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Abstract. The notion of transitive signature, firstly introduced by Micali and
Rivest, is a way to digitally sign the vertices and edges of a dynamically growing,
transitively closed graph. All the previous proposed transitive signature schemes
were constructed from discrete logarithm, factoring, or RSA assumption. In this
paper, we introduce two alternative realizations of transitive signature based on
bilinear maps. The proposed transitive signature schemes possess the following
properties: (i) they are provably secure against adaptive chosen-message attacks
in the random oracle model; (ii) there are no need for node certificates in our
transitive signature schemes, so the signature algebra is compact; (iii) if using
Weil pairing, our signature schemes are more efficient than all previous proposed
schemes.

1 Introduction

1.1 Motivations

In a Public Key Infrasture (for short PKI) [8] system of depthn, there are many CAs,
and each user is given a chain ofn certificates. Suppose two usersA andB want to carry
out an authenticated and private communication, but they are not in the same domain
and authenticated by different CAs. SoA must find a pass of certificates from him to
B. The length of the pass is linear in the number of CA nodes fromA to B. Can this
pass be compressed, or in another word, can the length of the pass be shortened to the
length of one signature? As another example, in distributed networks [15], an objectT
could never meet with a subjectS, thereforeS may not hold any prior evaluation of
trustworthiness ofT . To get permit to accessS, T should be somewhat trusted byS.
How canS evaluate the trustworthiness ofT accurately and efficiently?

A transitive signature scheme can help us to solve these problems perfectly. The
concept of transitive signature, first introduced by Micali and Rivest in [12] and sub-
sequently formalized by Bellare and Neven in [4], is a way to build an authenticated
dynamically growing transitively closed graphG, edge by edge, such that:

– Transitivity. Given the signatures of two edges(i, j) and(j, k) of the graphG, it
is computationally feasible for anyone to derive a valid digital signature of edge
(i, k).
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– Unforgebility. It is computationally infeasible for any adversaries to forge a valid
digital signature of any edges that is not in the transitive closureG̃ of the graphG,
even if the adversary can request the legitimate signer to digitally sign any number
of vertices and edges of his choice in an adaptive fashion.

1.2 Our Contributions

All the previous proposed transitive signature schemes were constructed from discrete
logarithm, factoring, or RSA assumption. It is standard practice in cryptography to seek
new and alternative realizations of primitives of potential interest, both to provide firmer
theoretical foundations for the existence of the primitiveby basing it on alternative con-
jectured hard problems and to obtain performance improvements. In this paper, we pro-
vide two novel realizations of the transitive signature scheme BMTS-1 and BMTS-2
from bilinear maps to accomplish both of these objectives. These signature schemes
work in any groups where the Decision Diffie-Hellman problem(DDH) is easy, but the
Computational Diffie-Hellman problem (CDH) is hard. Such groups are referred as gap
groups [10]. Our transitive signature schemes BMTS-1 and BMTS-2 possess the fol-
lowing properties: Firstly, our transitive signature schemes are constructed without node
certificates, so the signature algebra is compact. Secondly, our schemes are provably se-
cure under adaptive chosen-message attack in the random oracle model. Furthermore,
if using Weil pairing over supersingular Elliptic curves, such as the signature in [3], our
transitive signature schemes are more efficient than all previous proposed schemes (as
showed by Figure 1 in section 5).

1.3 Related Works

The transitive signature scheme MTRS presented in [12] is provably secure under adap-
tive chosen-message attack assuming that the discrete logarithm problem is hard over
prime order groupZ∗

p . In [4] Bellare and Neven proposed four transitive signature
schemes which are all provable security. Johnson et al introduced the notation of ho-
momorphic signature [9] and described several schemes thatare homomorphic with
respect to useful binary operations. Context Extraction Signatures, introduced early by
[13], falls in the framework of [9]. A signature scheme that is homomorphic with re-
spect to the prefix operation is presented by Chari, Rabin andRivest [7].

Recently, the bilinear maps have initiated some completelynew fields in cryptogra-
phy, making it possible to realize some cryptographic primitives unknown or impracti-
cal [1–3, 11]. In [2], Boneh introduced a new kind of digital signature named aggregate
signature which support aggregation.

The rest of the paper is organized as follows. In§ 2, we give some notations and
definitions . In§ 3, we describe the model of transitive signature schemes. In§ 4, we
present two transitive signature schemes. In§ 5, we provide security proofs and effi-
ciency analysis. In§ 6, we draw a conclusion.

