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Abstract. WebDoc is an automated classification system that assigns Web 
documents to appropriate Library of Congress subject headings based upon the 
text in the documents. We have used different classification methods in 
different versions of WebDoc. One classification method is a statistical 
approach that counts the number of occurrences of a given noun phrase in 
documents assigned to a particular subject heading as the basis for determining 
the weights to be assigned to the candidate indexes. The second classification 
method uses a naïve Bayes approach. In this case, we experimented with the 
use of smoothing to dampen the effect of having a large number of 0s in our 
feature vectors. The third classification method is a k-nearest neighbors 
approach. With this approach, we tested two different ways of determining the 
similarity of feature vectors. In this paper, we report the performance of each of 
the versions of WebDoc in terms of recall, precision, and F-measures. 

1   Introduction 

The problem of automated document understanding has been addressed from several 
different viewpoints. Some researchers are interested in the generation of summaries 
of documents [2, 7]. Others are interested in the extraction of key phrases from the 
documents [18]. A number of researchers are concerned with the ability to find 
specific information in a document, such as the name of a terrorist group responsible 
for an attack. Many of these efforts have been reported at the Message Understanding 
Conferences (MUCs) [10] and TREC competitions sponsored by ARPA and NIST. 
Another aspect of the document understanding problem in which a number of 
researchers are interested, and the one addressed in this paper, is the automated 
classification of Web documents [9]. The system described in this paper, WebDoc, 
automatically classifies Web documents according to the Library of Congress subject 
headings. 

The available directories for Web documents generally rely on humans to classify 
the documents. For example, according to the report on Directory Sizes available 
from Search Engine Watch (http://searchenginewatch.com/reports/directories.html 
accessed on September 3, 2002), Open Directory employs 36,000 editors to provide 
2,600,000 links to documents. The popular Yahoo! employs over 100 editors to 
provide links to between 1,500,000 and 1,800,000 documents. According to [12], the 
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bottleneck in directory systems is the ‘manual classification of newly collected 
documents.’ 

In our research, we chose to classify Web documents using the Library of Congress 
classification system, a comprehensive and widely used classification system that has 
a hierarchy of subject headings (categories) in which any major domain within the 
hierarchy may have thousands of subject headings. We have used the traditional 
information retrieval measures of precision and recall to assess the performance of 
our classification system. 

In this paper, we report the results of using different approaches to the 
implementation of the classification component of WebDoc. We begin with an 
overview of the WebDoc classification system. This includes a description of the 
knowledge base used by our system, the three different classification methods that we 
used (a statistical approach, a naïve Bayesian approach, and a k-nearest neighbors 
approach). It also describes the different methods we used for determining if two 
feature vectors are similar and for feature extraction. Finally, we discuss our 
experimental results and compare the different approaches used. The experimental 
results reported here represent a continuation of experiments reported in [19]. 
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2   System Description 

Our system, WebDoc, automatically classifies Web documents according to the 
Library of Congress Classification (LCC) scheme. It evolved from one of our earlier 
research projects, Assisted Indexing at Mississippi State (AIMS), which was an 
automated system that aids human document analysts in the assignment of indexes to 
physical chemistry journals [6].  

We have implemented three different versions of WebDoc based on three different 
approaches to the classification problem: one that uses a statistical algorithm for 
determining the appropriate classifications for a given document, one that uses a 
Bayesian approach, and one that uses the k-nearest neighbors (kNN) method. Each 
version of WebDoc consists of three major components – the natural language 
processing (NLP) component, the knowledge base construction component, and the 
index generation component, as shown in Figure 1. The NLP component tags the Web 
document with syntactic and semantic tags (e.g., noun and astronomy) and parses the 
document so that various sentential components such as noun phrases may be 
identified. The knowledge base construction component builds a knowledge base of 
information that includes the LCC subject headings and their interrelationships as 
well as other information used during classification The index generation component 
generates a set of candidate indexes for each document in a test set of documents. (In 
this paper, we use the terms subject headings and indexes to mean the same thing.) 

