
USER MODELLING FOR DIARY MANAGEMENT BASED ON
INDUCTIVE LOGIC PROGRAMMING

Behrad Assadian, Heather Maclaren
Intelligant systems Lab, British Telecommunications, Adastral Park, Ipswich, United Kingdom

Keywords: Inductive Logic Programming,Personal Assistant,User Modelling,Software Agents,User Preferences

Abstract: Software agents are being produced in many different forms to carry out different tasks, with personal
assistants designed to reduce the amount of effort it takes for the user to go about their daily tasks. Most
personal assistants work with user preferences when working out what actions to perform on behalf of their
user. This paper describes a novel approach for modelling user behaviour in the application area of Diary
Management with the use of Inductive Logic Programming.

1 INTRODUCTION

There are a few applications of Inductive Logic
Programming (ILP) (Muggleton 1994) to user
modelling (Rogers 2000) already in existence. ILP is
useful for user modelling as it allows the use of
intensional background knowledge, hence we can
incorporate `rules of thumb', and it maintains the
transparency of the agent's actions to the user. i.e.
they can look at the agent's model and understand
what inferences it has made about them, thus
maintaining their trust in their agent.

Current methods of ILP for user modelling deal
with simpler concepts such as correcting a user's use
of a unix shell (Jacobs 2000) or predicting which
switches they would use for certain commands.

2 USER MODELLING

This paper proposes a system that learns sequence of
activities from users diaries in order to model how
such sequences should be arranged for future tasks.

A novel method of using ILP is proposed that
splits the learning of the user model into several
stages. It first produces results for each of these
stages, then combines the results to produce a single
user model.

The data is split into distinct clusters, each
representing a sub-concept of the model to be learnt,
and then the learning of each sub-concept is
attempted separately. Each sub-concept is split into a
number of separate learning problems which focus

on a separate attribute within each data item and
only require a subset of the available background
information to solve, thus reducing the number of
possible solutions that the ILP engine must consider
to a size that it is capable of managing. The results
of each learning problem are then combined to
produce a set of rules, each of which contain range-
restrictions for every attribute within each data item.
Each set is then added into a database to produce the
overall user model.

Meanwhile the clusters of data are also used to
produce a series of probability distributions, which
are stored for later use when querying the model.

The user modelling system consists of two parts:
a construction engine which produces the user
model, and a query engine which allows the user
model produced to be used for the prediction of long
sequences of tasks.

3 BUILDING USER MODEL

The initial user model worked on within the diary
assistant (iMeeting) (Assadian, 2004) was the
learning of sequences of pairs of tasks between
tasks, e.g. if the user schedules a presentation on a
particular project and they usually schedule some
preparation time in before that presentation then we
can learn this habit and either carry out the
scheduling of preparation time automatically or
make suggestions when the user enters the
presentation task into the diary.

327
Assadian B. and Maclaren H. (2005).
USER MODELLING FOR DIARY MANAGEMENT BASED ON INDUCTIVE LOGIC PROGRAMMING.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 327-330
DOI: 10.5220/0002546003270330
Copyright c© SciTePress

Let us suppose that we have data, which gives
details of three sequences that the user is known to
demonstrate: -

1. Putting in preparation time before an

administration meeting.
2. Putting in preparation time before a project

meeting or presentation.
3. Putting in travel time before paying a visit

to another company.
Examples of the sequences take the form of a pair

of tasks joined via the ‘sequence’ relationship.

All of the sequences(plus any others within the
data set) are collected as a single set of examples,
which must be split into separate clusters so that the
learning of each sequence can take place separately.

We can perform the initial splitting of the data by
using a bottom-up agglomerative clustering
algorithm over the first task of each pair to produce
a group of subsets, and then using the clustering
algorithm again on each subset on the second task of
each pair to produce the final clusters of examples,
which will be used.

Each set is used as the example set for a series of
different learning problems, each problem focuses
on a different attribute within one or other of the
tasks and attempts to find any specialisations which
may be regarded as helping to characterize the
particular sequence under examination. For example,
the first learning problem would focus on the type of
the first task of the pair in each example and would
attempt to find any regularities amongst all the
examples of the set for that particular attribute.
Subsequent learning problems would focus on the
subtype, sub-subtype, and duration of the first task
individually, and then a further set of learning
problems would focus on the individual attributes of
the second task in the same manner.

Each learning problem requires positive
examples, negative examples and background
knowledge. The positive examples are the examples
contained within the set that is currently under
examination. The background knowledge used for
each learning task is a subset of the entire set of
background knowledge available, only those items
of knowledge which directly refer to the attribute
under examination are presented to the learner for
each problem. It is this splitting of the available
background knowledge into subsets in conjunction
with the splitting of the overall learning problem
into separate smaller problems (i.e. where the length
of the clauses required is much smaller) which
enables the learner to be able to tackle the overall
problem of learning a user model as it reduces the
number of possible hypotheses to be considered to a
level which is manageable by the ILP engine.

