members of the groups:
Microsoft Word – used to create documents;
Microsoft PowerPoint – used to create slideshow
presentations; Yahoo! Groups / University – file
management system; Yahoo!/University email –
used for intra-group email communications; Rational
RequisitePro – used to create templates of specific
project documents; and Rational Rose - used to
create the class and state diagrams.

The communications among the members of the
group were conducted using meetings, phone and
email. All email communication was saved for
future uses. The grading of the groups was based on
published criteria. The final demonstration of the
coded module with the test data was conducted in
conjunction with the delivery of the project.

3.2 Software Process for SEP2

In SEP2, a unique voting mechanism was used
whereby the developers formulated the process and
evaluation method for determining which software
project to use for completion of the software design
tool. Certain criteria were identified to be used in the
evaluation of projects and a voting process
determined their importance in the evaluation
process. After detailed analysis of the initial design
of the project produced during SEP1, the volunteer
reviewers considered a few changes necessary for
the detailed design. These changes were carried out
and the new design was incorporated after approval
by the whole class.

In order to be able to manage the project
efficiently, the project was split into four modules:
server, user interface, graphics and database. Each
module was to be assigned to a team of students.

The twenty students in the class were divided into
four teams based on their expertise and personal
preference with six students in the server team, five
students in user interface, and four students each in
the graphics and the database teams. Each group
nominated a liaison to support the lines of
communication with the other teams and was also
responsible for team leader dutires.

One of the students volunteered to act as the
project manager for the project. The liaisons of the
teams reported on a weekly basis to the project
manager who in turn was responsible to report the
weekly activities to the faculty member.

The eight process activities used in SEP1 were
modified to accommodate the incremental build
model in SEP2. Unlike SEP1, the students were
guided through the control over the project

management activities, under the supervision and
advice of the faculty member. A process was
designed for tracking wherein members of each team
filed weekly timesheets with their respective
liaisons. Four releases of the project were created for
easier project tracking. Similar to SEP1, risk
management plans were devised.

The class decided to publish deadlines for the
four versions. This plan gave the teams an
opportunity to incorporate buffer time in the
deadlines and also to schedule their activities
correspondingly. The same tools as used in SEP1
were used. Together Control Center was a new tool
that was used for design and implementation. The
student grades were based on the criteria of quality
of work submitted, participation in the project , and
compliance to the SEI-CMM levels. The final
demonstration of the project was conducted on the
day of the scheduled final exams.

4 SOFTWARE PROCESS
IMPROVEMENT AND
TRACKING TOOL
REQUIREMENTS
FORMULATION

An initial self-evaluation was conducted within
SEP2 in order to determine compliance with each of
the goals in each of the key process areas as
provided in the SEI-CMM (Paulk, 1993).

A final SEI-CMM evaluation was undertaken
after the third version release in order to determine
the compliance of the process with the CMM levels
1 through 5 of initial, repeatable, defined, managed,
and optimizing, respectively. The teams were asked
to report the results of their self-evaluations. The
teams complied with the goals of the process
activities for levels 1 through 3. The teams also
satisfied most of the level 4 activities and some of
the level 5 activities. Based on this evaluation, the
process was modified to satisfy the completion of
level 4 certification. Evaluations conducted at the
end of the semester determined that the class as a
whole had performed at a CMM level 4. The project
would benefit from an independent validation of the
self-assessment. There is currently not enough time
for the validation. However, by moving these
concepts earlier in SEP1, then feedback could be
obtained from industry volunteers.

During the discussions in SEP2, especially during
the reviews of the process documents, a need was
determined to automate the process of document
reviews. This result started out as the motivation for

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

480

the Software Process Automation and Workflow
System (SPAWS) project (Urban, 2002).

For a group of software engineers to work on a
software project efficiently and effectively, a
software process is considered necessary. In order
for the software engineers to follow the process
consistently and without any place for ambiguity,
the process has to be well documented, reviewed,
and automated. The SPAWS software currently
enables users to follow the process change
management activities - document review, code
review, and code inspections (Urban, 2002).