2.1   Knowledge Base 

The knowledge base, which was implemented using the ObjectStore object-oriented 
database management system, consists of three sections: the thesaurus section, the 
index section, and the statistical section. The thesaurus section consists of all the LCC 
subject headings and their interrelationships. The index section contains the indexes 
that were assigned to each document in the training set by our human expert 
document classification librarian. When assessing the performance of WebDoc in 
assigning indexes (or subject headings) to the documents in the test set, the indexes 
assigned by the human expert are considered to be the correct indexes. 

The information stored in the statistical section of the knowledge base varies 
depending on with which version of WebDoc this knowledge base is associated. The 
statistical section for the statistical version of Web Doc stores information that 
provides mappings between noun phrases that occur in the documents and the Library 
of Congress subject headings. Given a set of documents to which the appropriate 
subject headings have been assigned by our human expert, WebDoc accumulates 
information about the number of times that each noun phrase appears in the 
documents assigned to a particular subject heading. From this, WebDoc computes the 
frequency with which the appearance of a given noun phrase correctly indicates that a 
document should be assigned to a given subject heading (true_positives) and the 
frequency with which the appearance of a given noun phrase incorrectly indicates that 
a document should be indexed by a given subject heading (false_positives). WebDoc 
then uses these measures to assign weights to the various noun phrases to represent 
how likely it is that a given phrase is a reliable indicator that a document should be 
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assigned to a given subject heading. The statistical section for the naïve Bayes version 
and the kNN version includes information about the feature vectors that were 
constructed for the training documents. This is discussed in greater detail in the 
section describing these versions. 

2.2   Feature Vectors 

Both the naïve Bayes version and the k-nearest neighbors (kNN) version of WebDoc 
used the vector space model to represent the documents. Three aspects, probability 
smoothing, vector similarity, and feature selection are studied. 

In general, smoothing is done to remove noise from the data [3]. In our application, 
we generally have feature vectors in which a large number of the feature values are 0 
due to the infrequent occurrence of many of the noun phrases. This is problematic for 
a probabilistic approach such as the naïve Bayes method. A class of smoothing 
methods called the Good-Turing methods ‘provide a simple estimate of the total 
probability of the objects not seen’ as well as estimates of ‘probabilities for observed 
objects that are consistent with the probability assigned to the unseen objects’ [1]. We 
used a Good-Turing method called the Linear Good-Turing method to compute the 
probabilities needed for the naïve Bayes version of WebDoc. This process is 
described in the section that describes the Bayesian version.  

We experimented with two different methods for determining the similarity of two 
feature vectors in the kNN version: count of common feature values and cosine 
coefficient. For the count of common feature values, we simply determine the number 
of features in two feature vectors that have similar values. That is, we compare the 
occurrence frequencies for a given feature. We consider a given feature to have 
occurred a similar number of times in the two different feature vectors if the 
difference in their frequencies is less than some value ∆. If the number of common 
feature values is greater than some predefined threshold, then the two vectors are 
considered to be the same. The cosine coefficient method computes the normalized 
inner product of the two vectors [14].  

Feature selection is an important part of any classification method that uses feature 
vectors because of the possibility that the feature vectors may be extremely long. 
Many researchers have addressed the problem of feature selection [15, 21]. In the 
naïve Bayes method, extremely long feature vectors may result in an extremely high 
cost for the computation of the values of P(Ci|X) and P(X). On the other hand, feature 
vectors that are too short are unable to distinguish among the documents. 

