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Abstract:  This paper presents a new Object Oriented Probabilistic Relational language which is built upon the Bangsø 
Object Oriented Bayesian Network framework. We are currently studying the application of this language 
for situation assessment in complex military and business domains. 

1 INTRODUCTION 

Decision making in time-critical, high stress, 
information overloaded environments, such as the 
tactical military domain, is a complex research 
problem that can benefit from the application of 
information fusion techniques.  Information fusion is 
the process of acquiring, aligning, correlating, 
associating and combining relevant information 
from various sources into one or more 
representational formats appropriate for interpreting 
the information.  The Lambert revision (Lambert 
2003) (λJDL) of the widely accepted Joint Directors 
of Laboratories, or JDL, model (Steinberg, Bowman 
et al. 1998) provides a functional model of the 
information fusion process.  λJDL divides the 
information fusion into three sub-processes: object, 
situation and impact fusion.  This paper focuses on 
Situation Fusion.   

Within the λJDL model, Situation Fusion is 
defined as the process of utilizing one or more data 
sources over time to assemble a representation of the 
relationships of interest between objects of interest 
in the area of interest in the battlespace.  
Relationships of interest can include physical, 
temporal, spatial, organizational, perceptual and 
functional relationships.  The relationships 
meaningful to a user will be highly dependent on the 
domain and the user’s intentions.  A Situation 
Assessment is defined as a persistent representation 
of the relationships of interest.   

While significant progress has been made in 
Object Fusion, substantial challenges remain in 
Situation and Impact Fusion (Llinas 2001; Sycara 

and Lewis 2002; Lambert 2003; Salerno, Hinman et 
al. 2003).  One such challenge is the formalization of 
the computational processes at these levels.   

Formulating Situation Assessments from sensor 
data requires the ability to represent: 

• Objects and their attributes 
• Relationships and their attributes 

and the ability to:  
• Fuse information at various levels of 

abstraction 
• Perform temporal reasoning 
• Handle the uncertainty about: 

o The identity, number, location and attributes 
of objects 

o The existence and attributes of relationships 

1.1 Example Scenario 

A classic situation assessment example is a tactical 
military scenario where a helicopter is flying along a 
planned route.  The intent of the pilots is to arrive 
safely at the target without being seen, acquired or 
targeted by an adversary’s radar installations or shot 
down by any weapon systems known to be co-
located with the radar installations.  There are an 
unknown number of land based friendly and 
adversary radar and weapon installations in the area.  
Onboard the helicopter is a suite of sensing systems 
which collect and analyze emissions from the radars 
during the flight, but provide only a partial picture of 
the battle space.  The data may be incomplete, 
incorrect, contradictory or uncertain.  It may have 
various degrees of latency and may be affected by 
the environment or by enemy deception or 
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confusion, which creates false or misleading data.  
The most important relationships of interest, given 
the pilot’s intent, include the helicopter approaching, 
receding from or traversing the detection range of a 
radar or the lethality envelope of a weapon system.  
In order to successfully complete the mission, the 
pilot must develop an understanding of which, if 
any, of these relationships exist at any given time 
and the impact the existing relationships will have 
on the mission objectives.   

Counterparts to this competitive scenario in the 
business domain are numerous, although spatial 
relationships play little or no role; the threats are 
competitor’s actions in the business environment 
and the strategic choices correspond to business 
decisions. 

1.2 The Road to OOPRMs 

Bayesian Networks (BN) have been used in many 
existing decision support systems, e.g., to reason 
about causal and perceptual relationships between 
objects in the battlespace in tactical military 
reasoning (Laskey and Mahoney 1997; Mulgund, 
Rinkus et al. 1997; Gonsalves and Rinkus 1998; 
Jones, Hayes et al. 1998; Gonsalves, Rinkus et al. 
1999; Das, Grey et al. 2002; Wright, Mahoney et al. 
2002).  However, BN have been shown to be 
inadequate for reasoning about large, complex 
domains (Pfeffer 1999) because of their lack of 
flexibility, the fact that they are static models and 
their inability to take full advantage of domain 
structure or reuse.  The lack of flexibility is of 
particular importance to situation assessment domain 
because the variables relevant to reasoning about a 
situation will be dependent on the domain and the 
user intentions. 

