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Abstract. The notion of transitive signature, firstly introduced by Micali and
Rivest, is a way to digitally sign the vertices and edges of a dynamically growing,
transitively closed graph. All the previous proposed transitive signature schemes
were constructed from discrete logarithm, factoring, or RSA assumption. In this
paper, we introduce two alternative realizations of transitive signature based on
bilinear maps. The proposed transitive signature schemes possess the following
properties: (i) they are provably secure against adaptive chosen-message attacks
in the random oracle model; (ii) there are no need for node certificates in our
transitive signature schemes, so the signature algebra is compact; (iii) if using
Weil pairing, our signature schemes are more efficient than all previous proposed
schemes.

1 Introduction

1.1 Motivations

In a Public Key Infrasture (for short PKI) [8] system of depththere are many CAs,

and each user is given a chainofertificates. Suppose two uset&nd B want to carry

out an authenticated and private communication, but they are not in the same domain
and authenticated by different CAs. 3omust find a pass of certificates from him to

B. The length of the pass is linear in the number of CA nodes frbto B. Can this

pass be compressed, or in another word, can the length of the pass be shortened to the
length of one signature? As another example, in distributed networks [15], an ®bject
could never meet with a subjest, thereforeS may not hold any prior evaluation of
trustworthiness of’". To get permit to access, T' should be somewhat trusted I5y

How can$ evaluate the trustworthiness ‘Bfaccurately and efficiently?

A transitive signature scheme can help us to solve these problems perfectly. The
concept of transitive signature, first introduced by Micali and Rivest in [12] and sub-
sequently formalized by Bellare and Neven in [4], is a way to build an authenticated
dynamically growing transitively closed gragh edge by edge, such that:

— Transitivity. Given the signatures of two edgesj) and(j, k) of the graphG, it
is computationally feasible for anyone to derive a valid digital signature of edge

(i, k).
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— Unforgebility. It is computationally infeasible for any wefsaries to forge a valid
digital signature of any edges that is not in the transitiesureG of the graph®,
even if the adversary can request the legitimate signemitatly sign any number
of vertices and edges of his choice in an adaptive fashion.

1.2 Our Contributions

All the previous proposed transitive signature schemeg wenstructed from discrete
logarithm, factoring, or RSA assumption. It is standarccpca in cryptography to seek
new and alternative realizations of primitives of potelititerest, both to provide firmer
theoretical foundations for the existence of the primitiyebasing it on alternative con-
jectured hard problems and to obtain performance improwésnin this paper, we pro-
vide two novel realizations of the transitive signatureesuab BMTS-1 and BMTS-2
from bilinear maps to accomplish both of these objectivdgesE signature schemes
work in any groups where the Decision Diffie-Hellman probl@DH) is easy, but the
Computational Diffie-Hellman problem (CDH) is hard. Sucbwgps are referred as gap
groups [10]. Our transitive signature schemes BMTS-1 andlBA possess the fol-
lowing properties: Firstly, our transitive signature sties are constructed without node
certificates, so the signature algebra is compact. Secandigchemes are provably se-
cure under adaptive chosen-message attack in the randahe aradel. Furthermore,
if using Weil pairing over supersingular Elliptic curvesch as the signature in [3], our
transitive signature schemes are more efficient than aligue proposed schemes (as
showed by Figure 1 in section 5).

1.3 Related Works

The transitive signature scheme MTRS presented in [12eginly secure under adap-
tive chosen-message attack assuming that the discretétfmggroblem is hard over
prime order groupZ,. In [4] Bellare and Neven proposed four transitive signatur
schemes which are all provable security. Johnson et aldnted the notation of ho-
momorphic signature [9] and described several schemesathatomomorphic with
respect to useful binary operations. Context Extractigm&ures, introduced early by
[13], falls in the framework of [9]. A signature scheme tha&thiomomorphic with re-
spect to the prefix operation is presented by Chari, RabirRavekt [7].

Recently, the bilinear maps have initiated some completely fields in cryptogra-
phy, making it possible to realize some cryptographic gims unknown or impracti-
cal [1-3, 11]. In [2], Boneh introduced a new kind of digitajrsature named aggregate
signature which support aggregation.

