
Detection of the Operating System Configuration 
Vulnerabilities with Safety Evaluation Facility 

Peter D. Zegzhda, Dmitry P. Zegzhda, Maxim O. Kalinin 

Information Security Centre of Saint-Petersburg Polytechnical University,  
P.O. Box 290, K-273, Saint-Petersburg, 195251, Russia 

 

Abstract. In this paper, we address to formal verification methodologies and 
the system analyzing facility to verify property of the operating systems safety. 
Using our technique it becomes possible to discover security drawbacks in any 
IT-system based on access control model of 'state machine' style. Through our 
case study of model checking in Sample Vulnerability Checking (SVC), we 
show how the evaluation tool can be applied in Microsoft Windows 2000 to 
specify and verify safety problem of system security. 

1   Introduction 

Assurance that system's behavior will not result in an unauthorized access is 
fundamental to ensuring that the enforcing of the security policy will guarantee 
system security. The greater the assurance, the greater the confidence that the security 
system will protect its assets against the threat with an acceptable risk. A fall down 
occurs in suitably secure commercial operating systems, applications, and network 
components, especially with respect to security. Commercial offerings have serious 
security vulnerabilities. The sources of security faults are concealed at abundant 
errors of the system designing, coding, and administrating processes. The widely 
known lacks of security are those of programming origin, and they are resolved with 
regular patches and service packs. At the same time, sophisticated analysis of the 
well-known operating systems made by the world-renowned organizations, e.g. CERT 
or Secunia, testify to the 20 percents of vulnerabilities caused by incorrect security 
configuring and adjustment arranged by users or administrators. We consider the 
errors made at the time of security administrating as reasons of variety of operating 
system configuration vulnerabilities (OSCV). 

The OSCVs take after: 
• ignoring the security bulletins, published by vendors or security experts; 
• setting the different security adjustments that unobviously may conflict with each 

other or alternate other settings; 
• setting the security settings that may be contradicting to the applied security policy. 

The most typical examples of the OSCVs are using of trivial passwords, default 
security settings, or accidental system folder permissions. For instance, in Microsoft 
Windows 2000, if there is a shared folder created by administrator, the system grants 

D. Zegzhda P., P. Zegzhda D. and O. Kalinin M. (2005).
Detection of the Operating System Configuration Vulnerabilities with Safety Evaluation Facility.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 263-276
DOI: 10.5220/0002564902630276
Copyright c© SciTePress



'Full Access' to new object for 'Everyone'. If administrator is a novice in security, she 
could miss such fault and others could access to somebody's private files. Another 
example is that Dr.Watson, the built-in debugger in Microsoft Windows, starts every 
time after system fault. This program creates a dump file, e.g. C:\Winnt\user.dmp. 
Now imagine that OE falls down, and Dr.Watson runs. The dump corresponding to 
OE includes all mail accounts and passwords as plain text. Besides this, the NT file 
system (NTFS) creates a new file with default properties (the default access 
permissions among them) taken from the parent folder, e.g. C:\Winnt. The 'Everyone' 
group thus has a 'Full Control' over the dump file. And consequently, all private email 
passwords saved in the file becomes open for every user. The Linux-style operating 
systems obtain the OSCVs of the same sort: for instance, they have a SUID-related 
problem. Such kind of mistakes in protection environment reduces every solid and 
well-engineered security to 'zero'. 

To eliminate the OSCVs, administrator has to know the operating system on-the-
fly, observe its structure permanently, and analyze the security bulletins and updates 
operatively. Therefore, administrator needs to be in good knowledge of system inside. 
She should control countless numbers of the system securable objects. For instance, 
there are 36 types of the Microsoft Windows 2000 entities that are used with access 
differentiation. Among them there are 9 entities of the user level (e.g. group accounts, 
NTFS objects, system registry), and 27 kernel-level objects (e.g. jobs, processes, 
threads, objects of synchronization). Each object refers to the access control list 
(ACL), every entity (ACE) of which is a 32-bit mask. Users and groups obtain up to 
37 privileges. What is more, 38 local security settings specify the system-native 
security policy. Thus, even in the isolated station, a number of security combinations 
exceeds tens of millions, and it is a hard work to control them all manually. 
Consequently, to solve the task of security faultlessness we need a special facility for 
system security analysis. 