We aim to use automated reasoning to derive 
Situation Assessments from signal data to provide 
dynamic decision support to decisionmakers such as 
managers or tactical military commanders.  In order 
to do this, we need to represent and reason about the 
location, status and the relationships which exist 
between objects in the domain of interest (e.g., the 
battlespace or market) given the input data (e.g., 
sensors or market reports).  From the preceding 
discussion of the limitations of BN in the domain, it 
is clear that a technique is required which can allow 
the random variables in the model, their state spaces 
and their probabilistic relationships to vary over time 
and from instance to instance.  First Order 
Probabilistic Languages (FOPLs) are languages 
which combine probability theory with the 
expressive power of first order logic.  Recently, 
FOPLs have been used in a number of domains such 
as military situation awareness (Pfeffer 1999), 

hypertext classification (Getoor 2002) and traffic 
surveillance (Pasula 2003).  Probabilistic Relational 
Models (PRM) are a family of FOPL.  The thesis 
behind this work is that FOPL in the form of OPRM 
will provide a flexible and practical approach to 
reasoning in complex domains such as military 
Situation Assessment.  And that using such a 
language will formalize the computational processes 
at this stage of the information fusion process.     

2 PROBABILISTIC RELATIONAL 
MODELS  

Probabilistic Relational Models (PRM) (Koller and 
Pfeffer 1998; Getoor 2002) extend traditional 
attribute based Bayesian Networks with the concepts 
of objects, their attributes and relationships between 
them.  The most important difference between BN 
and PRM is that PRM define the dependency model 
at the class level.  The class dependency model is 
then instantiated for any instance of the class. 

PRM annotate frames with a probability model 
representing the uncertainty over the properties of an 
instance, capturing both its probabilistic dependence 
on its own attributes and the attributes of related 
instances.  PRM specify a template for the 
probability distribution over a knowledge base 
(Getoor 2002).  This template consists of two parts: 
a relational component and a probabilistic 
component.  The relational component describes 
how the classes in the domain are related.  The 
probabilistic component details the probabilistic 
dependencies between attributes in the domain.  A 
PRM can also represent uncertainty over the 
structure of the model. 

PRM were created by integrating a frame-based 
representation with the only OOBN framework 
known at the time; Koller and Pfeffers OOBN 
framework (hereafter referred to as KPOOBN).  
However, recent work by Bangsø (Bangso and 
Wuillemin 2000; Bangso 2004) has proposed a new 
framework for OOBN (hereafter referred to as 
BOOBN) which has several advantages over Koller 
and Pfeffer’s OOBN framework.   

Both KPOOBN and BOOBN frameworks define 
an OOBN class as a BN fragment containing output, 
input, and protected (or encapsulated) nodes.  The 
input and output variables form the interface of the 
class.  The interface encapsulates the internal 
variables of the class, d-separating them from the 
rest of the network.  All communication with other 
instances is formulated in terms of probability 
statements over the instance’s interface.  

 The main difference between the two 
frameworks is that BOOBN introduce the use of 
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reference nodes and reference links to overcome the 
problem that no node inside a class can have parents 
outside the class.  A reference node is a special type 
of node pointing to a node in another scope (called 
the referenced node).  A reference node is bound to 
its referenced node by a reference link.  BOOBN 
define all input nodes to be reference nodes. 