The rest of the paper is organized as follows§ I8, we give some notations and
definitions . In§ 3, we describe the model of transitive signature schemes4inve
present two transitive signature schemes§ By we provide security proofs and effi-
ciency analysis. 1§ 6, we draw a conclusion.

2 Notations and Definitions

In this section, we give some notations and definitions thhbe used in the paper.
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Throughout this paper, we let—— A denotes is selected from the set, a Loy
denoteq is selected randomly and uniformly from the sétlLeta «— b (b is an
element) denote is assigned with the value of Leta «— A(aq, as, - - -) denotea is
assigned with the value of the output of algoritbhon inputsay, as, - - -. Let Gy, G»
andGr be three cyclic groups of prime ordgrg, andgs be the generators @f, and
G- separatelyy be a computable isomorphism frafy to G; with ¢ (g2) = g1.
Definition 2.1 A bilinear map is a mag : G; x G2 — G with the following
properties:

Bilinear: for all u € G1,v € G anda,b € Z,, e(u®,v*) = e(u,v)?;

Non-degeneratee(g, g2) # 1.

Computational Co-Diffie-Hellman (co-CDH). Giveng,, g5 € G, andh € G; com-
puteh® € GG;. An algorithm.4 has advantagein solving co-CDH problem if

Adv co-CDH %2 = Pr[A(gs, g5, h) = h*] > «.

The probability is taken over the choice @fh, and.A’s coin tosses. An algorithni
(t,e)-breaks Computational co-Diffie-Hellman 6 andG; if A runs in time at most
t, andAdv co — CDEG'“? is at least. WhenG; = G5 andg, = go, these problem
reduce to the standard CDH [10].

Definition 2.2. Two groups(G,,G2) are a(t,e)-bilinear group pair for co-Diffie-
Hellman if there exists a bilinear map: G; x Go — Gr and no algorithi(¢, )-
breaks Computational co-Diffie-Hellman on them.

g-co-Weak Computational Diffie-Hellman Problem g-co-WCDH). Theg-co-WCDH
problem is defined as follows: given+ 2-tuple (g1, g2, g3, ...,¢3") as input where

¥(g2) = g1, outputgl'% € (1. An algorithm A has advantagein solving g-co-WCDH
problem if

1

Adv Q'CO'WCDFE\I,G2 - Pr['A(gla927g'2’r7 795(1) = glg} > €.

The probability is taken over the choice @f, g» andz € Z*, and.A’s coin tosses.

3 Transitive Signature

All graphs in this paper are undirected. A graph= (V, E) is said to be transitively
closed if all nodes, j,k € V such that(i, j) € F and(j,k) € E, it also holds that
(t,k) € E: or in other words, edgéi, j) € E whenever there is a path frorno j

in G. For a graphG = (V, E), its transitive closure is the graph = (v, E), where
(i,j) € Eiff there is a path from to j in G. Note that the transitive closure of any
graphG is a transitively closed graph.

Definition 3.1. A transitive signature schemBS = (TKG, TSign, TVf,Comp) is
specified by four polynomial-time algorithms described@®oivs:

TKG the key generation algorithm, takes inpéitand returns a paiitpk, tsk) consist-
ing of a public key and the matching private key.

TSign the signing algorithm, takes input the private key and nadgse V, and
returns a the original signature of edgej) relative totpk.
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TVf the verification algorithm, givetpk, nodesi, j € V, and a candidate signature
verifies if o is a valid signature of eddg, j), returns 1 if so, otherwise returns 0.

Comp the composition algorithm, givetpk, nodesi, j,k € V, wherei < j < k,
the valuesr, (the valid signature of edge, j)) ando(the valid signature of edge
(4, k)), then computes a value according the above given data.dfis a valid
signature of edgéi, k), returns 1, otherwise returns a symboto indicate failure.

