
MULTIVIEWS COMPONENTS FOR INFORMATION SYSTEM
DEVELOPMENT

Bouchra El Asri*, Mahmoud Nassar*,**,***, Bernard Coulette** , Abdelaziz Kriouile*

*Laboratoire de Génie Informatique
ENSIAS, BP 713 Agdal, Rabat, Maroc

** Laboratoire GRIMM – IRIT
Université de Toulouse le Mirail, Département de Mathématiques- Informatique

5, allées A. Machado 31058 Toulouse cédex, France

*** ENSAM, B.P.4024 Béni M’Hamed – Meknès, Maroc

Keywords: Information System Modelling, UML, View, Viewpoint, VUML, Multiviews component

Abstract: Component based software intends to meet the need of reusability and productivity. View concept allows
software flexibility and maintainability. This work addresses the integration of these two concepts. Our
team has developed a view-centred approach based on an extension of UML called VUML (View based
Unified Modelling Language). VUML provides the notion of multiviews class that can be used to store and
deliver information according to users viewpoints. Recently, we have integrated into VUML multiviews
component as a unit of software which can be accessed through different viewpoints. A multiviews
component has multiviews interfaces that consist of a base interface (shared interface) and a set of view
interfaces, corresponding to different viewpoints. VUML allows dynamic changing of viewpoint and offers
mechanisms to manage consistency among dependent views. In this paper, we focus on the static
architecture of the VUML component model. We illustrate our study with a distant learning system case
study.

1 INTRODUCTION

With the popularity of the Internet and web-based
access to information, software development must
face up to heterogeneous environments and
changing client’s needs. In this context, reusability
and interoperability are key criteria. Component
based software construction intends to meet these
needs. The basic idea is to allow developers to reuse
simple units of software called components to build
up more complex applications.

Moreover, to be efficient, software access must
be given to any user with respect to his culture,
rights, education, etc. A lot of web-based
information systems are now available in such fields
as e-learning, tourism, environment, health,
transport, etc. Some of them try to adapt themselves
to users' profile and behaviour at execution time,
especially to give them a rapid access to
information. But so far, development and
maintenance of those systems are not guided by

users' profile (viewpoints) and thus such systems are
very difficult to adapt and maintain.
We need methodologies that explicitly support the
concept of viewpoint in a component based software
development.
 We already investigated the notions of view and
viewpoint (Coulette et al., 1996) and elaborated a
view-based analysis and design method called
VBOOM, but this method is not compatible with
OMG standards and thus practically unusable.

UML (OMG, 2001) provides development views
(use case, logical, deployment...) to structure a
system at several levels of abstraction. However,
UML views are not sufficient to model system
architecture according to users’ viewpoints. We need
a fine grained mechanism to support both functional
and non functional views.

To meet these requirements, we have defined a
UML profile called VUML (View based Unified
Modelling Language) (Nassar et al., 2003)
implemented into the Objecteering case tool
(Objecteering, 2004). VUML provides new

217
El Asri B., Nassar M., Coulette B. and Kriouile A. (2005).
MULTIVIEWS COMPONENTS FOR INFORMATION SYSTEM DEVELOPMENT.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 217-225
DOI: 10.5220/0002538702170225
Copyright c© SciTePress

modelling elements derived from the UML meta-
model through extension mechanisms (mainly
stereotypes and constraints in OCL): multiviews
class, base, view, viewpoint, extension relationship,
dependency relationship, etc. In this paper we
present the integration into VUML of the notion of
multiviews component as a unit of software which
can be accessed through different viewpoints. A first
introduction of this concept was done in (Nassar et al.,
2004). Due to size constraints, we focus here on two
main characteristics of such components: static
structure and composition. We illustrate these
features with a distant learning system case study.

The rest of this paper is structured as follows:
section 2 gives a brief overview of component based
software; section 3 introduces the UML distant
learning modelling, especially the use cases and
components diagrams models. Section 4 describes
the concept of multiviews component and associated
mechanisms. In the section 5, we present some
related works, and in the last section we give a
conclusion and perspectives to our work.

