
A Platform for Universal Access to Applications

Nuno Valero Ribeiro1 and Jośe Manuel Bŕazio2

1 Escola Superior de Tecnologia de Setúbal, Instituto Polit́ecnico de Setúbal, 2910-761 Setúbal,
Portugal

2 Instituto de Telecomunicaões, IST, 1049-001 Lisboa, Portugal

Abstract. This paper gives an insight on the services that are necessary for a
system capable of supporting one practical application of the concept of Ubiq-
uitous Computing. The applied scenario is an academic campus and it is pre-
tended that students may access typical computer applications ubiquitously, i. e.,
anywhere and using any computer. We call itUniversal Access to Applications.
In this scenario, each user may access and use an arbitrary, and heterogeneous,
set of applications on any computer and anywhere in the campus. A survey on
technologic solutions for enabling the access to non-native applications is firstly
summarized. Then we proceed with the design of such distributed system using
MoNet methodology. Four steps are covered together with their main contribu-
tions: requirements capturing, design of a Logical Model, elaboration of a Func-
tional Model, and finally, setting of a Reference Model for implementation. The
proof-of-concept platform, developed on basis of the designed system, proved the
concept. Finally, conclusions about the work done and the concept future appli-
cations are considered.

1 Introduction

In the last decades we have been witnessing a tremendous evolution in the computer
hardware and software industry. Today we use a variety of personal computational de-
vices, ranging from desktop to mobile PC’s and PDA’s. Although the computational
autonomy, and hardware diversity, provided for the user has increased, still, one can
not arbitrarily use any of these devices for one’s computational needs: the desired user
applications and environmental settings may not be found in one particular device the
user may actually be using in one particular circumstance.

We considered this problem in the campus of an academic institution. We want to
enable the access to the execution of arbitrary computer applications to users. Inde-
pendently of the computational device they may use in a particular moment. Without
requiring additional effort to the user. The computer applications are made available
from a distributed environment by a number of application servers.

For this purpose the first technical problem to be solved stems from the heterogene-
ity of computational platforms vs. nature of computer applications that may be found
on an academic campus. Namely, the problem is: how to give access to the execution
of applications that were compiled for other platforms. Another problem is the defin-
ition of a distributed system for the support of interaction between application clients

Valero Ribeiro N. and Manuel Brázio J. (2005).
A Platform for Universal Access to Applications.
In Proceedings of the 2nd International Workshop on Ubiquitous Computing, pages 60-66
DOI: 10.5220/0002561100600066
Copyright c© SciTePress



and users. This results in a typical Distributed System modelling problem and involves
the support and integration of aspects such as: data distribution and transparent access,
security aspects, fault tolerance, and name and location management. These problems
are well identified and studied in proper literature [1]. Other issues arise due to the pos-
sible use ofmobile client platforms. They concern communication problems such as,
network location management or data synchronization, and have been subject of study
in the area of Mobile Computing [2][3].

In this paper a distributed system for an academic campus environment will be stud-
ied. In section 2 the issue of non-native application execution is examined, for which a
number of technological alternatives are listed and brieflyassessed. In section 3 the ar-
chitectural design of the system is presented, together with a brief description of MoNet
design methodology, followed by the results of its design steps. Section 4 shortly de-
scribes the developed proof-of-concept platform and subsequent lessons learned. Fi-
nally, section 5 enumerates major conclusions.

2 Using non-native applications

A survey made on the technological solutions for the execution of non-native applica-
tions shows that these solutions fit in four different main approaches (more details in
chapter 3 of [4]):

1. Exporting the application user interface—which assumes running the application
on its native platform and redirecting its user interface tothe client, eitherdirectly
using built-in windows systems mechanisms, orindirectly using proxy entities;

2. Running platform independent applications—developing applications in program-
ming languages that generate platform-independent code;

3. Platform emulation—running non-native applications on a emulator of the native
platform;

4. Process migration—migrating processes via specific operating system mechanisms
allowing application processes to move and run on other platforms.

Direct mechanisms for exporting the application user interface inherently restrict
themselves to a family of operating systems (and sometimes not even the entire fam-
ily). In order to support different families of operating systemsindirect exporting mech-
anisms ought to be adopted. Java programming language has been widely accepted for
the development of platform-independent code. Of course, but unfortunately, Java does
not easily integrate software that is already compiled for other platforms. Emulation
technology lacks the efficiency and performance of the natively running application.
Plus, most of times, it is not technically possible to emulate every feature of the native
platform. Migration of application processes, between different operating system fami-
lies, is out of the question since it raises extremely complex problems due to operating
systems software complexity and architectural differences.