While these reference nodes create an additional 
computational cost, they provide several important 
benefits.  For example, the reference nodes enable 
BOOBN framework to have a more intuitive 
definition of inheritance in the modeling domain.  
KPOOBN inheritance definition corresponds to 
contravariance while Bangsø’s definition 
corresponds to covariance.  The reference nodes also 
allow the BOOBN framework to compactly 
represent dynamic situations, whereas KPOOBN, as 
it stands, does not have the expressive power to deal 
with situations that evolve over time (Koller and 
Pfeffer 1997).  These reference nodes also provide 
an advantage during inference, as outlined in Section 
6. 

3 OBJECT ORIENTED PRM 

Following the example set by Koller and Pfeffer’s 
PRM, we have integrated a frame based 
representation system with the BOOBN framework.  
Throughout the remainder of the paper, the 
University example shown in Figure 1 will be used 
to illustrate the discussion.  We decided to use this 
relatively “unthreatening” business domain to 
simplify the exposition and avoid the complexities 
of identity uncertainty (discussed in Section 7).  The 
following definitions expand (Getoor 2002).    

Definition 3.1: OPRM (like PRM) consist of a 
relational component and a probabilistic component.  

The relational component consists of: 
• A set of classes, C ={C1, C2,…, Cn }, and possibly 

a partial ordering over C which defines the class 
hierarchy.  The set of classes in the University 
example is C = {Lecturer, Paper, Conference, 
Promotion Evaluation}. 

• A set of descriptive attributes for each class C in 
C.  C1.A is an attribute A of class C1.  Each s 
descriptive attribute A has a domain type 
Dom[A]∈C and a range type Range[A]=Val[A] 
where Val[A] is a predefined finite enumerated set 
of values.  The set of descriptive attributes of class 
C is denoted A(X).  In the University example, 
A(Lecturer)={Tired, Productivity, Teaching 
Skills, Brilliance, Quantifier(Papers) and 
WillGetPromoted}. The Productivity attribute of 
the Lecturer class has Val[Productivity] = {low, 
medium, high}.  

• A set of reference attributes ρ for each class C in 
C.  C1.ρ is a reference attribute ρ of class C1.  
Reference attributes represent functional 
relationships between instances in the knowledge 
base (i.e. they are attributes which reference other 
frame instances).  Each reference attribute ρ has a 
domain type Dom[ρ]∈C and a range type 
Range[ρ]∈C for some class C in C.  Each 
reference attribute (except uncertain reference 
attributes) have an inverse, which is interpreted as 
the inverse function of ρ.   In our University 
example, the Paper class has a single valued 
reference attribute Conference whose value is an 
instance corresponding to an instance of the 
Conference class.  The set of reference attributes 
of class C is denoted R(X).  In the University 
example, R(Paper)={Conference, Promotion 
Evaluations}.   

• A set of named instances, I, which represent 
instantiations of the classes.  As multiple 
inheritance is not accommodated in this 
framework, each instance is an instance of only 
one class. 

The probabilistic component consists of: 
• A set of conditional probability models P(A|Pa[A]) 

for the descriptive attributes, where Pa[A] is the 
set of parents of A.  These probability models may 
be attached to particular instances or inherited 
from classes because like PRM, OPRM define the 
dependency model at the class level, allowing it to 
be instantiated for any instance of that class.  

The classes of the OPRM are organized into a 
hierarchy.  A frame’s slots and facets, including 
their probability models, are inherited from the 
frame’s superclass in the hierarchy.  If required, 
subclasses can redefine any inherited information of 
any attribute including the probability model.  

3.1 Inference in OPRM 
Inference is performed on an instantiated OPRM by 
constructing the ‘equivalent’ BOOBN for each class 
by instantiating a node for each uncertain descriptive 
attribute in the class.  The protected nodes in these 
equivalent BOOBN are encapsulated from the rest of 
the model via the instances interface and the 
inference algorithms take advantage of this fact.   

