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Abstract. Designing security protocols is a challenging and deceptive exercise. 
Even small protocols providing straightforward security goals, such as authenti-
cation, have been hard to design correctly, leading to the presence of many sub-
tle attacks. Over the years various formal approaches have emerged to analyse 
security protocols making use of different formalisms. Schneider has developed 
a formal approach to modeling security protocols using the process algebra 
CSP. He introduces the notion of rank functions to analyse the protocols. We 
demonstrate an application of this approach to the Woo-Lam protocol. We de-
scribe the protocol in detail along with an established attack on its goals. We 
then describe Schneider’s rank function theorem and use it to analyse the proto-
col. 

1   Introduction 

Over the years various formal approaches have emerged to analyse security protocols 
[8], making use of different formalisms including logic [3,11] strand spaces [12], type 
theory [4], model-checking [5,7] and some hybrid techniques [6]. A main aspect of 
this research is the perfect-encryption assumption that allows cryptography to be 
treated as a black-box and therefore flawless; this is formalised by Dolev and Yao [1]. 
Schneider [10] has developed a formal approach to modeling security protocols using 
CSP [2]. Schneider then proceeds to introduce the notion of rank functions to analyse 
the protocols. 

The purpose of this paper is to demonstrate an application of this approach to the 
Woo-Lam protocol [13].  The protocol is an example of an authentication protocol 
with a history of established attacks. We describe the Woo-Lam protocol in Section 2, 
along with an attack in Section 2.1. We then describe Schneider’s CSP approach and 
model the Woo-Lam protocol in CSP in Section 3. We introduce the rank functions 
approach in relevant detail and apply the approach to the Woo-Lam protocol in Sec-
tion 4. We finally discuss our experiences of this effort to conclude the paper in Sec-
tion 5.  
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2   Woo-Lam protocol 

Woo and Lam [13] introduce a protocol that provides one-way authentication of the 
initiator of the protocol, A, to a responder, B. The protocol uses symmetric-key cryp-
tography and a trusted third-party server, with whom A and B share long-term sym-
metric keys. 

   (1)  A → B   : A 
   (2)  B → A   : NB 
   (3)  A → B   : {NB}KAS 
   (4)  B → S   : {A,{NB}KAS}KBS 
   (5)  S → B   : {NB}KBS 

Fig. 1. Woo-Lam protocol 

The protocol is shown in Fig. 1 above where {m}k represents message m encrypted 
under key k and “,” represents the concatenation operator. The keys KAS and KBS rep-
resent the long-term keys that A and B share with the trusted server S. The protocol 
goal is to authenticate A to B by using a fresh and unpredictable nonce, NB, produced 
by B.  

A starts the protocol by sending it’s identity to B. B replies by sending a freshly 
generated nonce NB. A encrypts NB with key KAS and sends it back to B. B concatenates 
A’s reply with the identity of A, encrypts it with key KBS and sends it to the server S. S 
sends out NB back to B encrypted under KBS. B compares the nonce it receives from S 
with the one it sent out to A. If they match, then B is guaranteed that the initiator of the 
protocol is in fact the principal claimed in the first step of the protocol.  

2.1   An attack on the Woo-Lam protocol  

The Woo-Lam protocol has been to shown to be susceptible to a few attacks [14], one 
of which is shown in Fig. 2 below.  

 
(1.1)  I(A) → B  :  A 

  (1.2)  B → I(A)  :  NB 
  (1.3)  I(A) → B  :  X 
   (2.1)  I → B    :        I 
   (2.2)  B → I    :        NB′ 
   (2.3)  I → B    :        {NB}KIS 
  (1.4)  B → S      :  {A,X}KBS 

   (2.4)  B → S    :        {I,{NB}KIS}KBS 
           (1.5)  S → B      :  {NB}KBS 

Fig. 2. An attack on the Woo-Lam protocol 

The attack shows two simultaneous inbound authentication attempts initiated by an 
intruder I, where I is also considered as any other regular participant. I pretends to be 
A in one (1.x) and retains its own identity I for the other (2.x). I obtains nonces from B 
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for both runs and encrypts the nonce NB intended for A with its own server key and 
returns it to B, retaining its original identity. When the nonce is returned by the server, 
it leads B to believe that it has authenticated A, whereas A has not even participated in 
either of the runs. The attack is complete.  