4 Proposed Transitive Signature Schemes

In this section we describe two bilinear transitive signatschemes via bilinear maps.
Initially, the systems need run a setup procedure to gemarat publish the following
system parameters:

- aundirected grapty = (V, E),

- three cyclic group€+, G2, G of prime ordetp,

- generatorg; andg, of G; andG, separately,

- a computable isomorphisgh from G to G with ¥ (g2) = g1,

- a computable bilinear map: G, x Go — G, and

4.1 The Scheme BMTS-1

Let H : {0,1}* — G; be a full domain hash function[6]. Then, our transitive sign
ture scheme BMTS-1FKG, TSign, TVf, Comp) is defined as follows:

TKG given1¥, pick randomz E Z,,and compute — g¢3. It outputs(tpk, tsk)
— (v,x).

TSign it maintains the stat® which initially is empty. Suppos&/ode is the set of
integers indexing all the nodes in graph thenV C Node represents queried
nodes. When asked to produce a signature on édgg it does as follows:

TVf oninputtpk = v, and a transitive signaturg it does as follows:

TheT'Sign algorithm: TheTV f algorithm:
If j < iThenswap, j parses asi, j, 6
Ifi ¢ V ThenV «— V U {i} If i ¢ VVvjé¢V Thenreturn O
If j ¢ V ThenV «— V U{j} Else ife(d, g2) = e(H(i)H(j) ™1, tpk)
§ = (H(i)H(j)~1)t=* Then return 1
returno = (4, ,9) Else return 0

Comp Given two valid transitive signatures = (i, j,01) andos = (4, k, d2), sup-
posei < j < k, if not so, we can swap the sequence gf k. Calculated = 5,02
and output as the transitive composition.

4.2 The Scheme BMTS-2

The above proposed scheme neelaaToPoint[3] hash functiond : (0,1)* — G4
which is probabilistic algorithm described in [3]. Now werioduce another transitive
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signature scheme BMTS-2 which is more efficient than BMTS 1t aises a regular
cryptographic hash functiofl; : (0,1)* — (0,1)! rather than aMapToPoint hash
function. This transitive signature is constructed by gjmg another short signature
scheme[14]. The transitive signature scheme BMTS-2 is éefas follows.

TKG given1”, pick randome £ Z,,and compute «— g3 . It outputs(tpk, tsk) «—
(v, x).

TSign T'Sign maintains the staté which initially is empty. Suppos&/ode is the set
of integers indexing all the nodes in gragh thenV C Node represents queried
nodes. When asked to produce a signature on édgg it does as follows:

TVf on inputtpk = v, and a transitive signatueg it does as follows:

TheT'Sign algorithm: TheTV f algorithm:
If j < iThenswap,j parses asi, j, 8
Ifi ¢ V ThenV «— V U {i} Ifi ¢ Vvj¢V Thenreturn 0
It ¢V ThenV —VU{i} | it e(s, g5 Dipk) = e(gy, g2 tpk)
§ =gt Then return 1
returno = (i, 4, 9). Else return 0

Comp Given two valid transitive signatures = (i, j,01) andos = (4, k, d2), sup-
posei < j < k, if not so, we can swap the sequence gf k. Calculated = 5,02
and output as the transitive composition.

5 Security and Efficiency

5.1 Security Definition of Transitive Signature Scheme

Associated to the transitive signature schéfite= (T K G, T'Sign, TV f,Comp), the
adversaryF and security parametére N is an experiment defined as follows:

Experiment E:cp%s_}ma(k)

H—

(tpk,tsk) «— TK(1%)

(i/,j/,(f/) P fTSz’gn(tsk,',~)(tpk)

If TV f(i', 5, 0") =1Ai',§ € VA, 5) ¢ EThenreturn 1

Else return 0
This experiment begins by choosing the appropriate hasttibmA in the hash func-
tion family £2 and runningl’ K G on input1* to get keygtpk, tsk). It then runsF, pro-
viding this adversary with inpuipk and oracle access to the functii$ign(tsk, -, -).
The oracle is assumed to maintain states or toss coins asddagentually,F will out-
putatriple(i/, j/,0’). Let E be the set of all edges th&tmade oracle query j, and let
V be the set of all verticessuch that is adjacent to some edge mandG = (v, E)
be the transitive closure @f. The advantage df in its attack oril’S is defined for by