2 COMPONENT: DEFINITIONS,
MODEL AND COMPOSITION

The field of component-based software engineering
(CBSE) is in a phase of rapid growth and change.
Standards industry components are shipped as
“plug-ins” into existing run-time architecture.
Components are increasingly used to create complex
and distributed systems and applications.

Software component merges two distinct
perspectives: component as an implementation, and
component as an architectural abstraction. Viewed
as implementations, components can be deployed
and assembled into larger systems. Viewed as
architectural abstractions, components express
design rules that impose a standard coordination
model on all components. These design rules take
the form of a component model, or a set of standards
and conventions to which components must
conform.

In this section, we first give some component
concepts definitions. Then, we present the UML
component model and composition elements.

2.1 Definitions

C. Szyperski defines a component as a unit of
composition with contractually specified interfaces
and fully explicit context dependencies that can be
deployed independently and is subject to third-party

composition (Szyperski, 2002). This definition is
closed to that of B. Meyer who considers a
component as an oriented client software unit
(Meyer, 2000). In general, a component is a unit of
program which comprises at least two parts: a
specification part of its interfaces and behaviours,
and an implementation part that carries out its
services. An interface is a collection of operations
that are used to specify a service of a component
(Kruchten, 1999).

2.2 UML component Model

A component model specifies the standards and
conventions imposed on developers of components.
It specifies the design rules that must be satisfied by
components. The UML 2.0 language (OMG, 2003)
allows the definition of component specification and
architecture. It defines a component as a modular
part of system that encapsulates its contents and
whose manifestation is replaceable within its
environment. A component defines its behaviours in
terms of provided and required ports. A port is a
point for conducting interaction between the
component internals and his environment. Ports are
typed by interfaces. An interface includes a set of
services and constraints. Ports can be provided or
required. Connection between provided and required
ports is made by connectors. Two types of
connectors exist: the delegation connector and the
assembly one. A delegation connector is a connector
that links the external contract of a component to its
internal realisation. The assembly connector is a
connector between two components. One of the
components provides the service that the other one
requires.

2.3 Composition of components

Composition is the term used in component-based
development to refer to systems assembling.
Components are composed so that they may interact.

Contract is the concept which shifts the focus on
components interactions, and the mutual obligations
of participants in these interactions. There are two
senses of contract that are necessary to CBSE:
component contracts and interaction contracts.
Component contracts describe patterns of interaction
that are rooted on a component. Interaction contracts
describe abstract patterns of interaction among roles
that are filled by components. Systems are
assembled from components through a process of
filling roles with components. (Beugnard et al.,
1999) categorise contracts in four levels: Syntactic;

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

218

Resource managem ent

Site Responsible

Pedagogical council
Professor

Student recording

Sequencing Scheduling

Courses m anagem ent

Content m anagement

Student

Figure 1: Use Case model of the Distance Learning System (extract)

Behavioural; Synchronisation contracts and
Quality of Service.

3 CASE STUDY: THE DLS

All along this paper, we illustrate our approach
through a Distance Learning System (called DLS in
the following). The main goal of that system is to
allow distant students to apply for courses, access to
related documentation (slides, web pages, text, etc.),
make exercises, communicate with teachers, and
take exams. The DLS provides for students runtime
sequences. It can be distributed over several sites,
and is managed by a responsible whose job consists
in : Student recording; Resource management
(creating, updating and removing resources, their
availability and their interactions) and Content
management (creating, updating, organising and
publishing information resources).

Each site has a pedagogical council whose
responsibilities are: Course management (creating,
updating and deleting units of learning); Scheduling
(allocation and deallocation of resources against
time slots) and Sequencing (organising sequences
for learning units).

Professors propose and update their own
courses; plan learning experiences and units of work
for delivery on or off line and record student
assessments. They are in charge of writing exam
subjects. Tutors are in charge of a group of students.
They mark student exams and answer students'
questions and report progress to inform students.

As we can easily understand, such DLS system
development requires a number of people working
simultaneously. The DLS should be divided into
small modules to minimize risk. Component
technology allows developing complex applications
by mixing and matching specialized modules. Each
component is developed independently from the

others so that any developer may focus on a single
component.