The attack shown in Fig. 2 demonstrates the difficulty in designing such protocols 
and emphasises the need for a formal and rigorous analysis of these protocols. 

3   Schneider’s CSP approach 

In order to deal with the problem highlighted in the previous section, Schneider pre-
sents a formal framework that uses the process algebra CSP to model protocols. We 
present Schneider’s CSP approach in detail, describing the relevant syntax for CSP 
and its trace semantics in Section 3.1. In Section 3.2 we model the participants in the 
Woo-Lam protocol as CSP processes and specify a network composed of these proc-
esses. We then present a trace specification that the network needs to satisfy for the 
protocol to hold correct. Finally we adopt a proof strategy to verify this network. 

While we discuss this notation in detail relevant to our usage in this paper, we take 
for granted the reader’s basic knowledge of CSP and its use by Schneider [10] to 
model security protocols; in-depth treatments of CSP are provided by Hoare [2] and, 
more relevantly, Ryan, et al [8]. 

3.1   CSP Events and Processes 

A CSP system is modelled in terms of processes and events that these processes can 
perform, which are essentially instances of communication, usually involving a chan-
nel and some data value. Events may be atomic in structure or may consist of distinct 
components. The CSP expression a → P describes a process P with event a in the 
interface of P. The process is initially able to perform a and then behaves as P. The 
process STOP is the simplest CSP process that can be described; it has no event tran-
sitions and does not engage in any events. A choice operator  provides the option for 
running either of the two processes, P and Q for example, when put together as P  Q 
whereas P and Q running in parallel would be written as P 

A

| |  Q where both P and Q 

have to synchronise on events in a set of events A. If P or Q were to perform any 
events that are not in A then they can do so independently without the need for any 
synchronisation. Another form of a parallel composition could be P Æ Æ Æ Q where P and 
Q do not need to interact with each other at all, known as interleaving. A process 
could be restricted on certain events, such as P 

A

| |  STOP where all of P’s occurrences 

of events from A are restricted; P would not be able to perform any events in A.  
For the purpose of communication, a process may have channels using which it 

communicates, accepts inputs on or produces output on. The expression c!v → P 
describes a process that will output the value of v on the channel c and then behave as 
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P. A process P accepting an input x on the channel c is described as c?x → P(x) where 
the behaviour of P after the input is described as P(x), determined by the input. To 
express message transmission and reception, Schneider [10] introduces two new chan-
nels, send and receive, which are public channels that all processes use to send and 
receive messages on. The events are structured as send.i.j.m where a message m is sent 
by source i to destination j on the channel send while receive.j.i.m represents a mes-
sage m being received by j from a source i on the channel receive.  

3.1.1   Trace Semantics  

The trace semantics in CSP allows us to capture the sequence of events performed by 
a communicating process as a trace and then use the trace to model the behaviour of 
the process. A trace tr of all events possibly performed by a process P could be ex-
pressed as tr = traces(P). An example of a trace could be „a, bÒ where event a is per-
formed followed by event b, whereas „Ò is an empty trace.  

A concatenation of two traces tr1 and tr2 would be written as tr1 ^ tr2, which is the 
sequence of evens in tr1 followed by the sequence of events in tr2. A trace tr could be 
of the form „aÒ ^ tr′ where event a is followed by tr′, the remainder of the trace. A 
subsequence of tr could be expressed as tr′ ¯ tr where tr′ is the prefix of tr. Traces 
also provide a projection operation where the tr á A is the maximal subsequence of tr, 
all of whose events are drawn from a set of events A.  

Trace semantics are used by Schneider [9] to specify security properties for proto-
cols as trace specifications. These are essentially defined as predicates on a trace of a 
process. This is done by defining a predicate on traces and checking whether a process 
satisfies the trace specification for its every trace. For a process P and a predicate 
S(tr) on a trace tr 

P sat S(tr) ⇔ ∀ tr ∈ traces(P) • S(tr) 
signifies that P satisfies S(tr) if S(tr) holds for every trace of P. 

3.2   Modelling the network 

We now model the Woo-Lam protocol in CSP as a network and specify the authenti-
cation property for this network as a trace specification. We then describe the proof 
strategy to verify this network for the given trace specification.   