This leaded us to elect the indirect way of exporting the application user interface
to the client device as the most suitable technique for universal access to heterogeneous
computer applications.

61



3 Designing the system

For the design phase of the distributed system we adopted MoNet methodology [5], that
comprises four main steps: (1) identification of requirements and services; (2) design
of a Logical Model, which identifies the system main functionmodules; (3) construc-
tion of a Functional Model, defining its Functional Entities, their relationships and in-
formation flow; and, (4) elaboration of a Reference Model, which takes into account
implementation aspects.

In the following subsections we summarize the system designmain results (from
hereon also referred as SDUA, standing forSystem for Universal Disponibilization of
Applications).

3.1 Requirements and services

Briefly, we have identified the following requirements for each kind of user:

1. end user:
(a) universal application access — ability to access applications independently of

its physical location and terminal computer;
(b) access to the execution of heterogeneous applications —ability to use applica-

tions, which may be different in their nature and characteristics, independently
of the device being used;

(c) support for access to a private data storage system — ability to access a private
file system, available for any device that may be used;

(d) session control — ability to start and terminate a session whenever the user
wishes;

2. manager: capability to manage the system, creating users, setting their profiles,
adding/removing applications, monitoring operation, verifying correct component
work, and auditing behavior to detect and trace wrong procedures or security at-
tacks;

On the basis of the requirements, four SDUA main services were identified, as il-
lustrated in figure 1:

1. Universal Access to Applications
2. Access to Private Data
3. SDUA Management
4. Computational Services Registry

3.2 Logical Model

The Logical Model is the collection of the business logic modules identified for each
one of the main services. Each of these services is supportedby a set of functions, that
are initially identified and further refined, in an iterativetop-down approach, until the
elementary functions are met. Then, these are grouped in Logical Entities, when related
to each other by one determined functional criteria. If the same Logical Entity is found

62



SDUA

Universal
Access to

Applications

Access to
Private

Data

SDUA
Mangement

Computational

Services
Registry

Fig. 1.SDUA main services

in more than one Logical Model (there is one Logical Model foreach main service), it
is “promoted” generating one hierarchically superior Logical Entity.

As an example, figure 2 illustrates the two refinement steps taken for achieving the
Logical Model of theUniversal Access to Applications service. Its Logical Entities are
fully described, enumerating its functions, textual description of interfaces and behav-
ior, in [4].

3.3 Functional Model

The Functional Model decomposes, further on, the system into Functional Entities and
their relationships. It is derived from the Logical Model bytaking distribution aspects
into account like physical machine allocation of functions.

Four different physical tiers were identified:

1. theclient: any computational device used for accessing the executionof applica-
tions;

2. theapplication server: set of computers that offer the possibility of hosting the
applications execution;

3. theSDUA server: set of computers where the SDUA’s main services are allocated;
4. theData server: set of computers, and their respective operating file systems, for

archiving user data.

Logical Entities may now be divided in disjoint sets of functions according to the
physical tier that hosts them. Each of these sets of functions represent a Functional
Entity. Additional Information Flow diagrams specify the interaction between these
Functional Entities (3).

3.4 Reference Model

The Reference Model defines groups of Functional Entities (Functional Groups) taking
into account criteria related to implementation aspects. These criteria are elected con-

3 Complete descriptions and diagrams may be found in [4]

63



Fig. 2.Refinement example of Universal Access to Applications Logical Model

sidering the goal of the analysis that may be done after reaching the Reference Model.
It may take into account either technological or economicalaspects.

Two technological criteria were considered. One takes intoaccount the distribution
of Functional Entities among tiers (already identified in 3.3, namely:client, application
server, SDUA server, andData server). The other one concerns the logical distribu-
tion of these Functional Entities. This logical distribution adopted an architectural per-
spective of the Internet proposed by Miroslav Benda in [6]. It divides the system into
five logical parts: user interface, data, business logic, delivery system, and middleware
(which “glues” all previous four).

From the analysis of the obtained Reference Model, after applying the two techno-
logical criteria previously exposed, we may state that:

1. the largest number of Functional Entities are hosted inSDUA’s server Functional
Group;

2. the most representative logic part is themiddleware.