So, we have divided the DLS into components
that are described below. First, we consider a
classical UML modelling of this system. We present
the use case diagram, a general components diagram
and give details of some components that are
composed eventually to build a Training course
scheduling application.

3.1 Use case diagram of DLS

Figure 1 below shows a simplified Use Case
diagram of DLS in UML. Actors of the DLS are
students, teachers, site responsible and pedagogical
council. Only a subset of identified use cases is
considered in figure 1: student recording, courses
management, scheduling, resource management,
content management, and sequencing.

3.2 UML component diagrams

Distant learning applications are built from several
components. The most important of them are shown
below in figure 2. The Student record component
provides services for applying available course
modules and provides information about prices,
contents and sequencing. The Content management
component provides services for publishing,
retrieval, description, and organisations of
information resources. The Sequencing component
provides services about sequenced learning objects.
The Course management component provides
services that allow access and management of
learning units. The Resource management
component provides services to create, update and
remove available resources and their kind of use.
The Group management component provides
services to manage information about groups. A
group aims to get students together for learning,
exams and other activities.

MULTIVIEWS COMPONENTS FOR INFORMATION SYSTEM DEVELOPMENT

219

Every component of the figure 2 may be a
composite one. For instance, Scheduling, Resource
management and Course management are composite
components. Figure 3 shows the Resource
management component. Resources comprise three
major parts: immobile resource such as classrooms,
etc; equipments such as projectors, computers, video
players, and human resources such as teachers,
group of students, etc. Each part provides services of
creating, updating and revoking the resource and
special services. For example, Human resource
provides information about profiles, units to teach
(for teacher) or to pass (for group of students).
Equipment provides information about the way of
using, etc.

Figure 2: Component model of the DLS

While a class interface is a single collection of

provided operations, a component interface is a
subset of operations smoothly gathered for a specific
service and a further connection. As an example, the
ResourceMgt’s services cited above have been
gathered into provided interfaces called ImInf
(providing information about immobile resources),
EquitInf (for equipments), ProfInf (for professors)
GroupInf (for groups), ImMgt (for creating, updating
and removing immobile resources) and so on for the
resources management interfaces. The RsrceConst
(resource constraints) described in figure 6 provides
facilities to mark fixed resources closures or
unavailability dates determined by fixed
commitments or public holidays, and to mark other
schedule constraints such as equipment breakdown,
immobile fitting, teacher absence, etc.

Figure 3: The Resource Management Component

For the Course management component (cf.

figure 4 below), we give only the required and
provided interfaces needed to illustrate the
assembling functionality.

Figure 4: The Course Management Component

Figure 5 shows the Scheduling component made
of two sub-components. To timetable courses, we
need to manage different types of resources together:
immobile resources where learning units will take
place, equipments necessary for a given unit,
professor who gives the unit, group of students who
will attend the unit, the learning unit and the slot of
time which brings the involved resources together.
We name Schedule the sub-component which allows
to determine whether a particular resource is
available or not. It requires the ResourceConst
(RsrceConst) interface and provides the
ResourceAvailability interface (cf. figure 5). That
interface enables users to reserve resources for
particular dates and is responsible for setting
resource priorities. The Allocation sub-component
finds out for each required resource what is its
availability, and then selects dates that suit for all the
resources involved. The AllocationMgt interface (cf.
figure 6) sets information about all resources
required and the suitable period for a unit learning
scheduling.

Figure 5: The Scheduling component

Resource Mgt

Equipment Immobile Rsrce

EquitMgt
ImInf

EquitInf ImMgt

RsrceConst

Human Resource

Prof Group

GroupMgt ProfMgt
GroupInf

ProfInf

RsrceAvailability

Scheduling

RsrceConst

InitAlloc

Prof Inf
GroupInf

EquitInf
CourseInf

AllocationMgt

Schedule Allocation

« Component »
Group Mgt

« Component »
Resource Mgt

« Component »
Scheduling

« Component »
Sequencing

« Component »
Student Record

« Component »
Content Mgt « Component »

