
BUILDING APPLICATIONS ABLE TO COPE WITH 
PROBLEMATIC DATA USING A DATAWARP  APPROACH 

 

Stephen Crouch, Peter Henderson, Robert John Walters 
Electronics and Computer Science, University of Southampton, University Road, Southampton, UK 

Keywords: DataWarp, Data Inconsistency, Enterprise information systems, Distributed systems, Dynamic systems 

Abstract: As the amount of data systems have to work with increases, it becomes practically impossible to ensure it is 
consistent, no matter how tough we make our data collection procedures.  Currently systems logic is based 
on the implicit assumption that the data they use is essentially correct and they struggle when this is not the 
case.  To deal with this situation, we need to build applications which are better able to handle 
inconsistencies.  In a series of experiments, we have shown that an application using our “DataWarp” 
approach to data enjoys a real advantage in one specific environment.  Here we describe applying the 
approach more widely.  

1 INTRODUCTION 

In their origins, enterprise systems operated in 
isolation permitting them to impose rules and make 
assumptions about their data.  Systems have become 
larger, more complex and more interconnected with 
the same technologies now being used on intranets 
as for the global internet (Christensen, Curbera et al. 
2000; Hunter, Cagle et al. 2000; Snell, Tidwell et al. 
2002).  Data is no longer held in a single consistent 
database.  Instead it is distributed around a network 
of cooperating applications in which data is partially 
replicated at many locations (Nicolle 1999).  This 
pattern is a natural consequence of the way that 
systems now operate.  Some measure of replication 
of data is deliberate and desirable as it helps to 
improve performance and resilience (Kemme and 
Alonso 1998; Wiesmann, Pedone et al. 2000).  
Today, the data used by enterprise applications is 
scattered throughout a network of databases and 
organisations.  There is considerable variability in 
the amount and type of access applications have to 
data and there is no overall control of its content or 
accuracy.  The situation is further complicated by 
each entity having its own interpretation of what it 
means for the data it uses to be consistent. 

The immediate reaction in most organisations to 
problematic data is attempts to drive out the 
inaccuracies and inconsistencies.  Schemes like 

distributed transactions (Gray 1978; Gray 1981) can 
guarantee consistency but with the large quantities 
of data present in enterprise systems today, using 
them is an enormous task which would be too 
restrictive to apply universally.  The problem is 
further complicated by rate at which data changes 
with new and updated information is being added all 
the time.  Even without the popular move to 
asynchronous communications (Microsoft 2001), 
new information takes time to propagate.  
Consequently the accumulated mass of data is 
unlikely ever to be in a truly consistent state. 

We propose an alternative approach which is to 
accept the impossibility of eradicating all errors and 
inconsistencies and instead build applications which 
are able to survive encountering problematic data.  
One strategy is “DataWarp”.  We have already 
shown in a series of experiments that ships in a 
simulated sea battle using DataWarp enjoy a marked 
advantage over others (Henderson, Walters et al. 
2003).  In this paper we extend the approach. 

2 MAKING PROGRESS: 
DATAWARP 

There is an implicit assumption applications that the 
data available provides a window into some 
complete and consistent world.  This model of the 

411
Crouch S., Henderson P. and John Walters R. (2005).
BUILDING APPLICATIONS ABLE TO COPE WITH PROBLEMATIC DATA USING A DATAWARP APPROACH.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 411-414
DOI: 10.5220/0002555104110414
Copyright c© SciTePress



 

igure 1: DataWarp in principalF

Candidate "Views" of
Data

Accumulated
Observations

Observations
and other data

Adopted
View

Uncertain Data Options

Source1 Reliability
Source2 Reliability
Value1
Value2
...

Good Bad Bad Good
Good Bad Good Bad
X Y X Y
A B C D
...

Figure 1: DataWarp in principal

world breaks down in distributed systems.  One 
approach, is to refuse to accept inconsistency and fix 
up data as necessary.  This is a short-sighted 
approach which is bound to lead to trouble. 

As an alternative, we have developed DataWarp 
which is inspired by the attitude towards time of the 
applications in a virtual time environment (Jefferson 
1985; Jefferson 1990; Cleary, Littin et al. 1997) 
where a global value for the current time is 
sacrificed in the pursuit of performance.  It can lead 
to complications when applications communicate 
but the system as a whole produces the same results 
as a standard implementation. 

By applying the same outlook towards data in 
general as a virtual time does to time, we arrived at 
an initial design for a DataWarp application, (figure 
1).  The application keeps all data and uses it to 
construct candidate views of the world.  It then 
selects a plausible view to use. 