AdvtT’g;m“ = Pr(Exp%‘;;m“(k) =1)

Definition 5.1.Given the security parametire A/, we say that a forgef (¢, qm, s, €,
k)-breaks the transitive signature schefifeif the functionAdvtT“Sf F'“is at least (k)
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for any adversaryF which runs in time at most(k); makes at mosj (k) queries to

the hash function and at magf(k) queries to the signing oracle. A transitive signature
schemerl'S is (t, qm, gs, €, k)-transitively unforgeable under adaptive chosen-message
attack if no forgen(t, qu, ¢s, £, k)-breaks it.

5.2 Security Proof

We state the security of the transitive signature scheme 8M&s following theorem.

Theorem 1 If (G1,Gs) is a (t',¢’)-bilinear group pair for co-Diffie-Hellman, with
each group of ordep, with respective generatorg and go, with an isomorphism)
computable frond7s to G . Then the transitive signature scheme BMTS{1,igy, ¢s, €,
k)-transitively unforgeable under adaptive chosen-mess#igek for allt ande satis-

fying
e > e*(gs(k) + 1) - e'andt < t' — Cq, (qu (k) + 3¢s (k) +4) — g (k) — 3gs (k) — 5,

Wheree is the base of natural logarithms, and exponentiation aneiision oniy; take
timeCg,, k € NV is the security parameter.

proof. Assume thatF is a forger algorithm thatt, ¢, ¢s, €, k)-breaks the signature
scheme. We will usé- as a subroutine to construct an algorithm tttate")-breaks the
c0-CDH problem inNG1, G3).

Given a challengdy, g2, ¢95), wherey € G; andgs € G». Its goal is to output
y® € G1. Algorithm A simulates the challenger and does experinmm%f}m“ with
the forgerF as follows.

Setup.A constructgpk <« g5, and gives the forgeF the generatog, andipk.

Hash Query. At any time the forgetF can query the random orack about the node

1. To respond to these queried4,maintains a set’ which contains all nodes queried
by F, and a listZ of tuples< i, h(),b() () > as explained below. They are initially
empty. WhenF queries the oracle at the nodlealgorithm.A responds as described in
the following functionH _Query(i).

Signatures Queries.A answersF’s signature queries on edgge ;) as described in the

following functionT Sign_Query(i, j).

Function H_Query(i) Function T'Sign_Query(i, j)
If i € V Then returm(®) If i ¢ V ThenH_Query(i)
Else If j ¢ V ThenH _Query(j)
V — Vu{i} If r( # () Then abort
r) 28 {0,1} Elseifi < j -
ab(® _pl)
&) B z, Then returny)(g5) o
R @ () € Gy Else returny(gg)*”" —*
L— LU{(i,hD b 7))}
returnh(®

Note: In hash query functiodl _Query(i), Pir® = 1] = 1/(gs(k) + 1)).
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Output: Let F’s forgery be(i’, j/, ). Let E be the set of edges for which queried a
signature and lef' = (V, E) be the transitive closure of gragh= (V, E). A performs
the following series of checks, aborting if one of them isgtru

If TV f(tpk,i's’,&") # 1 Then abort

B,
Elese if{i’,j'} € E Then abort
————

B3
Else if ) — +U") = 0 Then abort.
N—_— —

By

If A does not abort, it calculates and outputs the requjfeas:

Yo — (5/)r(1/)—r(j,) ~w(gg)(b(j,)_b(i/))(r“/)_w,))

This completes the description of algorith#h It remains to show tha#l solves the
instance of the co-CDH problem iit7;, G») with advantage at least. To do so, we
analyze the following event needed fdrto succeed:

B;: Adoes not abort as a result of any6k signature queries.