Course Mgt

CourseInit

Course Mgt CourseMgt

CourseInf

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

220

<<interface>>

CourseInf
<< interface >>

ResourceConst
<< interface >>

ResourceAvail ability
<< interface>>

All ocationMgt
getRsrceName()
getRsrceHolidays()
setRsrceHolidays()

getCrseName()
getCrseLevel()
getCrseNbrCredit()
getPrice()
getListStdtRecorded()
getListDoc()
getListExo()
getNeededEquip()
getNbrHours()
getNextCourses()
getPrevCourses()

getRsrceName()

getPriorities()
setPriorities()

...

setPeriod()
isAvailablePeriod()

getAvailablePeriod()

getBusyPeriod()
setBusyPeriod()

setRestPeriod()
getRestPeriod()
setAvailablePeriod()
getAvailablePeriod()

setIm()
setListEquip()
setGroup()
setProf()
setCourse()
getImmobileResource()
getListEquip()
...

getSlotTime()
setSlotTime()

Figure 6: Description of major interfaces in UML

3.3 Assembling components for a
Scheduling training course
application

As mentioned in the previous section, the
component assembly is based on contracts (basic,
behavioural, synchronization and quality of service).
In this paper we discuss only basic contract.

The basic contract checks syntactic conformance
between required and provided interfaces of the
components to compose. So, for each assembly
connector, originated in a required port and
delivered to a provider port, we need to check the
interfaces compatibility. This leads to check if
provided and required interfaces define compatible
services.
ResourceMgt, CourseMgt and Scheduling
components may be connected to compose a
Scheduling Training course (see the resulting
component model figure 7). The connection between
components is assured by provided and required
interfaces conformance.

3.4 Discussion

In UML 2.0, according to the component diagram of
figure 7, all the actors of the system have potentially
the same access rights to information and services

encapsulated in components. As an example,
students can access to all the allocation related to
courses and to all the resource constraints. This is
not acceptable because part of the allocation should
be hidden to students, and some reservations should
be accessible by professors only. In UML, access
rights control cannot be captured in component
diagrams but only in dynamic diagrams, and hence
must be programmed in component implementation.
Any use of a component must be carried out under
the constraints of a control view. For example, the
schedule component must define student control
view to restrict access to available services.
Component-based development has several
advantages over traditional approaches to software
development: reusability and productivity; but, it
does not provide any mechanism for defining control
view and access right at design-time.

 Our goal is to describe such information access
rights at a high abstraction level. Indeed, we believe
that one can gain a lot from taking into account such
information as early as possible, that is during the
analysis phase. To achieve this goal, we decided to

introduce a new type of component, the multiviews
component which allows defining views associated
to actor’s profiles. The challenge is then to put
information (attributes, methods, constraints) into
the right view interface of a given component.

Figure 7: Component model of the Scheduling Training Course

RsrceConst

ResourceMgt
EquipInf EquipInf
GroupInf GroupInf

CourseInf CourseInf

Scheduling

Scheduling Training Course
RsrceConst AllocationMgt

InitAlloc
RsrceAvailability

CourseMgt

MULTIVIEWS COMPONENTS FOR INFORMATION SYSTEM DEVELOPMENT

221

Figure 8: Static structure of a multiviews component

4 MULTIVIEWS COMPONENT

In this section, we first give definitions related to
VUML component concepts. Then we describe
some details about the structure of a multiviews
component and related mechanisms.

4.1 Multiviews Component

An actor is a logical or physical person who
interacts with the system. A multiviews component
(MV-C) is a unit of abstraction and encapsulation
(Nassar et al., 2004). It is an extension of the UML
component concept. An MV-C (cf. figure 8)
provides interfaces whose access and behaviour
change according to the actor view. Such interfaces
are called multiviews interfaces. These new
concepts have been added into the VUML meta-
model whose extract is show on figure 8.

4.2 Multiviews Interface

A new type of interface is defined for MV-C, to
express its run-time behaviour change, called
Multiviews Interface. Figure 9 illustrates the static
structure of a MV-Interface. Such an interface is
composed of a base interface (baseInterface
stereotype), and views (viewInterface stereotype)
that are related to the base through a viewExtension
relation.