This paper discusses a technique of the security system analysis and a formal veri-
fication tool, the Safety Evaluation Workshop (SEW). It allows to specify the 
system's security-related elements and verify the system's safety against the OSCVs. 

This paper is structured as follows. Section 2 addresses the classification of 
security models and illustrates the safety problem background. Section 3 analyzes the 
related works in the field of safety modeling and evaluation. Section 4 introduces our 
safety problem resolving approach. Section 5 gives a review of the SEW's structure to 
analyze the safety of the operating system. In section 6, we explain the example of 
logical specification and security flaws detection for Sample Vulnerability Checking 
in Microsoft Windows 2000 using the SEW tool. Finally, section 7 discusses 
conclusion and future directions. 

2   A Safety Problem 

In general, security represents the combination of confidentiality, integrity or 
availability. The term of security model [1] could be interpreted as formal represen-
tation of secure system's confidentiality, integrity or availability requirements. In 

264



more general usage of the term, a security model specifics a particular mechanism for 
enforcing confidentiality, called access control, which brought over into computer 
security from the world of documents and safes. Security concerns arise in many 
different contexts; many security models have been thus developed. Access control 
models can be grouped into two main classes according to security policies [2]: 
• Mandatory Access Control (MAC): based on mandated regulations determined by a 

central authority; 
• Discretionary Access Control (DAC): based on the identity of the requestor and on 

access rules stating what requestors are allowed to do. 

Getting assurance that a system behavior will not result in an unauthorized access 
is called a safety problem [1]. For the listed model types, the security problem can be 
specified in the following manner: 
• MAC: governs access on the base of classification lattice of subjects and objects in 

the system. There is no safety problem for MAC, because safety of MAC has been 
proved theoretically in general case [3]. Verification of the safety of any kind of 
MAC policy is obvious as mathematical proof, but it becomes necessary in 
particular cases of real world realizations;  

• DAC: has a drawback that it does not provide real assurance on the flow of 
information in a system. Harrison, Ruzzo, and Ullman showed that the safety 
problem was undecidable in general case [4], and research was focused on 
determining whether safety could be decided for access control models with 
limited expressive power (e.g. [5][6]). They mathematically demonstrated that an 
access control model could be designed for which safety is efficiently decidable in 
polynomial time but given a few restrictions.  

Unfortunately, MAC-policies are not particularly well suited to the leading world-
known solutions and industry organizations that process sensitive information and. On 
the contrary, a great majority of the systems (e.g. operating systems, DBMS, 
firewalls) uses the DAC-based security models as the basis of access control 
mechanism. For instance, Microsoft Windows, Linux, Trusted Mach, and other 
protected systems use DAC realizations in form of ACLs, access bits, messages 
control, etc. Thus, the safety verification is the actual problem for security evaluation, 
especially for the wide-spread computer systems. In theory, safety can not be resolved 
for the DAC in general case, e.g. HRU model, on the whole. But the determining 
whether the system implementing access control model is safe or not can be resolved 
for the restricted case, i.e. for the definite system and for its definite states. In this 
paper, we use this statement to solve the safety problem of DAC-related access 
control by proposing universal specification and model checking tools. These tools 
allow the Evaluator to describe the system security elements, calculate the safety 
estimation for any security computer system based on the 'state machine' model, and 
detect the vulnerabilities of operating system security configurations. 

3   The Related Works 

Most of the other works on security resolving relates to safety evaluation and 
vulnerabilities detection. The ASL [7] is an example technique based on the formal 

265



logic language for security specification. Although it provides support for role-based 
access control, the language does not scale well to real systems because there is no 
way of modeling real access control rules. There is no specification of delegation and 
no way of modeling the rules for groups of identities. 

