
Design and Prototyping of Web Service Security on
J2ME based Mobile Phones

Ti-Shiang Wang

Nokia Research Center
5 Wayside Road, Burlington, MA 01803, USA.

Abstract: One of the main objectives in this paper is to investigate how to ma-
nipulate the Simple Object Access Protocol (SOAP) message and place security
functions in the header of SOAP message. Here, we will present the design and
implementation of web service security application on Java 2 Micro Edition
(J2ME) based mobile devices. Basically this prototyping includes two-stage
approach. In the first stage, we study the concept of proof in implementation of
web services security on the IBM laptop using IBM WebSephere Studio Device
Developer (WSDD V 5.6) IDE [1]. In addition we import kXML/kSOAP APIs
to process SOAP message and use Bouncy Castle’s API [2] supporting crypto-
graphic algorithms for security implementations. In this paper, the security
functions we present here include five tasks: non-security, data digest, data en-
cryption using symmetric key, data encryption using asymmetric key, and digi-
tal signature. At each task, we will discuss its corresponding design, SOAP
header message, time performance, and return results in emulator. Based on the
expected results from the first stage, in the second stage, we use Nokia
6600/3650 mobile phones as target mobile devices to test our application and
evaluate performance at each task. Finally we will share our experience and
lessons on this work in the conclusion and do the demonstration using Nokia
3650 mobile phone in the conference.

1 Introduction

As mobile phone becomes a commodity that almost everyone will own one mobile
phone but may not have the traditional landline, it is very likely that the mobile
phones will replace PDA (Personal Digital Assistant) devices in some applications.
The web services are services provided over Internet or intranet using standardized
XML messages to exchange information among different nodes. In addition, web
service is not tied to any platforms or programming languages, which may need ex-
tensive technical skill. Also, eXtensible Markup Language (XML) remote procedure
calls (XML-RPC), SOAP [3] or even HTTP can be used to implement the messaging
of web services. On top of the transport methods, web services use Web Services
Description Language (WSDL) to define the service provided by service applications
so requester and application provider can communicate each other regardless of pro-
gramming language or platform. Because web services are self-describing, discover-

Wang T. (2005).
Design and Prototyping of Web Service Security on J2ME based Mobile Phones.
In Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems, pages 29-38
DOI: 10.5220/0002541300290038
Copyright c© SciTePress

able, and independent to any platforms, it can support automated application integra-
tion and help to improve the development process.

To illustrate the thoughts of implementing web service security, IBM WebSephere
Studio Device Developer (WSDD V 5.6) IDE, which is a J2ME development tool,
which supports automated stub generator and other advanced features, is considered
in this paper. That is, we use IBM WSDD to generate prototype files called “stubs”
and continue developing codes based on the generated files. The “stubs” are gener-
ated based on WSDL file from remote server. It contains the methods to process nec-
essary parameters and arguments to access remote services. The “stubs” may not have
complete codes but it serves as a base for further development. The ultimate goal is
using web services to build an application-centric web, which has less human interac-
tion involved. Thus, in this paper we will only focus the discussion on client-server
web services security implementation rather than enterprise web services, which will
be part of our future works. For manipulating SOAP message, though JSR 172 web
services specification also supports access to remote SOAP/XML based web services
and parsing XML data on the J2ME platform [4], it is not possible for J2ME mobile
devices with limited processing power to include all JAXP functionalities. In addi-
tion, current JSR 172 specification does not support SOAP message header handler.

The kXML [5][6] is a project to provide XML pull parser for J2ME based mobile
devices. It supports XML namespace, and XML writing. These APIs have ability to
process SOAP message using XML parser engine from kXML. kXML/kSOAP API
(an open-source J2ME XML and SOAP parser). In this work, both kXML and
kSOAP have to be included in the java classpath to provide the functionalities of
process SOAP messages. To implement the security functions in the SOAP header,
W3C has suggested adding these security tags into SOAP header as its security exten-
sions. This work will follow the recommendation of W3C to add security information
into SOAP header. As far as cryptographic algorithms used for mobile devices [7] are
concerned, we test and use Bouncy Castle’s cryptographic API, which is an open-
source Java cryptographic algorithm API for J2ME mobile devices. In this paper, five
tasks of security function are to implement: no-security, digest, encryption with sym-
metric key, encryption with asymmetric key, and digital signature. At each task, we
will show its SOAP message, demonstration of result, and time performance. For the
web server we used for this demonstration, we adopt temperature web service pro-
vided by Xmethods [8][9]. As we mention, in this work, we focus on the implementa-
tions of security function at client side, that is, the mobile phone or user side. Then in
the last section, we will draw a conclusion and discuss some future works.