While modelling the different processes of a protocol, Schneider [8] takes advan-
tage of the extensibility of CSP to introduce additional control events known as sig-
nals. These signal events are then used in trace specifications to express the authenti-
cation goals of a protocol. We model the three participant roles in the Woo-Lam pro-
tocol in CSP below 

InitiatorA  =  b   send.A.b.A → 
        receive.A.b.n → 
  Running.A.b.n → 
  send.A.b.{n}KAS → Stop 

   Server  =      receive.S.b.{a,{n}Kas}Kbs → 
           send.S.b.{n}Kbs → Stop 

ResponderB(nb)  =    receive.B.a.a → 
      send.B.a.nb → 
      receive.B.a.{nb}Kas →  
      send.B.s.{a,{nb}Kas}KBS → 
      receive.B.s.{nb}KBS → 
      Commit.B.a.nb → Stop 
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In the model above, we specify a Running.A.b.n signal and introduce it in A’s run, 
indicating that A is aware of its involvement in a run with b and the nonce n being 
used as part of this run. We specify a corresponding Commit.B.a.nb signal on B’s 
behalf indicating that B has completed the protocol run and authenticated a using 
nonce nb. The Commit.B.a.nb signal is placed at the end of B’s run as it is only when B 
receives the final message from S it can be assured of A’s involvement in the run. The 
entire network is composed of the above processes along with an Intruder process that 
is assumed to be in complete control of the network. In order to model it as such, we 
specify our NET as where InitiatorA, ResponderB and Server all communicate with 
each other only through an Intruder process and consider a specific run of the protocol 
between InitiatorA and ResponderB using the nonce NB 

 
NET = (InitiatorA Æ Æ Æ ResponderB(NB) Æ Æ Æ Server) Æ Æ Intruder 

We show this specific run of the protocol with appropriate signals in Fig. 3 below.   
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. A specific run of the Woo-Lam protocol involving A and B using nonce NB 

Proof strategy. We now specify a trace specification that expresses the authentication 
property needed to be satisfied by this NET. We use the signal events for the particu-
lar run shown in Fig. 3 and consider trace tr to be some trace of NET then 

 
tr′^„Commit.B.A.NBÒ ¯ tr fi Running.A.B.NB in tr′ 

 
In other words, if Commit.B.A.NB is in tr then so is Running.A.B.NB, preceding it. If 

the NET could be proved to satisfy this specification, then the protocol is proved 
correct for the property of authentication. In order to prove that the NET meets the 
trace specification, we restrict NET on the event Running.A.B.NB and check the result-
ing NET for the occurrence of the event Commit.B.A.NB. The restricted NET should 
not allow Commit.B.A.NB to occur in its trace tr  
 

NET
BRunning.A.B.N  

| | Stop  sat  tr á Commit.B.A.NB  = „Ò 

Running.A.B.NB 

Commit.B.A.NB 

InitiatorA ResponderB(NB) Server 

{A,{NB}KAS}KBS 

 

NB 

 
{NB}KAS 

{NB}KBS 

A 
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4   Analysing the Woo-Lam 

In the previous section, we have built a CSP system along with a trace specification 
that the system needs to satisfy. To verify the system for such a specification, Schnei-
der introduces the notion of a rank function [10]. We introduce the idea along with the 
central rank function theorem [10] in Section 4.1. In Section 4.2, we construct a rank 
function for the Woo-Lam protocol and evaluate the different conditions provided in 
the theorem to judge the correctness of the protocol.    

4.1   Rank functions 

Consider the set of participant identities on the network to be U, the set of nonces 

used by the participants in protocol runs as N and a set of encryption keys used as K. 