We may now state that:

1. the hardware and software platform chosen for hostingSDUA’s server Functional
Entities is fundamental for the overall system performance;

2. a careful choice of the adopted middleware is essential for development and de-
ployment of the system since it strongly affects the functioning of the whole.

4 Proof-of-concept platform

A proof-of-concept platform, based on SDUA, was developed for testing the concept
of Universal Access to Applications on an academic campuses. This platform offers

64



its users, on either Windows or Linux based client platforms, the use of a Microsoft
application or a X windows based application hosted on applications servers.

The implementation of this proof-of-concept platform required the development of
some key modules, from those already identified for the global system, namely:

– Initialise/Finalise Session, for being able to start and end a session;
– End User Interface, for being able to interact with the system;
– Request Engine for handling requests, Remote Visualization Engine for accessing

applications running on their servers;
– System’s Database, for archiving information about users.

We based the Remote Visualization Engine on VNC technology [7] as previously
supported in section 2. VNC system is based on a remote video frame buffer protocol
and, therefore, can be used with any operating system family.

During the development phase UML was used for object-oriented modelling. The
correspondence between MoNet and UML models was readily established by means
of:

– each Logical Entity defined one, or more, object classes, andthe relations between
these Entities defined their class associations;

– hierarchical groups of Logical Entities were set via packages;
– Information Flow diagrams, specified with the system’s Functional Model, identi-

fied method calls among objects;
– Functional Models also clarified how objects were physically distributed among

different computers.

The deployed platform was tested and worked properly. End users were able to use
either a MS application or a X Windows application, as intended, simply by requesting
their remote execution through a basic system menu.

Next we intend to improve the developed platform by allowingthe addition and
removal of applications in a dynamic fashion. We are considering applying Jini [8]
technology as an infra-structure for registering/unregistering applications taken as in-
coming and outgoing services. Another improvement is beingconsidered by means of
adding functionalities for load balancing the cluster ofapplication servers regarding
performance aspects.

5 Conclusions

We have considered the problem of using heterogeneous applications at an arbitrary
computational device. We initially surveyed the technological solutions for accessing
the execution of non-native applications. For the details of architectural development, a
system for an academic campus was considered. In the design phase of the system, we
concluded that middleware is a key factor for the development and deployment of such
a system, and, hardware and software for hosting determinedfunctionalities are fun-
damental for the overall system performance. We also enunciated some bridge points
between MoNet’s and UML design methodologies. The developed proof-of-concept

65



platform used, as a solution for remotely access non-nativeapplications, indirect mech-
anisms for exporting the user interface of the application to the end user device. It has
demonstrated the feasibility of the system.

As explained in [9], there is room in a campus environment forthe advantageous use
of such system. For the same reasons, among others, certain commercial organizations
may also benefit from such a computer system approach. A leasescheme of offering
computational application services on demand may be a possibility. Under this scenario
the user could get instantaneous and transparent access to any bug fixes or upgrades
to applications. New services and application providers will have a potential market to
explore.

References

1. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design. Second
edn. Addison-Wesley (1994)

2. Rutgers, T.I., Korth, H.F.: Mobile Computing. Volume 353 of The Kluwer International Series
in Engineering and Computer Science. Kluwer Academic Publishers (1996)

3. Milojicic, D.S., Douglis, F., Wheeler, R.: Mobility : Processes, Computers, and Agents.
Addison-Wesley Publishing Company (1999)

4. Ribeiro, N.V.: Uma Plataforma para Acesso Universal a Aplicações. Master’s thesis, In-
stituto Superior T́ecnico, Lisboa, Portugal (2000) URL, http://ltodi.est.ips.pt/nribeiro/#MSc,
accessed July 2000.

5. Katoen, J.P.: The MoNet Design Methodology. MoNet deliverable Technical Draft 3.1
MoNet/GA3/UT/006, University of Twente (1993)

6. Benda, M.: The Architecture of Global Access. IEEE Internet Computing1 (1997) pp. 78–80
7. : VNC — Virtual Network Computing (1999)c©AT&T Laboratories Cambridge, URL,

http://www.uk.research.att.com/vnc/, accessed April 2000.
8. Sun Microsystems, Inc.: JiniTM Architectural Overview. (1999) URL,

http://www.sun.com/jini/specs, accessed July 2000.
9. Ribeiro, N.V., Bŕazio, J.M.: Campus Personal Computing: uses, evolution, and new perspec-

tives. In: Actas da III Confer̂encia de Telecomunicações, IT (2001) 315–318

66