LaSCO [8] is a graphical approach for evaluating the security constraints on 
objects, in which the policy consists of two parts: domain (the system abstraction) and 
the requirements (authorization rules). The scope of this approach is good for 
demonstration, but far from implementation in life systems. 

Ponder [9] language is a specification language with object-oriented basis. It is the 
closest to the safety evaluation purposes. It has JAVA implementation, but it is not 
prepared for automated evaluation. For example, we need manually compose the 
system's structure, if we want to specify the hierarchical system. The Ponder-based 
system does not support the state modification and state transition. 

We have observed characteristics of the Windows-oriented vulnerabilities detectors 
(Enterprise Security Manager, Symantec Corp.; Intrusion SecurityAnalyst, Intrusion 
Inc.; NetIQ Security Analyzer, NetIQ Inc.; XSpider, Positive Technologies; Microsoft 
Baseline Security Analyzer, Microsoft Corp., etc). After analyzes, we have made 
some conclusions: 
• no solution investigates the system inside. For example, the known products have 

an eye on the well-known file paths or the security-critical folders. No one looks at 
security of the kernel mode objects; 

• no product allows composing the detection criteria. For example, the analyzed 
solutions use either the predefined checks or the scripts of the check sequence; 

• no detector predicts an effect of the security settings upon the reachable states of 
the system. 

However, to our knowledge, the general problem of the evaluation of the operating 
system security enforcement including weakness detection has never been addressed 
by any author. 

4   Safety Evaluation Resolving 

According to principals of the computer system modeling, we use the term of security 
model as the combination of system security states and transitions through access 
control rules. To check the safety of the system, we add to this schema of security 
model the term of constraints like a set of access restrictions given by user. If the 
constrains are set properly, there will be no OSCVs in the system. Criteria for the 
OSCVs checking we will call OSCV-criteria. 

The term of safety states that "something bad never happens". If a security system 
has safety problem in security, it means that the OSCV exists and secret information 
is leaked by unauthorized access. Assurance that a system behavior will not result in 
the unauthorized access is fundamental for ensuring that the enforcing of the access 
control model will guarantee the system security. An important feature of an access 
control model is the ability to verify the safety of its configurations. Using the 

266



approach of the system states, the definite system is safe according to the DAC 
model, if the following conditions met: 
1. The security state corresponding to the given initial system state conforms to the 

OSCV-criteria. 
2. The system access control mechanism realizes the access control rules. 
3. Every security state reachable from the initial one keeps the OSCV-criteria fair. 

The process of producing of the sets of the reachable states and the evaluating of 
the criteria is called a safety problem resolving. Formally, procedure of the states 
verification can be presented in the following manner. 

A system Σ is a state machine: Σ = {SΣ, T, Σ
inits , Q}, where: 

• SΣ denotes the set of the system states; 
• Q denotes the set of the queries executed by the system; 
• T denotes state transition function, T: Q×SΣ → SΣ that moves the system from one 

state to another. A request q issued in the state sΣ moves the system to the next 

state *Σs =T(q, sΣ); 

• Σ
inits  is the initial system state. 

A system Σ is a finite machine: a state sΣ is reachable iff there is a sequence <(qinit, Σ
inits ), ..., (qn, 

Σ
ns )> such that Σ

ns = sΣ, and Σ
is =T(qi, 

Σ
−1is ), 0<i<n. Note that Σ

inits  is 

trivially reachable.  

A general security model M is an ensemble of sets, M={S, R, C}, where: 
• S denotes the set of the security states defined by the security model; 
• R is the set of the access control rules in the form of logical predicates r(s, s') 

defined on S×S and checking that the transition from s to s' meets to the security 
model; 

• C is the set of the OSCV-criteria in the form of logical predicates c(s) defined on S 
and checking security of the state s. A state s∈S is secure iff for every criterion c 
the predicate c(s) succeeds: ∀c∈C: c(s)=true. 