Base
<<baseInterface>>

ViewN
<<viewInterface>>

View1
<<viewInterface>>

View2
<<viewInterface>>

<<viewExtension>> <<viewExtension>>
<<viewExtension>>

Figure 9: Static structure of a MV-Interface

The activation of a view (linkage to the current
user's viewpoint) is done at execution-time. The base
is a shared interface. The viewExtension relation is
a dependency relation. A view interface depends on
the base interface in the sense where attributes and
methods of the base interface are implicitly shared
by all views. At design-time, a MV-Component has
a set of multiviews interfaces. At run-time, MV-
Component behaves as a regular component with
interfaces whose definitions, at a given time, are the
combination of features of the base and the active
viw interfaces. To complete this run-time MV-
component’s behaviour, we have conceived an
implementation pattern for the MV-Component
deployment. This pattern is inspired from Role and
Strategy patterns, and implements a setview()
method to dynamically change the active view.

4.3 The Multiviews DLS case study

Figure 10 below shows the Multiviews component
model of the Scheduling Training Course. One can
notice that each component of the UML component
model (see figure 7) has become a MV-C, since it
should be accessed from several viewpoints. Figure
11 gives details about the MV-CourseInf and MV-
ResourceConst interfaces. In this simplified
example, we only highlight views associated to the
actors Professor, Student, Site responsible and
Pedagogical council. Compared to the UML
component diagram (see figure 6 above), services
distribution into interfaces has been changed. For the
CourseInf interface, we have defined a base
interface which contains basic services for providing
the name, the level and number of credits of a
course. Other services are dispatched into view
Interfaces. As an example, the method getPrice() has
been put into the two view interfaces
VRespSiteCourseInf and VStudentCourseInf
associated respectively to the actors Site responsible
and Student, because other actors do not need this
information. The setAvailablePeriod() method of

Component

Class
(from StructuredClasses)

Interface
(from Interfaces)

* Realization

Classifier
(from Kernel)

+abstraction +realization +/provided IsIndirectlyInstantiated :Boolean
* 0..1 *+/required

+realizingClassifier 1
 *

MV
Interface

+/provided
MultiViewsComponent

*
+/required

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

222

MV-ResourceConst has been hidden to the Student
and Professor because these latter must not update
resource availability.

The MVC Scheduling, CourseMgt and
ResourceMgt are composed by connecting provided
and required MV-interfaces. Syntactic contracts
must be checked for each viewpoint. This means to
check required and provided interfaces
conformance for base and view interfaces (for every
viewpoint). At run-time, a view is activated thanks
to the setView implicit interface. The component
interfaces are then specified according to that view.
For example, if the Pedagogical Council view is the
active one, the MV-CourseInf interface connecting
Scheduling and CourseMgt MVC comprises
operations specified in the CourseInf base and those
belonging to the VPCCourseInf (the view interface
of CourseInf corresponding to the Pedagogical
Council viewpoint.) An operation of the base
interface - for instance getRsrceHolidays() - may be
redefined in view interfaces (see the MV-interface
ResourceConst in figure 11).

View interfaces of a multiviews interface may be
dependent, so it is necessary to maintain the internal
coherence of a multiviews interface. Our approach
ensures that changes done into a view at execution
time are reflected into dependent views. As an
example, in the DLS system, one may assure that

resources reserved by a professor will be transmitted
to the site responsible; if a course price is changed
into the Site responsible view, the price to pay must
be changed into the Student view. Obviously,
management of these repercussions is done at the
implementation level; but such functional
dependencies are very important information for
system designers, so we decided to express those
dependencies in VUML. We use UML notes and
OCL (Object Constraint Language) to specify such
constraints. The description of those dependencies is
not in the scope of this paper.

5 RELATED WORKS

Researches in software modelling and development
have spawned various concepts related to view and
viewpoint concepts (El Asri et al., 2004). The view
concept was first introduced by Shilling and Sweeny
(Shilling et al., 1989) as a filter on global interface
of a class. This concept has been then largely
investigated in the field of databases (Abiteboul et
al. 1991, Debrauwer 1998), Software Engineering
(Finkelstein et al., 1990), Requirement Engineering
(Charrel, 2002) and in Object-Oriented
Development.