A set of automatically generated ‘negative
examples’ is produced for the attribute currently
under examination. These are examples of pairs of
tasks that the user would never produce and hence
should not be thought of as being dependent on each
other. Each set of negative examples only differs
from the original data supplied by the user by a
small amount, and all of the negative examples
within a set differ from the original data in such a
way that the ILP engine can use part of the provided
background knowledge to successfully exclude all
the negative examples from the solution that it
produces.

If we were to generate a set of negative examples
for the ‘type’ attribute then we would take a user-
generated (positive) example:-

sequence:<travel/london,2hrs,10-00, thursday>,
<visit/ericsson, 2hrs, 13-00, thursday>

And alter one of the values, producing:-

sequence:<admin/london,2hrs,10-00, thursday>,
<visit/ericsson, 2hrs, 13-00, thursday>

This is repeated several times, using all of the

examples within the set to generate negative
examples. Values to be substituted into the attribute
to be altered must satisfy the criterion that they must
place the new example far enough away from the
original example (using the distance measure used to
produce the original clusters) that it could not be
considered as part of the cluster of original
examples. As it is likely that the amount of data with
which we will be working will not be very large, the
concepts being learnt may not be accurately
characterised by the examples collected. This
criterion allows a little more ‘space’ between the
positive and negative examples and hence allows the
learner to produce a rule which does not adhere so
tightly to the exact details of the examples collected,
hence a more general overall theory is produced
which should provide better results when asked for
predictions.

Generating of values for substitution where the
variables being examined contain real values (for
example the duration of a task) presents a further
complication. In order to ensure that the values
returned for a task prediction are accurate, the range
of values that the variable is capable of being
instantiated to must be limited. Values which are
unacceptable as predicted values can be used to
generate negative examples, but there may be cases
where individual examples within the same cluster
have values for a particular attribute which would be
unsuitable if used within other examples in the same

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

328

cluster. The two sequences listed below illustrate
this problem:-

sequence:<travel/cambridge, 2hrs, 9-00, friday>,
<visit/nokia, 1hr, 11-00, friday>

sequence:<travel/bath, 4hrs, 15-00, monday>,
<visit/goulds, 5hrs, 10-00, tuesday>

The durations of the second task in each

sequence are so far away from each other that we
cannot allow them to be covered by a single rule.
Negative examples for the first sequence would
include values such as 5hrs and 6hrs. Negative
examples for the second sequence would include
values such as 2hrs and 1hr.

This would mean that generated negative

examples may contradict other positive examples
within the original set. We still need to restrict the
range of values that the attribute can take, so the
solution is to monitor for contradictions during the
negative example generation process and if a
contradiction occurs, split the set into a pair of
subsets with the contradicted positive in one set and
the positive from which the contradicting negative
example was generated in the other. The other
positive examples and their corresponding negatives
are allocated to the new subsets according to
whichever example they are closest to in terms of
the attribute being examined. Negative example
generation then continues, with further
contradictions within the subsets resulting in further
splitting actions, until all the positive examples have
had negative examples generated from them. The
sets are presented to the learner as separate learning
problems and the results from each problem are
added together to form a single set of possible
specialisations for that attribute.

Once all the sub problems listed earlier have been
formulated with the appropriate background
knowledge and generated negative examples, and
presented to the learner. We then have a collection
of results for each attribute that must be combined to
form the overall theory, which will characterise this
particular sequence.

Some rules may contradict each other. This
contradiction will be dealt with when we construct
the rules, which form the theory. To construct the
rules, we take the first two sets of results and
combine them by adding all the rules from the first
set to all of the rules from the second set.

The resultant set of rules is then combined with
the next set of learning results in the same way, and
the process is repeated for each set of results
collected.

Each rule is tested for contradictions by
evaluating it over the set of positive examples that it
is supposed to characterise. If the rule does not
cover any of the examples (i.e. it does not give the
answer ‘true’ when given any of the pairs of tasks),
then it is discarded. This test would remove rules
containing contradictions. The set of rules is filtered
to remove those rules subsumed by other rules, and
each rule is then filtered to remove any redundant
elements. Having performed these final filtering
stages we are then left with a set of rules that form a
theory that characterises the sequence we were
trying to learn. This process is repeated for every
cluster of examples that was initially generated and
all the rules added to a collection which encapsulates
the entire user model.

4 PREDICTING SEQUENCES

Having constructed our user model we then need to
provide a means with which to use it..

When asked to suggest possible tasks, the query
engine takes the task given and feeds it into the
database of rules. It collects two lists; one of
possible tasks to schedule before the user’s task, and
one of possible tasks to schedule after the user’s
task. Each list is then processed to find the most
likely candidate for scheduling and the two answers
returned. If there is no possible suggestion for either
answer then an empty task that describes itself as
‘No Answer’ is returned as an indicator of this
situation.