2 Notations and Definitions

In this section, we give some notations and definitions that will be used in the paper.
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Throughout this paper, we leta←− A denotea is selected from the setA, a
R
←− A

denotea is selected randomly and uniformly from the setA. Let a ←− b (b is an
element) denotea is assigned with the value ofb. Let a ←− A(a1, a2, · · ·) denotea is
assigned with the value of the output of algorithmA on inputsa1, a2, · · ·. LetG1, G2

andGT be three cyclic groups of prime orderp, g1 andg2 be the generators ofG1 and
G2 separately,ψ be a computable isomorphism fromG2 toG1 with ψ(g2) = g1.
Definition 2.1 A bilinear map is a mape : G1 × G2 −→ GT with the following
properties:

Bilinear: for all u ∈ G1, v ∈ G2 anda, b ∈ Zp, e(u
a, vb) = e(u, v)ab;

Non-degenerate:e(g1, g2) 6= 1.
Computational Co-Diffie-Hellman (co-CDH). Giveng2, ga

2 ∈ G2 andh ∈ G1 com-
puteha ∈ G1. An algorithmA has advantageε in solving co-CDH problem if

Adv co-CDHG1,G2

A
= Pr[A(g2, g

a
2 , h) = ha] ≥ ε.

The probability is taken over the choice ofa, h, andA’s coin tosses. An algorithmA
(t, ε)-breaks Computational co-Diffie-Hellman onG2 andG1 if A runs in time at most
t, andAdv co− CDH

G1,G2

A
is at leastε. WhenG1 = G2 andg1 = g2, these problem

reduce to the standard CDH [10].
Definition 2.2. Two groups(G1, G2) are a(t, ε)-bilinear group pair for co-Diffie-
Hellman if there exists a bilinear mape : G1 × G2 −→ GT and no algorithm(t, ε)-
breaks Computational co-Diffie-Hellman on them.
q-co-Weak Computational Diffie-Hellman Problem (q-co-WCDH). Theq-co-WCDH
problem is defined as follows: givenq + 2-tuple (g1, g2, g

x
2 , ..., g

xq

2 ) as input where

ψ(g2) = g1, outputg
1
x

1 ∈ G1. An algorithmA has advantageε in solvingq-co-WCDH
problem if

Adv q-co-WCDHG1,G2

A
= Pr[A(g1, g2, g

x
2 , ..., g

xq

2 ) = g
1
x

1 ] ≥ ε.

The probability is taken over the choice ofg1, g2 andx ∈ Z∗
p , andA’s coin tosses.

3 Transitive Signature

All graphs in this paper are undirected. A graphG = (V,E) is said to be transitively
closed if all nodesi, j, k ∈ V such that(i, j) ∈ E and(j, k) ∈ E, it also holds that
(i, k) ∈ E: or in other words, edge(i, j) ∈ E whenever there is a path fromi to j
in G. For a graphG = (V,E), its transitive closure is the graph̃G = (V, Ẽ), where
(i, j) ∈ E iff there is a path fromi to j in G. Note that the transitive closure of any
graphG is a transitively closed graph.
Definition 3.1. A transitive signature schemeTS = (TKG,TSign,TVf,Comp) is
specified by four polynomial-time algorithms described as follows:

TKG the key generation algorithm, takes input1k and returns a pair(tpk, tsk) consist-
ing of a public key and the matching private key.

TSign the signing algorithm, takes input the private key and nodesi, j ∈ V , and
returns a the original signature of edge(i, j) relative totpk.
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TVf the verification algorithm, giventpk, nodesi, j ∈ V , and a candidate signatureσ,
verifies ifσ is a valid signature of edge(i, j), returns 1 if so, otherwise returns 0.

Comp the composition algorithm, giventpk, nodesi, j, k ∈ V , wherei < j < k,
the valuesσ1(the valid signature of edge(i, j)) andσ2(the valid signature of edge
(j, k)), then computes a valueσ according the above given data. ifσ is a valid
signature of edge(i, k), returns 1, otherwise returns a symbol⊥ to indicate failure.