3.2 Multi-Valued Reference 
Attributes  

Reference attributes do not necessarily represent 
one-to-one relationships.  These attributes can be 
multi-valued, representing one-to-many and many-
to-many relationships.  For example, the Paper 
attribute in the Promotion Evaluations class is a 
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multi-valued reference attribute.  Each value the 
attribute can take on is an instance of the Paper 
class.  But the parents of a descriptive attribute such 
as Lecturer.WillGetPromoted must be descriptive 
attributes.  In order to allow descriptive attributes 
such as Lecturer.WillGetPromoted to depend on 
attributes of related instances where the relations is 
multi-valued, an aggregate attribute is introduced 
into the frame containing the multi-valued attribute.  
Aggregate attributes allow descriptive attributes 
such as Lecturer.WillGetPromoted to depend on 
the set of instances via an aggregate property of the 
set, rather than each individually related instance.  

Definition: An aggregate attribute γ(ρ) is a 
descriptive attribute which summarizes a property of 
a set of related instances.  Attributes other than 
aggregate attribute cannot depend directly in a multi-
valued reference attributes. 

An aggregate attribute is represented in the 
equivalent BOOBN by a simple node.  As a 
descriptive attribute, an aggregate attribute has a set 
of parents, which includes each related instance, and 
a distribution that specifies the conditional 
probability over its values, given the values of its 
parents 

In our university example, the aggregate attribute 
QuantifierPapers is true if and only if more than 5 
papers have a high impact, i.e. true if ≥ 
5(Papers.Impact:high).  In this case the value of 
the aggregate attribute is {true, false}.  Because an 
aggregate attribute is a descriptive attribute, it can be 
a parent of another attribute.  For example, 
Lecturer.Quantifier(Papers) is a parent of 
Lecturer.WillGetPromoted.   

4 THE UNIVERSITY EXAMPLE 

The University example model is the simplest form 
of OPRM, where the complete relational structure 
(i.e. the set of objects and relationships between 
them) is known.  Given the relational structure, the 
OPRM specifies a probability distribution over the 
attributes of the instances in the model.  We are 
employing the unique names assumption in this 
example, which means that each object in the 
knowledge base is assumed to have a unique 
identifier (i.e. identity uncertainty is not present).   

The OPRM shown in Figure 1 evaluates the 
promotion prospects of university academics based 
upon their teaching skills, brilliance and productivity 
and the impact of their publications.  The impact of 
their publications are effected by the standard and 
prestige of the conferences to which they were 
submitted and is summarized by the aggregate node 
Quantifier(Papers). 

In the diagram, the red nodes indicate output 
nodes while the dashed nodes represent input nodes.  
Together input and output nodes define the 
interfaces, Int, of the various classes.   For example, 
the interface for the Lecturer class Int(Lecturer) = 
{Quantifier(Papers), Brilliance, Will-GetPromoted}.  
The interface for the Paper class is Int(Paper) =  
{Brilliance, Standard, Prestige,Impact}.  The interface 
for the Conference class is Int(Conference) = 
{Standard, Prestige} while the interface for the 
Promotion Evaluations class is Int(Promotion 
Evaluations) =  {Quantifier(Papers), Brilliance}. 

 

Figure 1: The university OPRM.  The model contains one 
instance of the Lecturer class, ten instances of the Papers 

class and ten instances of the Conferences class 

5 TECHNIQUES FOR 
REPRESENTING 
UNCERTAINTY  

The OPRM framework (like PRM) can be extended 
to accommodate uncertainty about the relational 
structure of the model.  In these cases, the 
uncertainty in the relational structure needs to be 
explicitly modeled in the OPRM.  The following 
techniques (adapted from (Koller and Pfeffer 1998; 
Pfeffer, Koller et al. 1999; Getoor 2002)) are useful 
when the knowledge about the relational structure is 
not complete.   