The generation of the Dirichlet distributions for
use when rating answers makes use of information
saved at the model learning stage. When the
examples were originally clustered, a separate set of
data was saved in which was stored the results of
clustering the examples over the first task (task A) in
the sequence and the results of clustering only over
the second task (task B) in the sequence. This
information represents the basis from which the set
of distributions representing p(B|A) and p(A|B) can
be calculated. As the method for generating
distributions which deal with prediction of following
tasks and distributions which deal with prediction of
preceding tasks is the same, it will only be described
from the point of view of predicting a following
task.

All the possible stereotypes (Rich 1989) for task
B can be determined by looking at the data
representing the results of clustering over task B and
taking the mode of each task B within a cluster as
this will produce examples of the possible values for
task B encountered so far. The data representing the
results of clustering over task A will contain a set of

USER MODELLING FOR DIARY MANAGEMENT BASED ON INDUCTIVE LOGIC PROGRAMMING

329

examples for each distinct task A encountered. Each
set can be used to create a Dirichlet distribution
p(B|A) by counting the number of occurrences of
each type of task B that follows the given task for
that distribution and then normalising the counts to
produce a probability. This version of the Dirichlet
distribution uses a normal prior during construction,
but leaves the possibility open to use of more biased
priors later if required.

The most likely candidates from the two lists of
tasks produced earlier are generated by sorting each
list into sub lists of similar tasks (we may have
generated several possible tasks which only differ by
a very small amount, for example one task may have
a preferred time half an hour later than another task),
and then ascertaining the most suitable candidate
from each sub list using the probability distributions
created from the original set of examples collected.
Two sets of distributions are created; one which
describes P(B|A) and the other describes P(A|B). In
both cases A is chronologically the first task in the
sequence and B the second. If we are looking at the
list of possible tasks which could follow that
specified by the user then we would use the set of
P(B|A) distributions as task A is given and we wish
to ascertain the probability of each possible task B
that has been generated. Conversely, if we are
looking for a task which would precede the user’s
task then we would use the set of P(A|B). We are
working with a set of distributions rather than
simply one because we need to construct a separate
distribution for each possible task given by the user
(i.e. each distinct ‘A’). Once we know the user’s
task then ideally we would concentrate on an
individual distribution, however the distributions are
created using stereotypes for different task types (the
set of stereotypes used contains the mode of each
cluster generated during the learning process) and
the user’s task may not match exactly any of the
tasks over which the distributions are created.
Therefore we pick all the distributions for which the
distance from the base task to the user’s task is
closer than the threshold distance used at the
clustering stage of the learning process.

Task ratings are generated by adding together the
rating from each selected distribution in turn. For
each distribution, the probability given to the
stereotype that is closest to the task being rated is
divided by its distance from the task to form the
rating for that task. This allows us to attempt to
distinguish between tasks that only differ by small
amounts and is based on the idea of the influence of
each point in the instance space represented by a
stereotype degrading with distance (hence the sum
of ratings, which is a simple method of
acknowledging influence from more than one point).
The tasks with the highest rating within each of the

sub lists generated earlier are returned to be
presented to the user as they are all valid sequences
for the task originally entered.

5 CONCLUSION

The system described within this paper has
demonstrated a new method of ILP application that
enables this machine learning method to be used for
user modelling within an Intelligent Diary (iMeeting).
This augmentation allows iMeeting to make
suggestions to the user based on previous
observations.

Sparse data will always be a problem for any
technique that attempts to make predictions based on
previous experience, whether from a generalised
version of the gathered information or from the
examples themselves. In the case of ILP, small
numbers of examples mean that the sort of generalised
rules that were envisaged are not necessarily the ones
that were constructed. Rather than creating a rule that
covers ‘all projects’, a rule or group of rules which
cover specific projects has been created. The system
generates the most accurate hypothesis it can with the
data presented, without continuous human
intervention, and this may mean that the optimum set
of rules is not always created. However, with more
data, the quality of the hypothesis has been shown to
improve.

REFERENCES

Muggleton, S, 1994. ‘Inductive Logic Programming:
Theory and Methods’. Journal of Logic Programming,
Vol 19/20, pp629—679.

Rogers, S, 2000. ‘The Learning Shell’ Adaptive User
Interfaces conference 2000

Jacobs, N, 2000. From Shell Logs to Shell Scripts. The
American Association for Artificial Intelligence 2000.

Rich, E, 1989. Stereotypes and user modelling User
models in dialog systems

Behrad Assadian 2003, An Automatic Meeting Scheduling
for Mobile Users. In ICEIS’2004, 6th International
Conference on Enterprise Information Systems

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

330