2 Architecture and Implementation

In the client side, developer can use IDE or automated tool to generate stub, a proto-
type or template file to access web services based on the WSDL file. In previous
version of IBM WSDD (Version 5.5), which supports both Document-style and RPC-
style web services and the IDE can help us to generate Temperature_Stub.java file as
a way to automate the application development. However, for the WSDD 5.6 version,
only document-style web services are to support. Thus we use document-style tem-

30

perature WSDL for our implementation in the client side. Figure 1 shows the generic
architecture for our work. In the first stage, we use laptop and IBM WSDD tool kit
and emulator to demonstrate the concept of this implementation. Then in the second
stage, we use Nokia 6600/3650 mobile phone as the client component.

Soap request w ith security headers
(Temperature Service)

Soap response

Target Web Service Server
http:/ /www.xmethods.net

Mobile Terminal

Fig. 1. Proposed web service architecture using mobile phone

There are two modules, cryptographic algorithm module (CAM) and SOAP mes-
sage parser module (SMPM), required to implement web services security. The CAM
includes following files:

• Encryptor.java: an abstract class to define the interfaces of encryption and
decryption algorithm. The “Encryptor” class acts as a parent class for all se-
curity classes. As an abstract class, the real implementation needs to be done
after inheriting from it, so that further security extensions can be added or
integrated under the “Encryptor” class.

• DigestEncryptor.java: the implementation of data digest algorithm. This
class implements the abstract method of Encryptor.java file;

• SymmetricEncryptor.java: the implementation of secret key data encryption
algorithm. This class implements the abstract method of Encryptor.java file;

• AsymmetricEncryptor.java: the implementation of public key data encryp-
tion algorithm. This class implements the abstract method of Encryptor.java
file;

• DSEncryptor.java: the implementation of digital signature algorithm. This
class implements the abstract method of Encryptor.java and composite Di-
gestEncryptor and AsymmetricEncryptor classes.

For the SMPM, it includes following files:
• SoapEnvelope.java: a SOAP message parser without security extension;
• SecSoapEnvelope.java: a SOAP message parser with security extension;
• HttpTransportTest.java: Responsible for delivery of SOAP message.

The SOAP message handler has two classes: SOAPEnvelope and SecSOAPEn-
velope. SOAPEnvelope is the modified version of original class from kSOAP pack-
age and the SecSOAPEnvelope adds the header and body process capability so that

31

security and cipher data can be replaced in the SOAP message. In addition, to interact
between user/client side and server side, there are two java application files imple-
mented as well. SecTemperature_Midlet.java is the main class for J2ME application
and Temperature_Stub.java is the interface between SecTemperature_Midlet.java
and other modules mentioned above. In this work, we have implemented a tempera-
ture query web services application on J2ME based mobile phone. User of the mobile
application will be asked for zipcode and the selection of desired encryption algo-
rithm. There are five different cryptographic algorithms available for selection, in-
cluding no-security (Task 1), data digest (Task2), data encryption with symmetric key
(Task 3), data encryption with asymmetric key (Task 4), and digital signature (Task
5).

After user enters zipcode and chooses one of the encryption algorithms, the appli-
cation will take the zipcode (for example, 01803) as input and encrypt this zipcode
based on the selected encryption algorithm. Then, the application will generate a
cipher value and attach this value to the body on SOAP message. In addition, the
cryptography algorithm name and the web services security tags will be added to the
SOAP header and body. All the name spaces and XML tags in web services security
have been defined in the standard of OASIS Web Services Security [10]. It should be
noticed that the original zipcode is not replaced with cipher text because the existing
of plaintext and cipher value can help us to verify our implementation of crypto-
graphic algorithms and get the result (i.e., temperature degree) from the web server.

3 Detail Task Implementation and Results

In this section we discuss 5 tasks of our security implementation. In addition, the
corresponding SOAP message, and demonstration are presented and general time
performance is introduced as well.

3.1 Task 1:No-Security

In this task, we study what the SOAP message looks like without adding any security
function using IBM WSDD as the starting point for the rest of the following tasks.
The following SOAP message shows the regular SOAP message without security
extension. Figure 2 shows the snapshot and results from emulator. The time of result
responded from server side is ~4 seconds.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

32

Fig. 2. Snapshot of no-security Fig. 3. Snapshot of data digest
implementation. implementation.