5.1 Structural Uncertainty 

There are three types of structural uncertainty; 
number, reference and identity uncertainty.  The 
techniques used to extend OPRM to accommodate 
the first two types will be discussed in this section.  
As we do not yet have techniques to accommodate 
identity uncertainty into OPRM, it is discussed 
further in Section 7. 
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5.2 Number Uncertainty 

Number uncertainty is present when it is unclear 
how many values a multi-valued reference attribute 
can take.  For example, it may be uncertain how 
many papers the lecturer Dr Smith has written.  
Number uncertainty allows the set of instances in the 
model to be varied.   

Number uncertainty is integrated into the 
probabilistic model of a class by introducing a 
number attribute. 

Definition: A number attribute num(ρ) is a 
descriptive attribute with the range equal to the set 
of integers {0…n} where n is the upper bound.  
Num(ρ) denotes the number of values of ρ.   

A number attribute is represented in the 
equivalent BOOBN by a simple node.  As a 
descriptive attribute, a number attribute has a set of 
parents (e.g., num(Paper) could be dependant on 
Lecturer.Productivity) and a distribution that 
specifies the conditional probability over its values, 
given the values of its parents.  

Recall from Section 3.2 that multi-values 
reference attributes require an aggregate node to be 
introduced into the network.  Under number 
uncertainty, the value of the aggregate attribute will 
depend on the number attribute as well as the value 
of related instances.  For example, the value of 
DrSmith.Quantifier(Papers) will depend on the 
number attribute DrSmith.num(Papers) and  the 
impact attribute of the set of related instances 
Paper[1] through to Paper[10]. 

5.3 Reference Uncertainty 

Reference uncertainty is uncertainty over the value 
of a single-valued reference attribute.  For example: 
it may be uncertain which conference Paper[1] was 
submitted to.  That is, there is uncertainty over 
which Conference frame instance the 
Paper[1].Conference reference attribute refers to.  
In this case, which value of conference Prestige and 
Standard should be used to determine the impact of 
the paper?  Reference uncertainty allows the 
relationships between instances to be varied. 

If C1.ρ (Paper.Conference) is an uncertain 
reference attribute with domain C2 (Conference).  
In the case of reference uncertainty, we need to 
specify a probability model for the value of the 
uncertain reference attribute C1.ρ.  Instead of having 
the OPRM specify a probability distribution directly 
over the set of instances of C2 (i.e. Conference1-
Conference10), a technique introduced by (Getoor 
2002) partitions the instances of C2 into subsets 
using attributes of C2.  The probability distribution 
can then be specified over these partitions (which 

encodes how likely the reference attributes value is 
to fall into one partition versus another).  Instances 
are then selected uniformly from within these 
partitions. 

Thus reference uncertainty is integrated into the 
probabilistic model of a class by associating each 
uncertain reference attribute ρ of the class with a 
selector attribute sel(ρ).   

Definition: A selector attribute sel(ρ) is a 
descriptive attribute where the values are a finite 
enumerated set of frame instances.  The partition 
function (Getoor 2002) is defined as 
Ψρ:Y→Dom[Ψρ].  The values of the partition 
function, ϕ, determine the subset of C2 from which 
the value of ρ will be selected.  The domain of the 
selector attribute is Dom[Ψρ].  Thus the choice of 
value for sel(ρ) determines the subset of C2 from 
which the value of ρ is chosen.  A partition function 
has a set of partition attributes P[ρ] for of ρ.  The 
parents of sel(ρ) are those attributes/attribute chains 
which influence the choice of a frame instance as the 
value  of ρ.  

A selector attribute is represented in the 
equivalent BOOBN by a simple node.  In addition to 
the selector attribute node, a multiplexor node is 
introduced to the network.  The set of parents for the 
multiplexor node include the selector attribute and 
all instances of the related frame (eg. the 
Conference.standard node for each instance of 
Conference).  The multiplexor node uses the 
probability distribution of the selector attribute to 
select as its value the value of one of its other 
parents. 