The set of all such atoms is A, where the atoms are defined as A = U U N  U K. We 

consider a message space M to contain all the messages and signals that may appear 

during a protocol’s execution, such that m ∈ A ⇒ m ∈ M.  
Schneider [10] defines a rank function ρ to map events and messages to integers ρ: 

M fZ. The message space is then divided into two parts where  
 

Mp- = {m ∈ M | ρ(m) ¯ 0} Mρ+ = {m ∈ M |  ρ(m) > 0} 
 
The purpose of this partition of the message space is to characterise those messages 

that the intruder might get hold of without compromising the protocol – assigned a 
positive rank – and those messages that the enemy should never get hold of – assigned 
a non-positive rank. It is desirable for a process never to transmit a message of non-
positive rank. For a certain process P to maintain positive rank, it is understood that it 
will never transmit a message with a non-positive rank unless it has previously re-
ceived a message with a non-positive rank. The process P is said to maintain positive 
ρ, if  

P sat receive. U. U. M p- precedes send. U. U. M p- 

The process P satisfies the condition that if it transmits a message of non-positive 
rank (send. U. U. M p- represents the transmission of a non-positive message, M p- 

from and to any participant U) then it has to have received a message of non-positive 

rank earlier, represented by receive. U. U. M p-. It is not important who the message 
is received from or is sent to.  

Schneider also [10] introduces a generates ‘H’ relation to simulate cryptographic 
functionality on behalf of an attacker. We use the relation to model encryption and 
decryption of messages or simpler transformations such as concatenation of messages. 
This relation, however, can be extended to model various cryptographic operations, 
the details of which are available in [10]. A rank function theorem [10] is then used to 
analyse such a rank function and verify that a trace specification is always met in all 
possible runs of the protocol. We consider tr to be some trace of the NET as defined 
in Section 3.2. 
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Rank function theorem. If, for sets R and T, there is a rank function ρ: M f Z satis-
fying 

 
R1)  ∀ m ∈ IK  •  ρ(m) > 0 
R2)  ((∀ s ∈ S  •  ρ(s) > 0) ∧ S H m) ⇒  ρ(m) > 0 

R3)  ∀ t ∈ T  •  ρ(t) ¯ 0 

R4)  i ∈ U  •  Useri ||
R

Stop sat maintain positive ρ 

Then          NET ||
R

 Stop  sat  tr á T = „Ò 

The theorem, the proof of which is available in [10], essentially states that if the 
rank function, and therefore the underlying NET, satisfies the four properties, then no 
secret messages of non-positive rank, denoted by set T, can be produced. In particular, 
the Intruder should not be able to generate any illegal messages from the messages it 
knows at the beginning of the protocol, and denoted by the set Initial Knowledge, IK, 
nor from the messages it sees during the protocol execution. Also, honest participants 
should not be able to generate any illegal messages unless they are sent one, that is, 
they maintain positive ρ while being restricted on events in set R. The actual verifica-
tion of the theorem conditions is performed manually for every rank function con-
structed for a protocol. We now use this approach to analyse the Woo-Lam protocol.    

4.2   Constructing the rank function 

We identify the ranks on the message space for our NET and construct the rank func-
tion shown in Fig. 4 below. The rank function we have constructed assigns all user 
identities in the set U a positive rank. The identity of all users is assumed to be known 
to the Intruder and therefore could be impersonated by the intruder. All the nonces in 
the set N, including NB, are assigned a positive rank.  B sends out NB in cleartext and 
therefore an Intruder can get hold of the nonce without further ado. The two shared 
keys used in the protocol, KAS and KBS, are both assigned a non-positive rank as they 
are supposed to be private to A and B. As the NET is restricted on the event Run-
ning.A.B.NB, the three messages (see Fig. 3) that follow this event, {NB}KAS, 
{A,{NB}KAS}KBS and {NB}KBS, should not appear in the restricted NET either. We as-
sign these three messages a non-positive rank along with signal event Commit.B.A.NB, 
which logically follows these three messages.  
ρ(U) = 1 (including A, B and S)     

 
                   0  if k = KAS  
ρ(K) =           or k = KBS

       
                     1 otherwise 

ρ(N) = 1 (including NB) 
 
                       0  if  {m}k  = {NB}KAS  
                  or  {m}k= {A,{NB}KAS}KBS    
ρ({m}k) =           or  {m}k  = {NB}KBS 
                       1  otherwise 

ρ(Running.A.B.NB) = 1 ρ(Commit.B.A.NB) = 0 

Fig. 4. A rank function for the Woo-Lam protocol 
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Recall that the rank function theorem is defined in terms of general sets R and T. 
For our analysis, we assign the single event Running.A.B.NB to set R and assign the 
single event Commit.B.A.NB to set T. This corresponds to the proof strategy described 
in Section 3.2, where we need to check for the occurrence of Commit.B.A.NB in a 
NET restricted on Running.A.B.NB. We now consider each of the conditions of the 
rank function theorem and check whether our rank function satisfies them.  