3.2 Task 2: Data Digest

Data integrity is to ensure that the data is from original sender without any modifica-
tion by unauthorized users. It is important to understand that both sender and receiver
choose a key before creating or verifying the digest data. Once receiver receives the
data, the digest value from the received plaintext is generated using a pre-determined
key to both sides. The new digest value generated at receiver side will be compared
with the digest data sent from sender side. Both of them should be the same, other-
wise the data sent from sender side possibly have been modified. The following
SOAP message illustrates the SOAP message with data integrity security extension.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-

1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="SHA256" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>

33

 <ds:CipherValue
xmlns="http://www.nokia.com/nrc/boston/security/">d085119a2d49e7099ebf9f3fd5801bf9bebbaf77

b2be07805577cec7598b9aa1</ds:CipherValue>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
In this SOAP message, several lines have been added to the SOAP header. The

<wsse:Security> defines the standard of the web services security for this application.
The <ds:DigestMethod> defines the cryptographic algorithm used in this task. The
XML tag <ds:Reference> is used to indicate what data will be encrypted from the
SOAP body. Receiver is able to use this tag to re-construct the original plaintext.
Here, we only encrypt the zipcode but not the whole body of SOAP message. There
are also some lines adding to the BODY of SOAP message. The <ds:CipherValue>
is the data digest value calculated after entering zipcode by the user. In this case, the
SHA cryptographic algorithm is implemented. Please note that the digest data is
placed outside <getTem> tag because there will be no response if we insert other data
into the tag defined by WSDL to receive request information. Figure 3 shows the
result we get from WSDD emulator and the time to receive the result is ~ 3 seconds.

3.3 Task 3: Data Encryption Using Symmetric Key

Symmetric encryption takes plaintext as input and use secret key to encryption the
plaintext to a cipher text. In this project, we implemented the AES encryption, which
has 128-bit block size of plain text. Compared with previous data digest algorithm,
this task experiences more complicated since padding issue on the input message and
the key needs to be considered. The following SOAP message illustrated the imple-
mentation of symmetric encryption in SOAP message.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-wssecurity-secext-1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="AES" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 <ds:CipherValue

xmlns="http://www.nokia.com/nrc/boston/security/">dec921ebadb8dbec94a1340f532a7
ef6</ds:CipherValue>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

34

The difference between the SOAP message for symmetric key encryption
task and data digest encryption is the attribute of <ds:DigestMethod> XML tag has
been replaced with “AES” to reflect the change of cryptographic algorithm. Also, the
cipher value in the body of SOAP message is replaced with corresponding cipher
data. Figure 4 shows the snapshot of symmetric key encryption application on emula-
tor. In this case, ~3 seconds is required to the result sent back from the server.

Fig. 4. Snapshot of data encryption Fig. 5. Snapshot of data encryption
using symmetric key. using asymmetric key.

3.4 Task 4: Data Encryption Using Asymmetric Key

The asymmetric key encryption is also called “public key encryption” algorithm.
Sender uses receiver’s public key to encrypt data. The encrypted (cipher text) data
(here, 01803 is used) is sent to the receiver and the receiver uses its own private key
to decrypt the cipher data to original plaintext. According to our test, it will take 4 or
5 minutes to generate the key pair on Nokia 6600/3650 mobile device, even though
the time required in the emulator is much shorter (~10 seconds), as shown in the
Figure 5. The following SOAP message illustrates the implementation of asymmetric
encryption in SOAP message.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-

1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="RSA" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>

35

 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 <ds:CipherValue

xmlns="http://www.nokia.com/nrc/boston/security/">015d8dbccb65a206ccd0cee6abfe3f344a456e204e159
b11e119c48c5b0a347018263ba8341be1872cf83e58c6922a91d2758565076099583b9e84d0c946b01b425f1
d812dfc0651c40d3fc32e35bd82fd21d066d8b28eef9134dc4c60f0bcbd3c0ae0c354987aee407a3bd0cddf2e9
0d56e4f934268b93eae71406c7aa7ec81</ds:CipherValue>

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

It is obvious that the more time consumption to get the result is experienced due to
the limited processing power in the mobile phones.