Currently the features in our feature vectors are the noun phrases that occur in our 
training documents. I.e., (the stem form of) each unique noun phrase is a feature. For 
a given document, the feature vector representation gives the frequency with which 
each noun phrase occurred in that document. Our feature vector has more than a 
thousand features. Some of the features are quite useful in distinguishing among the 
documents, but others are not. The goal of feature selection is to remove those 
features that are not informative, thus reducing the length of the feature vector [21]. In 
our experiments, we used four different feature selection methods in the naïve Bayes 
and kNN versions: inverse document frequency, information gain, mutual 
information, and χ2.  A detailed introduction about these methods is provided in [21]. 
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2.3   Statistical Version 

The statistical version of WebDoc uses a classification algorithm that was used 
successfully in AIMS [6] as well as its predecessor, KUDZU [5]. From a set of 
documents that have been indexed by our human expert, WebDoc counts the number 
of times that each noun phrase appears in documents assigned to a particular subject 
heading. It uses that information to compute the frequency with which the appearance 
of a given noun phrase correctly or incorrectly indicates that a document should be 
indexed by a given subject heading. The good hits are the number of occurrences of a 
given noun phrase in documents indexed by a particular index. The bad hits are the 
number of occurrences of a given noun phrase in documents not indexed by a 
particular index. Given a test document, WebDoc computes a weight to be assigned to 
each index based on the noun phrases that occur in that document. The weight 
assigned to a given index based on the occurrence of a particular noun phrase is given 
by the formula: 

weight (N, I) = 
),(_),(_

),(_

INhitsbadINhitsgood

INhitsgood

+
 

where N represent a noun phrase and I represent an index or subject heading.  

2.4   Naïve Bayes Version 

The naïve Bayes version of WebDoc is based upon Bayes’ theorem for computing the 
probability of a particular conclusion C given certain evidence E: 

P(C|E) = 
)(

)(*)|(

EP

CPCEP
 

This theorem allows the probability of a conclusion C given evidence E to be 
computed in terms of the prior probability of the conclusion C, the prior probability of 
the evidence E, and the probability of the evidence E given the conclusion C.  A 
Bayesian approach to classification has been used successfully in a number of 
systems reported in the literature [13]. An assumption made in this approach to text 
classification is that, for a given subject heading, the probabilities of phrases 
occurring in a document are independent. 

During the training of the WebDoc system, the feature vector for each document in 
the training set is generated and stored in the knowledge base. The prior probability of 
a given subject heading Ci is calculated using the formula: 

P(Ci) = documentsallforgeneratedindexesofnumbertotalthe
headingsubjecttheasiCwithdocumentsofnumberthe

 

During the testing phase, WebDoc generates the feature vector X for a test 
document. Using information available in the knowledge base, WebDoc then 
calculates the value of P(X|Ci) for that document.  

In some of our experiments, we applied the Linear Good-Turing smoothing method 
to remove the noise caused by a large number of 0s in our feature vectors [1]. In this 
method, the probability of a given feature occurring is replaced with a smaller 
probability. The sum of the smaller probabilities is subtracted from 1.0, with the 
difference being distributed evenly among the unseen features (i.e., those whose 
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feature values were 0). The detailed formula of Linear Good-Turing smoothing 
method is provided in [1]. 

Using Bayes theorem, the probability of a given feature vector X = (A1, A2, …, An) 
given a subject heading Cj is: 

P(X|Cj) = P(A1|Cj) * P(A2|Cj) * … * P(An|Cj) 
and the unconditional probability of the feature vector X is: 

P(X) = P(A1) * P(A2) * … * P(An) 
Let xi represent the frequency of feature Ai. Using logarithms in the calculations 

and including the frequencies of the features as weights, we have: 
log P(X|Cj) = (x1/N) log P(A1|Cj) + (x2/N) log P(A2|Cj) + … + (xn/N) log P(An|Cj) 

In our experiments, we normalized the weights to fall into the range from 0 to 1. 

2.5   K-Nearest Neighbors Version 

The simplicity of the k-nearest neighbors (kNN) approach has resulted in its use in a 
number of document classification systems [4, 11, 20]. During training, a feature 
vector is generated for each training document and stored in the knowledge base. 
During testing, the feature vector for each test document is generated and compared 
with the feature vector for each training document. The k documents found to be most 
similar to the test document are chosen as the k-nearest neighbors. The indexes for 
those documents are the candidate indexes for the test document. In earlier 
experiments, we tried different values for k (i.e., 15, 30, and 50), with k=30 giving us 
the best results. That is the value that we used for k in the results reported in the next 
section. 