R1)  ∀ m ∈ IK  •  ρ(m) > 0 
 
The set IK contains all the agent identities and a key KIS shared between I and S. There 
is nothing in this set that is of non-positive rank. The condition is deemed satisfied. 
 
R2)  ((∀ s ∈ S  •  ρ(s) > 0) ∧ S H m) ⇒  ρ(m) > 0 
 
This conditions checks whether a message of non-positive rank can be generated un-
der the ‘H’ relation from a set of messages of positive rank. None of the messages 
identified as of positive rank, shown in Fig. 4, let the Intruder generate any messages 
that are of non-positive rank. The three messages of non-positive rank, {NB}KAS, 
{A,{NB}KAS}KBS and {NB}KBS, are encrypted under keys KAS and KBS both of which are 
of non-positive rank. This prevents the Intruder from generating these messages as the 
Intruder has no way of acquiring these two keys. The condition is deemed satisfied. 

 
R3)  ∀ t ∈ T  •  ρ(t) ¯ 0 
 
This condition requires none of the events in T to be of positive rank. The only event 
in set T is the signal event Commit.B.A.NB of non-positive rank. This condition is 
deemed satisfied.       
R4)  i ∈ U  •  Useri ||

R

Stop sat maintain positive ρ 

For this condition to be satisfied every process in the NET needs to maintain positive 
ρ while being restricted on the events in set R, where R = {Running.A.B.NB}. We 
consider processes InitiatorA, ResponderB and Server, restrict them on Run-
ning.A.B.NB and check whether they maintain positive ρ. Since only InitiatorA can 
perform Running.A.B.NB, the other two processes remain unaffected. The restriction 
on InitiatorA simplifies to  

 

InitiatorA 
BRunning.A.B.N  

| | Stop   = b    send.A.b.A → 
         receive.A.b.n → 

    if b = B ∧ n = NB    then   Stop 
    else Running.A.b.n → 

        send.A.b.{n}KAS → Stop 
 

In the choice operator b, b indicates the other participants that InitiatorA may 
communicate with. If participant b = B and the nonce n = NB then we instruct Initia-
torA to Stop. Any other participant instead of B or even a different nonce then NB 
would allow InitiatorA to continue as normal.  
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Upon inspection, we observe that InitiatorA 
BRunning.A.B.N  

| | Stop fails to maintain 

positive ρ. In terms of protocol runs, consider a run where A initiates the protocol with 
a participant other than B (and I intercepts) as shown in Fig. 5 below 

(1)  A → I(C) : A 
(2)  I(C) → A : NB 
(3)  A → I(C) : {NB}KAS 

Fig. 5. A possible run of the protocol 

In this case, the process InitiatorA 
BRunning.A.B.N  

| | Stop behaves as follows 

send.A.C.A → 
receive.A.C.NB → 
if b = B ∧ nb = NB       
 then  Stop 
 else Running.A.C.NB → 

       send.A.C.{NB}KAS → Stop 
 

A outputs the message {NB}KAS while communicating with another participant C. 
The message {NB}KAS is of non-positive rank as shown in Fig 4. This shows that A 
does not maintain positive ρ despite the restriction on it and the protocol, therefore, 
fails to meet the trace specification presented in Section 3.2. The theorem has been 
successful in finding a flaw in the Woo-Lam protocol, the existence of which we al-
ready demonstrated earlier in Section 2. Note that the failure of a rank function to 
satisfy the conditions of the theorem signifies a flaw in the protocol but it may not 
always be possible to construct an attack. It does, however, provide an insight into the 
workings of a protocol, which is often enough to lead to the discovery of an attack.            

5   Conclusion 

While this approach provides a formally meticulous analysis, the process of identify-
ing a rank function is non-trivial. Once a rank function is constructed, however, it 
gives confidence in the soundness of the protocol design. We have applied this theo-
rem to the Woo-Lam protocol to expose any flaws in the design and have managed to 
identify the attacks discussed earlier successfully.  

We recommend this approach for thorough investigation of similar protocols. The 
process of finding a rank function requires intuitive understanding of such protocols 
and focuses attention on relevant design aspects of these protocols. 
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