To continue our University example, uncertainty 
over which conference Paper[1] had been submitted 
to would result in Paper[1].Accepted being 
dependant on all possible combinations of 
Conference.Standard values for the uncertain 
Conference attribute.  The value of 
Paper[1].Conference could be one of several 
Conference instances depending on the value of the 
selector attribute.  The set of Conferences could be 
partitioned based on the Prestige attribute.  In this 
case P[Paper.Conference]={Prestige} and 
ϕPaper.Conference: 
Conference→{low,medium,high}.   
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Figure 2: The equivalent BOOBN which would be used to 
determine the values of Conference.Prestige and 
Conference.Standard under reference uncertainty 
 

The CPD for the selector attribute could be [0.1 
0.6 0.3], i.e., it is 30% likely that the paper was 
accepted by a prestigious conference, 60% likely the 
paper was accepted by a conference with a medium 
level prestige and 10% likely the paper was accepted 
to a conference with a low prestige. 

 

Figure 3: An example of how the Conference instances 
could be partitioned based on the Prestige of the 

Conference where ϕ1 is the set of conferences with low 
prestige, ϕ2 medium and ϕ3 high 

5.4 Existence Uncertainty 

OPRM allow both real world objects and the 
relationships between them can be represented by 
classes.  Existence uncertainty occurs when it is 
uncertain whether a relationship exists between 
objects.  A set of potential relationship classes is 
specified, but it is uncertain which relationships 
actually exist.  Existence uncertainty is required in 
the competitive domains because there is often only 
partial, indicative (not definitive) evidence of the 
presence of a relationship between objects in the 
market or battlespace.  Existence uncertainty is 
integrated into the probabilistic model of a class by 
introducing an existence attribute. 

Definition: An existence attribute is a 
descriptive attribute whose value of {true, false} 
depends on the existence attribute of all parents of 
the existence attribute. 

An existence attribute is represented in the 
equivalent BOOBN by a simple node with links to 

its parents.  A class exhibiting existence uncertainty 
is called undetermined and each instance of the class 
contains an existence attribute.  For classes that are 
determined, the value of the existence attribute is 
always true.   

6 FUTURE WORK 

Like PRM, and indeed most current FOPL 
approaches (Pasula 2003), OPRM employ the 
unique names assumption.  That is, each instance in 
the knowledge base is assumed to correspond to a 
different object.  This assumption may be violated in 
the military domain, where there is a distinct 
possibility that multiple observations (and therefore 
multiple instances in the knowledge base) may 
represent the same object.  In the military 
information fusion domain, identity uncertainty 
would have a profound impact on data association 
(the tracking of objects from time to time and from 
sensor to sensor).  A recent thesis by (Pasula 2003) 
investigated the incorporation of identity uncertainty 
into PRM.  Future work will include the 
investigation of techniques for incorporating identity 
uncertainty into OPRM.    

The expressive power of OPRM makes it easy to 
construct models whose equivalent OOBN will have 
very large cliques.  Incorporation of identity 
uncertainty into the language would only exacerbate 
this problem.  We also intend to research and 
implement appropriate approximate inference 
algorithms. 

7 CONCLUSIONS  

We have presented OPRM, a language that extends 
the Object Oriented Bayesian Network framework 
developed by Bangsø with a frame-based 
representation.   This language allows domains to be 
modelled in a structured manner in terms of objects 
and the relationships between them.  We postulate 
that once identity uncertainty is incorporated into the 
language, OPRM will provide a flexible and 
practical approach to reasoning in complex domains, 
such as military or economic situation assessment, 
where the unique names assumption cannot be 
employed.   We also postulate that the extended 
version of OPRM will provide a formalism for the 
Situation Assessment computational processes.  

As relational databases are a common 
mechanism for representing structured data (e.g. 
medical records, sales and marketing information, 
etc), OPRM are applicable to a wide range of 
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domains and applications for example, disaster 
management and computer network security and 
stock market modelling. 
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