Consequently, the advantage4fs simply the probability of4 not aborting during the
experiment:

Adv co — CDHG"“? = P{B; A By A B3 A By
= PﬂB4|B1 A BQ A B3] i Pr[ég A Bg|Bl] . Pr[Bl] (1)

In the following, we will give a lower bound for each of thegsers.
(1) Itis obviously that

Pr{B,] = Pr|.A asked for signatures only on edgs;} with r(") = (7))
> ((1—1/(gs(k) +1))* +1/(gs(k) +1)*)™
> (1-1/(gs(k) +1))*® )

(2) The public key given t¢F is from the same distribution as public keys generated by
algorithmT K G. Responses to hash queries are as in the real attack sifceesponse

is uniformly and independently i@, . SinceA did not abort as results ¢f’s signature
queries, all its responses to those queries are valid. Tdrered will produce a valid
and nontrivial transitive signature forgery with prob@yikt leasts. Hence

PI’[.B_Q A\ B_3‘Bl] > e (3)

(3) EventsB, andB; A Bs have occurred, an# has generated a nontrivial signature
forgery (i/, j',¢"). If F asked for a signature under kgyk on some edges with one of
their nodes ig’, in which case the probability of?) = 0 equals that of a hash query
with () = 0, or it didn't, thenr(*) = 0 with probability 1 — 1/(gs(k) + 1). So the
probability of»(i") = 0 is at leastl — 1/(¢s(k) + 1). Also does nodg’. Hence

PUBAIB1 A Ba A Bs] 2 2/(as(k) +1) - (1 - 1/(qs(k) + 1)) (4)
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We use the bounds from equations (2), (3) and (4) in equatipn{gorithm A pro-

; i 1 k)+1)— 1
duces the correct answer with probability at le@dst- W)Q(‘IS( )+)-1. OIS

€2 Z et 2 ¢’ as required. Thus > e2(qs(k) + 1) - . Obviously, algorithm
A’s running time is at most+ Cg, (¢z (k) + 3¢5 (k) +4) + qu (k) +3qs (k) +5 < V',
This completes the proof of Theorem 1. O

The security of the transitive scheme BMTS-2 is describati@ollowing theorem.

Theorem 2 If (G1,G2) is a group pair forg-co-WCDH problem. Then the transitive
signature scheme BMTS-2 is transitively unforgeable usdiaptive chosen-message
attacks in the random oracle model.

proof. The proof of this theorem is the same as that of theorem 1. Saiiinecessary
to give a full description. O

5.3 Efficiency

We will analyze the efficiency of BMTS-1 from the costs andsityire size. Figure 1
gives us a detail comparison amongst transitive signatirerses. With regard to the
costs, we are interested in the computational cost of sigammnedge; the computational
cost of verifying a candidate signature of an edge; the caatimmal cost of composing
two edge signatures to obtain another. As showed in figurdéttver the costs of com-
putation or the size of signature, our scheme is more effitiem all other schemes. If
using Walil pairing, the advantage of our scheme can be obljidunown.

[ Schem¢[Signing [Verification  [Composition  [Signature size |
MRTS |2 sig. + 2 exp. |1 exp. 2 adds inz, 2 sig. + 2 points + 2
points

FBRS-1[2 stand.sigs |O(|N]?) ops [O(]N[*)ops |2 sig. + 3 points
FBRS-2[4sgr.inZy  |O(IN[*) ops [O(|NJ?) ops  |1lpointinZ}
BMTS-1|1 exp.inG: |2 bms. O(|p]?) ops 1 pointinG,
BMTS-2(1 exp.inG1  |[2bms. 2 exp. |O(|p|°) ops 1 pointinG;

Fig. 1. Comparisons amongst transitive signature schemes. Abbreviatiedsans: “exp.” for
an exponentiation in the group; “sqr.” for a square root computatioduteaV; “ops” for the
number of elementary bit operations in ignotation; “bm.” for bilinear map computing.

6 Conclusion

Bilinear maps have many applications in cryptographic §eld this paper, we in-
troduced two efficient and provable secure transitive sigeaschemes from bilinear
maps. The proposed transitive signature schemes possesal ggoperties such as: (i)
no need node certification, (ii) short signature, (iii) caopsignature algebra. The pre-
viously presented transitive signature schemes cannaachll the above properties.
We also prove that our schemes are transitively unforgeadier adaptive chosen-
message attack in the random oracle model.
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