The methods that we used for comparing feature vectors were described in the 
earlier section on Feature Vectors. The value of ∆ used in the experiments described 
here was 0.0. That is, two features were considered similar only if they occurrence 
frequencies were equal. 

3   Experimental Results 

To evaluate the performance of the different versions of WebDoc, we used familiar 
metrics from information retrieval: precision, recall, and the F-measure. Precision is 
the proportion of the indexes generated by WebDoc that are correct, whereas recall is 
the proportion of the correct indexes that are generated by WebDoc. 

precision = 
indexescorrectofnumbertotal

generatedindexescorrectofnumber
 

recall = 
generatedindexesofnumbertotal

generatedindexescorrectofnumber
 

The F-measure combines precision and recall by the formula: 

Fβ= 
recallprecision

recallprecision

+

+

*
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When β is 0, the F-measure is the same as the precision rate. When β= +∞, the F-
measure is the same as the recall rate. Typically β is assigned a value of 1 to allow 
balance between (i.e., place equal weight on) the recall and precision rates. This is the 
F-measure that we use. Note that the F-measure will never exceed the average of the 
precision and recall rates.  

For our experiments, we had a total of 722 documents that had been downloaded 
from the Web and assigned LCC subject headings by our expert classification 
librarian. The documents contained a total of 737,629 noun phrases, with 107,801 
unique stem forms of these phrases. There were a total of 2,047 correct indexes 
assigned to these documents. On average, each document had about 1,022 noun 
phrases, 149 unique stem forms of the phrases, and 3 indexes. Because of the 
relatively small number of correctly indexed documents available to us, we restricted 
the classifications to the highest-level subject headings under Astronomy in the LCC 
subject headings hierarchy. Thus we had a total of 39 different classes (indexes) to 
which the documents could be assigned. Only 21 of these 39 indexes actually 
appeared in our document collection. 

We used 5-fold cross-validation to divide the documents into a training set and a 
test set. For each experiment that we conducted, we divided the entire collection of 
documents into five partitions. Each experiment was done a total of five times, with a 
different one of the five partitions used as the test set each time and the remaining 
partitions making up the training set. We averaged the results on each of the five runs 
for a given experiment to get the final results for that experiment. 

Table 1. Summary of Experimental Results 

Row Classification 
Method 

Feature 
Vector 

Similarity 

Feature 
Selection Smoothing Threshold Precision Recall F-

Measure 

1 Statistical n/a n/a n/a 0.35 61.32% 75.09% 67.51% 
2 Naïve Bayes n/a none no 0.40 60.98% 71.32% 65.75% 
3 Naïve Bayes n/a none yes 0.80 58.33% 79.22% 67.19% 
4 Naïve Bayes n/a IDF no 0.45 60.09% 72.93% 65.89% 
5 Naïve Bayes n/a IDF yes 0.80 58.02% 78.44% 66.70% 
6 Naïve Bayes n/a IG no 0.40 60.76% 71.68% 65.77% 
7 Naïve Bayes n/a IG yes 0.80 56.87% 77.54% 65.62% 
8 Naïve Bayes n/a MI no 0.40 60.87% 71.62% 65.80% 
9 Naïve Bayes n/a MI yes 0.85 63.05% 68.26% 65.55% 