Figure 10: Multiviews component model of the Scheduling Training Course.

<<viewInterface>>
VSiteR espSiteC ourseInf

VP rofessorC ourseInf

VP C C ourseInf

VStudentC ourseInf

<<baseInterface>>
C ourseInf

getCrseN brCredit()

<<viewE xtension>>

getListE xo()
getPrice()
getListD oc()
getListE xo()
getN extCourses()
getPrevCourses()
getN brHours()

getPrice()
getListStdtRecorded()

getCrseN ame()
getCrseLevel()

<<viewE xtension>>

getListD oc()

<<viewE xtension>>

getN extCourses()
getPrevCourses()
getN brHours()

<<viewE xtension>>

getListStdtRecorded()

getN eededE quip()
getListStdtRecorded()
getN brHours()

<<viewInterface>> <<viewInterface>>

<<viewInterface>>

< < b as eInter fac e> >
R eso urceC o nst

< < v iewInter fac e > >
VS tu de n tR e so urc eC o nst

< < v iewInter fac e > >
VP C R eso urc eC o nst < < v ie wInter fac e > >

VR e spS iteR e so urc eC o nst

< < v iewInter face> >
VP ro fe s so rR es o urc e C o ns t

ge tR srce N ame()

ge tR s rc eHo lid ays ()

ge tR s rc eHo lid ays ()
ge tA va ilab leP er io d ()
setAv a ilab leP er io d ()
ge tR es tP er io d ()
setR es tP er io d ()

ge tR srce Ho lid a ys ()
s etR srce Ho lid ays ()
ge tA va ilab leP er io d ()
s etAv a ilab leP er io d ()

ge tR s rc eHo lid ays ()
ge tR s rc eR es tP er io d ()
ge tA va ilab leP er io d ()

< < v iew Ex te ns io n> > < < v iew Ex te ns io n> >

< < v iew Ex te ns io n> >

< < v iew Ex te ns io n> >

ge tR srce Ho lid ays ()

Figure 11: VUML model of the CourseInf and ResourceConst Multiviews Interfaces

MV-RsrceConst
<<multiViewsComponent>>

ResourceMgt
MV-EquipInf MV-EquipInf
MV-GroupInf MV-GroupInf

MV-CourseInf MV-CourseInf

<<multiViewsComponent>>

Scheduling

MV-Scheduling Training Course

MV-AllocationMgt MV-RsrceConst

MV-InitAlloc
MV-RsrceAvailability

<<multiViewsComponent>>
CourseMgt

SetView SetView

MULTIVIEWS COMPONENTS FOR INFORMATION SYSTEM DEVELOPMENT

223

Moreover, a number of concepts have been
proposed to describe notions close to views such as
role (Anderson et al., 1992), subject (Harrison et al.,
1993) aspect (Kiczales et al., 1997) and more
recently multidimentional separation of concerns
(Osher et al., 2001).

Our team has been working on view-based
object-oriented methodologies since 1993. Thus, we
defined a view-based extension of Eiffel called
VBOOL (Marcaillou et al., 1994) and a view-based
analysis and design method called VBOOM
(Kriouile, 1995). We are working now on VUML
(Nassar et al., 2003), a UML profile that provides
the concept of multiviews class whose goal is to
store and deliver information according to user
viewpoints.

For components, several models have been
proposed : UML (OMG, 2003), ODP (RM/ODP,
1996), JAC AOP (Pawlak et al 2004), ACCORD
(Florin et al., 2003), FRACTAL (Bruneton et al.,
2004), etc.

In UML, the view notion is a way of structuring
system designs according to different aspects of
development: use cases, logical, components,
deployment. So UML views are development views.
ODP defines a set of viewpoints with associated
viewpoint languages defining the concepts of each
viewpoint. The RM-ODP viewpoints provide a
useful abstraction for reasoning about distributed
systems but it concerns the development process
only whereas VUML views are actor views
(covering development and execution).