When the application finds it must change view, 
as with a virtual time application which realises it 
has advanced its clock too far and has to rollback, 
the DataWarp application has to consider the 
implications of the view change on its actions and 
make corrections as necessary.  

We have performed a series of experiments using 
a battleship simulation.  We established that 
DataWarp ships enjoyed a clear advantage by acting 
immediately compared with the standard ships 
which couldn’t decide what to do (Henderson, 
Walters et al. 2003). 

DataWarp raises a number of issues: 

2.1 Choosing a view 

Naively, it might be assumed that an application 
would select the view which it expects to most 
accurately match the truth but applications may well 
use other criteria when making a choice.  For 
example:  
 
• Least costly – the view which costs the least to 

adopt. 
• Least dangerous – the view which involves the 

least risk to the application or its users. 
• Most profitable – the view which has the 

greatest potential for benefit. 
• Most probably correct – the naïve option. 
• Most easily defended. 

 
Which of these is appropriate will depend on the 

application. 

2.2 Changing view 

When an application decides to change view, at least 
some of its assumptions will change.  On making its 
change, the application needs to consider the 
implications for recent actions.  Some will be 
unaffected, or still be considered acceptable.  Others 
will now look wrong and will require corrective 
action.  It may be possible to revoke some such 
“regretted actions”, others will require corrective 
action calculated to compensate for the effect of the 
previous action.  Having changed view, the 
application resumes work. 

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

412



 

|

Raw Data Data in Use Actions

Assumptions

Figu

3 DEVELOPING DATAWARP 

In the first DataWarp applications, such as the 
battleship simulation, the identification of a view 
was a selection of exactly one from many candidates 
which was made at the application level, permitting 
DataWarp to be added to an existing application by 
adding a wrapper.  Such a wrapper would manage 
the application’s interactions with the outside world, 
generating and serving up to the application a view 
of the world which it finds acceptable.  The wrapper 
would deal with all of the issues of holding multiple 
data values, selecting a view, generating input to the 
application as is necessary to adjust its internal data 
and compensating as appropriate after a view change 
(Henderson, Walters et al. 2001).  However, we 
have concluded that this is not practical.  Indeed, we 
have realised that the behaviour of the DataWarp 
ship which we deployed in the battleship simulation 
is more complex than we realised at the time.   

In the simulation, a standard ship finding a new 
contact seeks to identify it before deciding what to 
do (attack or not).  We implemented the DataWarp 
ships to assume new contacts are hostile.  Therefore 
they attack new contacts regardless.  This apparent 
recklessness is tempered by the way DataWarp ships 
destroy missiles in flight should realise they are 
targeted on an ally.  However, the behaviour actually 
depends on the status of the contact in the ships data 
arises.  The difference is that, if the contact is 
unknown (and assumed to be hostile) the ship not 
only launches an attack, but it also makes an 
immediate attempt to communicate with a view to 
identifying the contact, whereas if the contact is 
known to be hostile no attempt of communication is 
made as it could lead to unnecessary disclosure of 
the attacker’s location. 

In building DataWarp enabled applications we 
have found there are two areas where difficulties 
arise in particular.  The first is that compensating 

actions are highly application and action dependent.  
The second is that, when faced with the choice of a 
view, one of the factors real applications want to 
take into account is the actions which might be 
influenced by the selection: in situations of uncertain 
data, applications adopt different positions according 
to what they are doing.  For example, a bank with 
several possible addresses for a customer sending a 
formal demand for payment, would probably send a 
copy to every address to be as sure as possible that 
the customer received it but the same bank would act 
differently when issuing an ATM card. 

re 2: A more sophisticated implementation of DataWarpFigure 2: A more sophisticated implementation of DataWarp

We realise now that our original DataWarp 
vision of an application evaluating all reasonable 
views and selecting one with which to operate is too 
simple.  A DataWarp application needs a more 
mature and complex attitude to the selection of view 
which admits the possibility of having more than 
one current view.   

In a real application, DataWarp needs to be 
applied nearer to the level of individual actions.  
Some inconsistencies may be resolved before they 
become an issue.  For the remainder, the application 
will select which data value(s) to use according to 
the action under consideration.   

We now propose a revised structure for a 
DataWarp application.  The application keeps a 
record of actions as before but in place of the single 
collection of candidate views from which it selects 
one to use, the application keeps a second database 
in which it records data values as it uses them.  
Links are maintained from this database to values 
which were used in connection with each action, 
whether the data was used as input to the action 
itself or in the decision process which lead to the 
action being taken.  This “used” database in turn 
holds links into the raw data which were considered 
when arriving at the used value (figure 2). 