4 Proposed Transitive Signature Schemes

In this section we describe two bilinear transitive signature schemes via bilinear maps.
Initially, the systems need run a setup procedure to generate and publish the following
system parameters:

- a undirected graphG = (V,E),
- three cyclic groupsG1, G2, GT of prime orderp,
- generatorsg1 andg2 of G1 andG2 separately,
- a computable isomorphismψ fromG2 toG1 with ψ(g2) = g1,
- a computable bilinear mape : G1 ×G2 −→ GT , and

4.1 The Scheme BMTS-1

LetH : {0, 1}∗ −→ G1 be a full domain hash function[6]. Then, our transitive signa-
ture scheme BMTS-1=(TKG,TSign,TVf,Comp) is defined as follows:

TKG given1k, pick randomx
R
←− Zp,and computev ←− gx

2 . It outputs(tpk, tsk)
←− (v, x).

TSign it maintains the stateV which initially is empty. SupposeNode is the set of
integers indexing all the nodes in graphG, thenV ⊂ Node represents queried
nodes. When asked to produce a signature on edge(i, j), it does as follows:

TVf on inputtpk = v, and a transitive signatureσ, it does as follows:

TheTSign algorithm:
If j < i Then swapi, j
If i /∈ V ThenV ←− V ∪ {i}
If j /∈ V ThenV ←− V ∪ {j}
δ = (H(i)H(j)−1)tsk

returnσ = (i, j, δ)

TheTV f algorithm:
parseσ asi, j, δ
If i /∈ V ∨ j /∈ V Then return 0
Else ife(δ, g2) = e(H(i)H(j)−1, tpk)

Then return 1
Else return 0

Comp Given two valid transitive signaturesσ1 = (i, j, δ1) andσ2 = (j, k, δ2), sup-
posei < j < k, if not so, we can swap the sequence ofi, j, k. Calculateδ = δ1δ2
and outputδ as the transitive composition.

4.2 The Scheme BMTS-2

The above proposed scheme needs aMapToPoint[3] hash functionH : (0, 1)∗ −→ G1

which is probabilistic algorithm described in [3]. Now we introduce another transitive
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signature scheme BMTS-2 which is more efficient than BMTS-1 as it uses a regular
cryptographic hash functionH1 : (0, 1)∗ −→ (0, 1)l rather than aMapToPoint hash
function. This transitive signature is constructed by applying another short signature
scheme[14]. The transitive signature scheme BMTS-2 is defined as follows.

TKG given1k, pick randomx
R
←− Zp,and computev ←− gx

2 . It outputs(tpk, tsk)←−
(v, x).

TSign TSign maintains the stateV which initially is empty. SupposeNode is the set
of integers indexing all the nodes in graphG, thenV ⊂ Node represents queried
nodes. When asked to produce a signature on edge(i, j), it does as follows:

TVf on inputtpk = v, and a transitive signatureσ, it does as follows:

TheTSign algorithm:
If j < i Then swapi, j
If i /∈ V ThenV ←− V ∪ {i}
If j /∈ V ThenV ←− V ∪ {j}

δ = g
H1(i)+tsk

H1(j)+tsk

1
returnσ = (i, j, δ).

TheTV f algorithm:
parseσ asi, j, δ
If i /∈ V ∨ j /∈ V Then return 0
If e(δ, gH1(j)

2 tpk) = e(g1, g
H1(i)
2 tpk)

Then return 1
Else return 0

Comp Given two valid transitive signaturesσ1 = (i, j, δ1) andσ2 = (j, k, δ2), sup-
posei < j < k, if not so, we can swap the sequence ofi, j, k. Calculateδ = δ1δ2
and outputδ as the transitive composition.

5 Security and Efficiency

5.1 Security Definition of Transitive Signature Scheme

Associated to the transitive signature schemeTS = (TKG, TSign, TV f,Comp), the
adversaryF and security parameterk ∈ N is an experiment defined as follows:

Experiment :Exptu−cma
TS,F (k)

H ←− Ω
(tpk, tsk)←− TK(1k)
(i′, j′, σ′)←− FTSign(tsk,·,·)(tpk)
If TV f(i′, j′, σ′) = 1 ∧ i′, j′ ∈ V ∧ (i′, j′) /∈ Ẽ Then return 1
Else return 0

This experiment begins by choosing the appropriate hash functionH in the hash func-
tion familyΩ and runningTKG on input1k to get keys(tpk, tsk). It then runsF , pro-
viding this adversary with inputtpk and oracle access to the functionTSign(tsk, ·, ·).
The oracle is assumed to maintain states or toss coins as needed. Eventually,F will out-
put a triple(i′, j′, σ′). LetE be the set of all edges thatF made oracle queryi, j, and let
V be the set of all verticesi such thati is adjacent to some edge inE andG̃ = (V, Ẽ)
be the transitive closure ofG. The advantage ofF in its attack onTS is defined for by

Adv
tu−cma
TS,F = Pr(Exptu−cma

TS,F (k) = 1)

Definition 5.1.Given the security parameterk ∈ N , we say that a forgerF (t, qH , qs, ε,
k)-breaks the transitive signature schemeTS if the functionAdvtu−cma

TS,F is at leastε(k)
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for any adversaryF which runs in time at mostt(k); makes at mostqH(k) queries to
the hash function and at mostqS(k) queries to the signing oracle. A transitive signature
schemeTS is (t, qH , qS , ε, k)-transitively unforgeable under adaptive chosen-message
attack if no forger(t, qH , qs, ε, k)-breaks it.