The JAC AOP addresses dynamic and
distributed Aspect Oriented Programming with Java
Aspect Component. It allows dynamic add and
remove of aspects to existing components using
wrapping methods. JAC is a very interesting
framework for adding non-functional concerns as
persistence, integrity, load-balancing, etc. But it
does not address add and remove of functional
concerns. On the other hand, while JAC alters the
basic component when adding new concerns,
VUML approach lets basic interfaces of the MV-
Component unchanged when adding functional
concerns for a new viewpoint.

The fractal component model makes separation
between functional and non-functional concerns. A
functional interface is an interface that
corresponds to a provided or required functionality
of a component, while a control interface is a
server interface that corresponds to a "non
functional aspect". Internally, a Fractal component is
formed out of two parts: a controller, and a
content. The content of a component is composed
of other components, called sub-components,
which are under the control of the controller of the

enclosing component. A component may be shared
by several distinct enclosing components. The
fractal extension (Caron et al. 2003, Barais et al.
2004), supports views by splitting component into
basic ones (shared by all views) and views
component. This approach is closed to ours in the
sense where it considers basic and view services.
But whereas the fractal system split the multiviews
component into several ones (each one with its own
identity), VUML considers a global component
whose interfaces change depending on the system
active view.

6 CONCLUSION

Undoubtedly, combining component and viewpoint
concepts help decentralised development, enhance
reusability, improve information accuracy and
consistency, facilitate and reduce production time of
software.

In this paper, we have first presented
components and related concepts. Through the
Distant Learning System case study, we have shown
how components are enable to provide accurate
services and controlled access to different clients. In
the continuation of our works about VUML, we
propose the concept of multiviews component which
interacts with the environment through multiviews
interfaces. Statically, a multiviews interface is
composed of a base interface and a set of view
interfaces extending this base. At any time of the
execution, a component behaves according to the
active view. That active view is automatically
propagated to every component linked to the
previous one. Management of views (add, suppress,
lock, unlock) is done dynamically through an
implicit interface called view management.
Consistency among dependent views is managed
thanks to firstly an explicit declaration of
dependencies (in OCL), and secondly programming
at the implementation level.

We have focused so far on the static aspect of
the multiviews component and on syntactic contract
for component assembling. Our objective is now to
specify other types of contracts (behavioural,
synchronisation and QoS) and to generate patterns
for multiviews component deployment.

REFERENCES

Abiteboul S., Bonner A., 1991. Objects and Views. Proc.
of ACM SIGMOD, pp. 238-24.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

224

Andersen E., Reenskaug P., 1992. System Design by
Composing Structures of Interacting Objects. Proc. of
the 6th ECOOP'92, LNCS, Vol. 615. pp. 133-152,
Utrecht, The Netherlands. Springer-Verlag.

Barais O., Muller A.,. Pessemier N., 2004. Extension de
Fractal pour le Support des Vues au sein d'une
Architecture Logicielle. Objets, Composants et
Modèles dans l'ingénierie des SI. Biarritz, Mai 2004.

Beugnard A., Jézéquel J.M., Plouzeau N. and Watkins D.,
1999. Making components contract aware. IEEE
Computer,32(7):38_45, July 1999.

Bruneton, E. Coupaye T., Stefani J.B., 2004. The Fractal
Component Model, version 2.0-3,
http://fractal.objectweb.org/specification/, Feb. 2004.

Caron O., Carré B., Muller A., Vanwormhoudt G., 2003..
A Framework for Supporting Views in Component
Oriented Information Systems. In OOIS, LNCS,
volume 2817, pages 164.178. Springer, September
2003.

Charrel P.J., 2002. The Viewpoint Paradigm: a semiotic
based Approach for the Intelligibility of a Cooperative
Designing Process. Australian Journal
of Information Systems, Vol. 10, n° 1. pp. 3-19.

Coulette B., Kriouile A., Marcaillou S., 1996. L’approche
par points de vue dans le développement orienté objet
de systèmes complexes. Revue l’Objet vol. 2, n°4, pp.
13-20.