10 Naïve Bayes n/a χ2 no 0.40 59.99% 71.92% 65.41% 
11 Naïve Bayes n/a χ2 yes 0.85 63.42% 69.88% 66.50% 
12 kNN count none n/a 0.11 60.41% 65.87% 63.02% 
13 kNN count IDF n/a 0.105 58.06% 69.04% 63.07% 
14 kNN count IG n/a 0.07 56.10% 75.45% 64.35% 
15 kNN count MI n/a 0.105 58.34% 67.84% 62.74% 
16 kNN count χ2 n/a 0.105 58.48% 69.16% 63.37% 
17 kNN cos. coeff. none n/a 0.10 65.07% 78.74% 71.25% 
18 kNN cos. coeff. IDF n/a 0.105 63.65% 78.20% 70.18% 
19 kNN cos. coeff. IG n/a 0.105 64.51% 78.26% 70.73% 
20 kNN cos. coeff. MI n/a 0.105 63.55% 75.81% 69.14% 
21 kNN cos. coeff. χ2 n/a 0.15 51.21% 73.23% 60.28% 
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In our experiments, WebDoc generated a set of candidate indexes for each 
document based upon the weights computed for those indexes. How this computation 
was done depended on which classification method was used. We used various 
threshold values to filter out those candidate indexes with low weights. Here we 
report the results for the threshold value that produced the best F-measure for each 
combination of classification method, feature vector similarity method, and feature 
selection method that we tested. The results are shown in Table 1. An entry of ‘n/a’ 
indicates that this was not applicable to the given classification method. 

In all the approaches that we tested, decreasing the threshold for the weights of the 
candidate indexes (i.e., increasing the number of candidate indexes) produced higher 
recall rates at the expense of lower precision rates. For example, in many cases we 
could achieve a recall rate of 100% using a threshold of 0.00, but the corresponding 
precision rate would be quite low—sometimes less than 15%. The best F-measures 
achieved for the different versions of WebDoc ranged from 62.74% to 71.25%, with 
the recall rate in each case being somewhat higher than the precision rate. The 
versions of WebDoc that used the kNN classifier and the cosine coefficient method of 
determining feature vector similarity had the best F-measures, with one exception 
(i.e., when the χ2 feature selection method was used). WebDoc’s low precision rate 
with the χ2 feature selection resulted in a lower F-measure. 

The statistical version of WebDoc performed almost as well as the kNN-cosine 
coefficient versions, and did better than the kNN versions that used the count of 
common features similarity method. The most complex of the three classification 
approaches, the naïve Bayes classifier, resulted in slightly lower F-measures than the 
simpler methods. 

It is interesting to note that the use of smoothing did not improve the performance 
of the naïve Bayes versions as one would have expected given the number of 0s in our 
feature vectors. Also, the use of feature selection provided little if any improvement in 
the F-measures for both the naïve Bayes and the kNN classifiers. As a matter of fact, 
the best F-measure occurred with the kNN classifier that used the cosine coefficient 
similarity method and did no feature selection. The lack of improvement provided by 
the use of smoothing or feature selection may be due to the relatively small number of 
correctly indexed documents that were available to us. 

Our results compare favorably with those reported by other researchers who have 
developed automated document classification systems. (See section on Related 
Work.) Those researchers whose systems had higher recall, precision, and/or F-
measures than ours were not attempting to classify documents as unstructured and 
varied as the Web documents that we worked with. For example, Kushmerick, 
Johnston, and McGuinness achieved an F-measure of 78% for their system that 
classified e-mail messages as either ‘change of address’ or ‘non-change of address’ 
messages[8]. Sable, McKeown, and Hatzivassiloglou achieved an F-measure of 
85.67% for their kNN classifier and 79.56% for their naïve Bayes classifier, but their 
classifiers were applied only to newswire stories [16]. 
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4   Summary 

We have described experiments conducted with different versions of WebDoc, a 
system that automatically assigns Web documents to Library of Congress subject 
headings based upon the text in the documents. The different versions of WebDoc 
represent the use of different classification methods and different methods for 
determining the similarity of the feature vectors. For the most part, WebDoc’s 
performance compares quite favorably with that of other text classification systems 
that have been reported in the literature, especially when compared to systems that 
classify very unstructured and varied documents such as those found on the Web. 

Several researchers have found improvement in the performance of their text 
classification systems when they used a classification method called Support Vector 
Machines (SVM) [16]. A very promising approach that has gained a lot of attention 
recently is the use of kernels with SVM [21]. In future work with WebDoc, it would 
be interesting to experiment with various ways of accomplishing this, comparing the 
resulting performance with that of the versions of WebDoc reported here. 
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