5.2 Security Proof

We state the security of the transitive signature scheme BMTS-1 as following theorem.

Theorem 1 If (G1, G2) is a (t′, ε′)-bilinear group pair for co-Diffie-Hellman, with
each group of orderp, with respective generatorsg1 and g2, with an isomorphismψ
computable fromG2 toG1. Then the transitive signature scheme BMTS-1 is(t, qH , qS , ε,
k)-transitively unforgeable under adaptive chosen-messageattack for allt andε satis-
fying

ε ≥ e2(qS(k) + 1) · ε′andt ≤ t′ −CG1
(qH(k) + 3qS(k) + 4)− qH(k)− 3qS(k)− 5,

Wheree is the base of natural logarithms, and exponentiation and inversion onG1 take
timeCG1

, k ∈ N is the security parameter.

proof. Assume thatF is a forger algorithm that(t, qH , qS , ε, k)-breaks the signature
scheme. We will useF as a subroutine to construct an algorithm that(t′, ε′)-breaks the
co-CDH problem in(G1, G2).

Given a challenge(y, g2, ga
2 ), wherey ∈ G1 and g2 ∈ G2. Its goal is to output

ya ∈ G1. AlgorithmA simulates the challenger and does experimentExptu−cma
TS,F with

the forgerF as follows.
Setup.A constructstpk ←− ga

2 , and gives the forgerF the generatorg2 andtpk.
Hash Query.At any time the forgerF can query the random oracleH about the node
i. To respond to these queries,A maintains a setV which contains all nodes queried
byF , and a listL of tuples< i, h(i), b(i), r(i) > as explained below. They are initially
empty. WhenF queries the oracle at the nodei, algorithmA responds as described in
the following functionH Query(i).
Signatures Queries.A answersF ’s signature queries on edge(i, j) as described in the
following functionTSign Query(i, j).

Function H Query(i)
If i ∈ V Then returnh(i)

Else
V ←− V ∪ {i}

r(i)
R
←− {0, 1}

b(i)
R
←− Zp

h(i) ←− yr(i) · ψ(g2)
b(i)

∈ G1

L ←− L ∪ {(i, h(i), b(i), r(i))}
returnh(i)

Function TSign Query(i, j)
If i /∈ V ThenH Query(i)
If j /∈ V ThenH Query(j)
If r(i) 6= r(j) Then abort
Else if i < j

Then returnψ(ga
2 )b(i)

−b(j)

Else returnψ(ga
2 )b(j)

−b(i)

Note: In hash query functionH Query(i), Pr[r(i) = 1] = 1/(qs(k) + 1)).
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Output: LetF ’s forgery be(i′, j′, δ′). LetE be the set of edges for whichF queried a
signature and let̃G = (V, Ẽ) be the transitive closure of graphG = (V,E).A performs
the following series of checks, aborting if one of them is true.

If TV f(tpk, i′j′, δ′) 6= 1
︸ ︷︷ ︸

B2

Then abort

Elese if{i′, j′} ∈ Ẽ
︸ ︷︷ ︸

B3

Then abort

Else if r(i
′) − r(j

′) = 0
︸ ︷︷ ︸

B4

Then abort.

If A does not abort, it calculates and outputs the requiredya as:

ya ←− (δ′)r(i′)
−r(j′)

· ψ(ga
2 )(b

(j′)
−b(i′))(r(i′)

−r(j′))

This completes the description of algorithmA. It remains to show thatA solves the
instance of the co-CDH problem in(G1, G2) with advantage at leastε′. To do so, we
analyze the following event needed forA to succeed:

B1: A does not abort as a result of any ofF ’s signature queries.