3.5 Task 5: Digital Signature

In this task, both HASH and RSA algorithms are used to implement digital signature
function. The original message is calculated to a unique digest value using SHA-1
hash algorithm. Then, the digest is signed by sender’s private key as a signature mes-
sage. Both signature message and original plaintext data are sent to receiver side.
Once the receiver receives the signature message and plaintext from the sender side,
the signature message is decrypted using sender’s public key at receiver side. After
the signature message is decrypted to a hash message, which the is used to compare
with hash message generated in the receiver side using plaintext sent from sender to
check the integrity of the data. The following SOAP message illustrates the imple-
mentation of digital signature.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>
 <wsse:Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-secext-1.0.xsd">
 <ds:DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#sha1" Algorithm="DS" />
 <ds:SignedInfo xmlns="">
 <ds:CanonicalizationMethod Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 <ds:Reference URI="#zipcode">
 <ds:Transforms Algorithm="http://www.w3c.org/2001/10/xml-exc-c14n#" />
 </ds:Reference>
 </ds:SignedInfo>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getTemp xmlns="urn:xmethods-Temperature" id="o0" SOAP-ENC:root="1">
 <zipcode xmlns="" xsi:type="xsd:string">01803</zipcode>
 </getTemp>
 <ds:CipherValue

xmlns="http://www.nokia.com/nrc/boston/security/">17638ec2a1d3a52a40ec6cd06f2242287756e84c51eb
3cb1ca75d4cd678ec92b890a92f222c8a907de81dce87caec1a1cbdf02b0d02cba5e5f9d13d30bf48f3c926222
e9d4fd568f1b1c6f01cf4933c3087427be3502f0b141d7ed70afe7364744d1af5587d7f9fb6fe11a494a3b48432
3ed403851aeccea0eae62a1edd57960

</ds:CipherValue>

36

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 6 shows the application running digital signature function. Because it needs
to generate private-public key pair as asymmetric algorithm, thus it takes more time
(~17 seconds) than any one of the tasks in this paper.
.

Fig. 6. Snapshot of digital signature.

4 Conclusion

As wireless networks have been widely deployed and mobile phones are popular year
after year due to cost reduction, people reply on the use of mobile phone more in their
daily life for specific services through the web server and Internet. It is well-known
that security is one of key components that should be implemented in the web ser-
vices and still remains as one of the challenging issues so far. In this paper, we have
prototyped five security tasks in the client side (or mobile phone) using IBM WSDD
and demonstrated these tasks using Nokia 6600/3650 series mobile phones. We also
presented the corresponding SOAP message communicated between client and server
sides. We also evaluated and compared the time performance of each task. Based on
our design and implementation, it takes more time to generate cipher text for asym-
metric key encryption and digital signature than other tasks. Due to the limited proc-
essing power of current mobile phones, when the application is running on real mo-
bile phones, we experienced more time delay to get the result from the server side
than we expected in the order of minutes. Thus how to improve the time performance
at client side to meet the practical need of people is part of future work. With this
time performance obtained from all the tasks in this paper, the application using web
service security using mobile devices needs to consider carefully and appropriately
from both technical/technology side and business side. In addition, we are also inves-
tigating the security functions implemented in the server side and planning to inte-

37

grate with existing results. Furthermore, some possible applications and implications
using web services using mobile phones are under investigation as well.

Acknowledgements

The author is grateful to Edmond Chang’s contribution on this project when he works
as an intern in Nokia Research Center. In addition, the author also thanks Dr. Senthil
Sengodan and Dr. Tat Chan for their encouragement, discussion and comments on
this work as well.

References

1. IBM WSDD, http://www-306.ibm.com/software/wireless/wsdd/
2. Bouncy Castle, http://www.bouncycastle.org/index.html.
3. M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. Nielsen, SOAP Version 1.2 Part

1: Messaging Framework, http://www.w3.org/TR/2003/REC-soap12-part1-20030624/,
June, 2003.

4. Jon Rllid and Mark Young, Sun Microsystems, J2ME Web Services 1.0 final Draft,
http://www.jcp.org/en/jsr/detail?id=172, October 15, 2003.

5. kXML project - http://www.kxml.org
6. Enhydra.org, http://kxml.objectweb.org/project/aboutProject/index.html
7. Enterprise J2ME: Developing Mobile Java Applications, Michael Juntao Yuan, ISBN:

0131405306, Prentice Hall Publisher, 2003.
8. Xmethods.Inc, http://www.xmethods.net/, 2004.
9. WSDL files for temperature, http://www.xmethods.net/sd/2001/TemperatureService.wsdl.
10. OASIS, Web Services Security: SOAP Message Security 1.0 (WS-Security 2004),

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf,
March 2004.

38

http://www-306.ibm.com/software/wireless/wsdd/
http://www.bouncycastle.org/index.html
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.jcp.org/en/jsr/detail?id=172
http://www.kxml.org/
http://kxml.objectweb.org/project/aboutProject/index.html
http://www.xmethods.net/
http://www.xmethods.net/sd/2001/TemperatureService.wsdl
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