During the initial stages of the project,
discussions were conducted with individuals
involved in the software engineering courses to
refine the requirements for the software. Four
releases of the project were created for easier project
tracking. This approach gave an opportunity to
incorporate buffer time in the deadlines and also to
schedule activities correspondingly. The same tools
as used in the SEP1 and SEP2 courses were used.

Subsequent offerings of SEP2 have also been
driven by the SEI-CMM self-assessment. These self-
assessments have identified the need for a standard
process to be implemented earlier than in SEP2. The
Unified Process for EDUcation (UPEDU) has been
the basis for process modelling (École
Polytechnique de Montréal, 2004).

5 SUMMARY AND FUTURE
RESEARCH

This paper discussed capstone sequence software
engineering courses and the analysis and process
activities associated with software engineering tools
that were developed in support the software
engineering projects. An outgrowth of this paper is
planned for presenting the multi-year experience
with this approach to web based software
engineering standard tool development.

SPAWS is now available to the students of the
Department of Computer Science and Engineering.
The students of the future offerings of SEP2 will be
using SPAWS in order to gather some experience
before requiring use of the tool in SEP1.
Addition or deletion of features and process
activities, data storage enhancements, and
interfacing with other software engineering tools are
some of the future research that could be conducted
regarding this project. Finally, additional software
engineering tool support will continue to be
developed in conjunction with the software
engineering project capstone sequence. A software
engineering tool for group member scheduling is
under development as an outgrowth of this effort.

REFERENCES

Ahamed, S. I., Ali, S., Bingham, D. G., Dawra, A., Ha, L.
T., Luong, T. M., Martinez, D. M., Morris, J.,
Palangala, S. A., and Urban, J. E., 2000. “Software
Requirements on the Web,” In Proceedings of the 4th
International Conference on Business Information
Systems (BIS'2000), Poznan, Poland, April 12-13,
2000, Springer Verlag London Ltd., pp. 133-144.

École Polytechnique de Montréal, 2004. UPEDU,
http://www.upedu.org/upedu/index.asp

IEEE, 1997a. IEEE Std. 830-1993, IEEE Recommended
Practice for Software Requirements Specifications, In
IEEE Standards Collection: Software Engineering,
IEEE, New York.

IEEE, 1997b. ANSI/IEEE Std. 1058.1-1987 (Reaffirmed
1993), IEEE Standard for Software Project
Management Plans, In IEEE Standards Collection:
Software Engineering, IEEE, New York.

IEEE, 1997c. ANSI/IEEE Std. 1016-1987 (Reaffirmed
1993), IEEE Recommended Practice for Software
Design Descriptions, In IEEE Standards Collection:
Software Engineering, IEEE, New York.

IEEE, 1997d. ANSI/IEEE Std. 1016.1-1993, IEEE Guide
to Software Design Descriptions, In IEEE Standards
Collection: Software Engineering, IEEE, New York.

IEEE, 1998a. IEEE Std 829-1998 Standard for Software
Test Documentation, IEEE, New York.

IEEE, 1998b. IEEE Std. 1219-1998 Standard for Software
Maintenance, IEEE, New York.

IEEE, 1998c. IEEE Std. 1021-1998 Standard for Software
Verification and Validation, IEEE, New York.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V.
1993. Capability Maturity Model for Software Version
1.1, Software Engineering Institute, Technical Report,
CME/SEI-93-TR-024, ESC-TR-93-177, 82 pp.

Urban, J. E. and Sankaran, S., 2002. “Supporting Software
Process Tracking Through the Internet,” In
Proceedings of the 2002 IFIP Workshop on Internet
Technologies, Applications, and Societal Impact
(WITASI'02), Wroclaw, Poland, October 10-11, 2002,
Kluwer Academic Publishers, Norwell, Massachusetts,
pp.243-254.

SOFTWARE PROJECT DRIVEN ANALYSIS AND DEVELOPMENT OF PROCESS ACTIVITIES SUPPORTING
WEB BASED SOFTWARE ENGINEERING TOOLS

481