Consequently, the advantage ofA is simply the probability ofA not aborting during the
experiment:

Adv co− CDH
G1,G2

A
= Pr[B1 ∧ B̄2 ∧ B̄3 ∧ B̄4]

= Pr[B̄4|B1 ∧ B̄2 ∧ B̄3] · Pr[B̄2 ∧ B̄3|B1] · Pr[B1] (1)

In the following, we will give a lower bound for each of these terms.
(1) It is obviously that

Pr[B1] = Pr[A asked for signatures only on edges{i, j} with r(i) = r(j)]

≥ ((1− 1/(qS(k) + 1))2 + 1/(qS(k) + 1)2)m

≥ (1− 1/(qS(k) + 1))2qS(k) (2)

(2) The public key given toF is from the same distribution as public keys generated by
algorithmTKG. Responses to hash queries are as in the real attack since each response
is uniformly and independently inG1. SinceA did not abort as results ofF ’s signature
queries, all its responses to those queries are valid. Therefore,A will produce a valid
and nontrivial transitive signature forgery with probability at leastε. Hence

Pr[B̄2 ∧ B̄3|B1] ≥ ε (3)

(3) EventsB1 andB̄2 ∧ B̄3 have occurred, andF has generated a nontrivial signature
forgery(i′, j′, δ′). If F asked for a signature under keytpk on some edges with one of
their nodes isi′, in which case the probability ofr(i

′) = 0 equals that of a hash query
with r(i) = 0, or it didn’t, thenr(i

′) = 0 with probability1 − 1/(qS(k) + 1). So the
probability ofr(i

′) = 0 is at least1− 1/(qS(k) + 1). Also does nodej′. Hence

Pr[B̄4|B1 ∧ B̄2 ∧ B̄3] ≥ 2/(qS(k) + 1) · (1− 1/(qS(k) + 1)) (4)
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We use the bounds from equations (2), (3) and (4) in equation (1). AlgorithmA pro-
duces the correct answer with probability at least(1− 1

qS(k)+1 )2(qS(k)+1)−1 · 1
qS(k)+1 ·

ε ≥ ε
e2·(qS(k)+1) ≥ ε′ as required. Thusε ≥ e2(qS(k) + 1) · ε′. Obviously, algorithm

A’s running time is at mostt+CG1
(qH(k) + 3qS(k) + 4) + qH(k) + 3qS(k) + 5 ≤ t′.

This completes the proof of Theorem 1. �

The security of the transitive scheme BMTS-2 is described asthe following theorem.

Theorem 2 If (G1, G2) is a group pair forq-co-WCDH problem. Then the transitive
signature scheme BMTS-2 is transitively unforgeable underadaptive chosen-message
attacks in the random oracle model.

proof. The proof of this theorem is the same as that of theorem 1. So itis unnecessary
to give a full description. �

5.3 Efficiency

We will analyze the efficiency of BMTS-1 from the costs and signature size. Figure 1
gives us a detail comparison amongst transitive signature schemes. With regard to the
costs, we are interested in the computational cost of signing an edge; the computational
cost of verifying a candidate signature of an edge; the computational cost of composing
two edge signatures to obtain another. As showed in figure 1, whether the costs of com-
putation or the size of signature, our scheme is more efficient than all other schemes. If
using Wail pairing, the advantage of our scheme can be obviously known.

SchemeSigning Verification Composition Signature size

MRTS 2 sig. + 2 exp. 1 exp. 2 adds inZq 2 sig. + 2 points + 2
points

FBRS-1 2 stand.sigs O(|N |2) ops O(|N |2) ops 2 sig. + 3 points
FBRS-2 4 sqr. inZ∗

N O(|N |2) ops O(|N |2) ops 1point inZ∗

N

BMTS-1 1 exp. inG1 2 bms. O(|p|2) ops 1 point inG1

BMTS-2 1 exp. inG1 2 bms. 2 exp. O(|p|2) ops 1 point inG1

Fig. 1. Comparisons amongst transitive signature schemes. Abbreviations used are: “exp.” for
an exponentiation in the group; “sqr.” for a square root computation modulo N ; “ops” for the
number of elementary bit operations in big-O notation; “bm.” for bilinear map computing.

6 Conclusion

Bilinear maps have many applications in cryptographic fields. In this paper, we in-
troduced two efficient and provable secure transitive signature schemes from bilinear
maps. The proposed transitive signature schemes possess several properties such as: (i)
no need node certification, (ii) short signature, (iii) compact signature algebra. The pre-
viously presented transitive signature schemes cannot achieve all the above properties.
We also prove that our schemes are transitively unforgeableunder adaptive chosen-
message attack in the random oracle model.
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