Incoming data which creates ambiguity in the 
data-store causes the application to identify “used” 
values which are derived from data value concerned 

BUILDING APPLICATIONS ABLE TO COPE WITH PROBLEMATIC DATA USING A DATAWARP APPROACH

413



 

and reconsider  whether they need to be changed.  
Should any of the “used” values need to be changed, 
those actions which depend on them will need to be 
reconsidered.  Actions which are now considered to 
be inappropriate must be revoked or compensated 
and replaced.  In this way the application reproduces 
the DataWarp behaviour whereby it is able to work 
notwithstanding inconsistent data in its environment, 
by making assumptions and acting upon them whilst 
being prepared to retrace and replace its steps if 
necessary. 

4 CONCLUSION  

With the continued fall in the cost of computer 
hardware, computer systems continue to expand and 
hold more data.  There is also a continuing trend for 
systems to be connected forming even larger 
systems which already hold so much data that they 
struggle to keep it consistent.  The situation is 
unlikely to improve.  The traditional reaction to 
managing inconsistency problems has been to adopt 
strategies which prevent them.  However, the task of 
maintaining consistency is now overwhelming and it 
is inevitable that applications will encounter data 
problems. Therefore we need to build applications 
which can succeed in the presence of data which 
contains shortcomings.   

Applications cannot afford to suspend or abandon 
every action where it encounters uncertainty or 
inconsistency in data since this limits their ability to 
make progress.  Instead they need to be  tolerant of 
data inconsistencies.   

This paper proposes DataWarp which permits an 
application to progress notwithstanding problems in 
its data.  The essence of the approach is that, the 
application “makes the best” of the data available.  
Provided the algorithms and heuristics used by the 
application are sound and reasonable, most of the 
actions the application takes will become definitive.  
Where the chosen value turns out to be wrong, the 
application has to put things right. 

REFERENCES 

Christensen, E., Curbera, F., et al. (2000). Web Services 
Description Language (WSDL). 

Cleary, J. G., Littin, R. J., et al. (1997). Applying Time 
Warp to CPU Design. In Proceedings of 4th 
International Conference on High Performance 
Comuputing (HiPC '97), Bangalore, India, 
IEEE.pp.290-295 

Gray, J. N. (1978). Notes on Database Operating Systems. 
Operating Systems: An Advanced Course. R. Bayer, R. 
Graham and G. Segmuller, Springer. 60 pp. 391-481. 

Gray, J. N. (1981). The Transaction Concept: Virtues and 
Limitations. In Proceedings of 7th International 
Conference on Very Large Data Bases, Cannes, 
France.pp.144-154 

Henderson, P., Walters, R. J., et al. (2001). Inconsistency 
Tolerance across Enterprise Solutions. In Proceedings 
of 8th IEEE Workshop in Future Trends of Distributed 
Computer Systems (FTDCS01), Bologna, Italy.pp.164-
169 

Henderson, P., Walters, R. J., et al. (2003). DataWarp: 
Building Applications which make Progress in and 
Inconsistent World. In Proceedings of 4th IFIP WG 
6.1 International Conference, Distributed Applications 
and Interoperable Systems (DAIS 2003), Paris, 
Springer.pp.167-178 

Hunter, D., Cagle, C., et al. (2000). Beginning XML, Wrox 
Press Inc. 

Jefferson, D. R. (1985). "Virtual Time." ACM 
Transactions on Programming Languages and 
Systems 7(3): pp.404-425. 

Jefferson, D. R. (1990). Virtual Time II: Storage 
Management in Distributed Simulation. In 
Proceedings of 9th Annual ACM Symposium on 
Principles of Distributed Computing, Quebec City, 
Quebec, Canada, ACM.pp.78-89 

Kemme, B. and Alonso, G. (1998). A Suite of Database 
Replication Protocols based on Group Communication 
Primitives. In Proceedings of 18th International 
Conference on Distributed Systems (ICDCS), 
Amsterdam, The Netherlands.pp.156-163 

Microsoft (2001). Microsoft Message Queuing Services, 
Microsoft. 

Nicolle, L. (1999). John Taylor - The Bulletin Interview. 
The Computer Bulletin, British Computer Society. 

Snell, J., Tidwell, D., et al. (2002). Programming Web 
Services with SOAP, O'Reilly & Associates Inc. 

Wiesmann, M., Pedone, F., et al. (2000). Database 
Replication Techniques: a three parameter 
classification. In Proceedings of 19th IEEE 
Symposium on Reliable Distributed Systems 
(SRDS2000), Nurenberg, Germany, IEEE Computer 
Society Press 

 

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

414