El Asri, B., Nassar M., Coulette B., Kriouile A., 2004.
Views, Subjects, Roles and Aspects: a comparison
along Software lifecycle. 6th International
Conference on Enterprise Information Systems
(ICEIS’04), April (14-17) in Porto/Portugal.

Debrauwer L., 1998. Des vues aux contextes pour la
structuration fonctionnelle de bases de données à
objets en CROME. Thèse de Doctorat, LIFL, Lille.

Finkelstein A., Kramer J., Goedicke M., 1990. Viewpoint
Oriented Software Development. Proc. of Software
Engineering and Applications Conference, pp. 337-
351, Toulouse.

Florin G., Legond-Aubry F., Enselme D., 2003. Modèle
abstrait d'assemblage de composants par contrats.
Rapport technique Livrable 1.4, Projet RNTL Accord,
juin 2003.

Harrison W., Ossher H., 1993. Subject-oriented
programming : a critique of pure objects. Proc. of
OOPSLA’93, Washington D.C., pp. 411-428.

Kiczales G., Lampng J., Mendhekar A., Maeda C., Lopes
C. V., 1997. Aspect-Oriented Programming. Proc. of
the European Conference on Object-Oriented
Programming (ECOOP). Finland. Springer-Verlag
LNCS 1241.

Kriouile A, 1995. VBOOM, une méthode orientée objet
d’analyse et de conception par points de vue. Thèse
d’Etat. Université Mohammed V de Rabat.

Kruchten P. 1999. Modelling Component Systems with
the Unified Modelling Language. Rational Software
Corp.

Marcaillou S., Coulette B., Kriouile A., 1994. Visibility :
A new relationship for complex system modelling. In
TOOLS USA'94. TOOLS13, Prentice Hall.

Meyer B., 2000. What to compose. Software
Development, mars 2000. Online: Software
development columns :
http://www.sdmagazine.com/articles/2000/0003/

Nassar M., 2003., VUML : a Viewpoint oriented UML
Extension. Proc. of the 18th IEEE International
Conference on Automated Software Engineering
(ASE’2003), Doctoral symposium, Montreal, Canada.

Nassar M., Coulette B., Crégut X., Ebsersold S..,
Kriouile A., 2003. Towards a View based Unified
Modeling Language. Proc. of 5th International
Conference on Enterprise Information Systems
(ICEIS’2003), Angers, France.

Nassar M., El Asri B., Coulette B. et Kriouile A., 2004.
Une approche UML de composants multivues.
Workshop Objets-Composants-Modèles dans les
Systèmes d'Information. Biarritz, France. 25 mai 2004.

Objecteering 2004. Objecteering software
 http://www.objecteering.com.
OMG 2003. UML 2.0 Superstructure Final Adopted

specification, Document - ptc/03-08-02, 2003,
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

OMG, 2001. Unified Modeling Language, version 1.4;
http://www.omg.org/cgi-bin/doc?formal/01-09-67

Ossher H., Tarr P., 2001. Using multidimentional
separation of concern to (re)shape evolving software.
Communication of the ACM October 2001/Vol. 44,
No. 10 pp43-50.

Pawlak R., Duchien, L., Seinturier L., Legond-Aubry F.,
Florin G., Martelli L., – JAC : An Aspect-based
Distributed Dynamic Framework – Journal Software
Practice and Experience, 2004.

RM/ODP 1996 ISO/IEC, “ISO/IEC 10746-1 Information
technology - Basic reference model of Open
Distributed Processing - Part 1: Overview,” ISO ITU-
T X.901 - ISO/IEC DIS 10746-1, 1996.

Shilling J., Sweeny P., 1989. Three Steps to Views, Proc.
of OOPSLA’89, New Orleans, LA, pp. 353-361.

Szyperski C., 2002.: Component Software - Beyond
Object-Oriented Programming. Addison-Wesley, 2nd
edition, november 2002.

MULTIVIEWS COMPONENTS FOR INFORMATION SYSTEM DEVELOPMENT

225

http://www.sdmagazine.com/articles/2000/0003/
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/cgi-bin/doc?formal/01-09-67