A system safety property Λ can be formulized as Λ={M, Σ, D}, where D is the 
mapping function, D: SΣ→S, which sets the relation between the system states and the 
security states. 

By the definitions being specified, the System Safety Statement can be formulated. 
The system Σ implementing the model M is safe iff: 

1. ∀c∈C: c(D( Σ
inits ))=true, 

2. ∀ Σ
ts , Σ

+1ts ∈SΣ: Σ
+1ts =T(i, Σ

ts ) ∃si=D( Σ
ts ), si+1=D( Σ

ts ) and ∀r∈R: r(si, si+1)=true, 

3. ∀ Σ
ts ∈SΣ: Σ

ts  is reachable from Σ
inits , ∀c∈C: c(D( Σ

ts ))=true. 

This statement declares an analogous of the General Security Theorem [1, 3], but 
in reference to the safety problem in real computer systems. The System Safety 
Statement allows the system's security to be evaluated in practical realization of the 
DAC systems (e.g. Microsoft Windows series, Linux, BSD systems, all UNIX-related 
versions) and all other systems, security of which needs to be checked. Our approach 

267



also makes possible to discover the nature of the OSCVs, because it uses the states 
and the states transitions for the security evaluation. To make the checking of the 
System Safety Statement a routine procedure we have constructed a security 
configuration evaluation facility — Safety Evaluation Workshop (SEW). 

5   The Safety Evaluation Workshop 

For safety evaluation of systems security, we have proposed the SEW's structure [10] 
which consists of 7 components. The following figure shows the evaluation 
framework in the SEW. 
 

 

 

Fig. 1. The Safety Evaluation Workshop 

The functions of the SEW's parts are as follows: 
• Safety Problem Specification Language (SPSL): allows to specify the system state, 

the access control rules, and the OSCV-criteria, and thus to obtain the formal 
model of the evaluated system for further resolving;  

• Scopes: 
− Model-related System Security State Scope (M3S-scope): specifies the system 

security state in SPSL. For example, the scope for Microsoft Windows 2000 
contains the predicates describing all of the securable objects and their 
attributes, e.g. users, files, processes, kernel objects, ACLs, owners, 
memberships, etc; 

268



− Access Control Rules Scope (ACR-scope): specifies the access control rules in 
SPSL. For example, in Microsoft Windows 2000, this scope contains the rules 
that regulate the access control to the securable objects and that are realized in 
the system reference monitor (SRM). Rules have a form of Prolog clauses and 
allow the state transactions resolving and computing of the authorized accesses 
for any user; 

− State Security Criteria Scope (SSC-scope): expresses the OSCV-criteria in 
SPSL. For example, in Microsoft Windows 2000, this scope allows users to set 
checking of the Microsoft security bulletins or the firm security policy; 

• State Analyzer: investigates the system being evaluated and builds the M3S-scope 
of the system automatically according to the access control model; 

• Criteria Manager: allows the Evaluator to input the OSCV-criteria in convenient 
graphical mode and construct the SSC-scope; 

• Safety Problem Resolver: processes the scopes and detects the security 
vulnerabilities; 

• Security Flaw Explorer: demonstrates the sequence of events that lead to the 
security fault, and finds the security settings that are the reasons of the OSCVs; 

• Evaluation Reporter: produces the final report containing an initial state (in the 
terms of security settings), access control rules that lead to the security faults, 
OSCV-criteria that were resolved and found to be true, and an overall safety 
evaluation result. 

The core components of the SEW are the SPSL and the SPR. To specify the system 
security-related elements we have developed the language — SPSL. SPSL is a logical 
specification language to express the security states, access control rules, and OSCV-
criteria. The expressive power of SPSL allows specification of protection mechanisms 
of common-used operating systems such as Microsoft Windows 2000, Linux, etc.  

We also have composed the SPR tool which helps the Evaluator to process the 
SPSL-based specifications and to verify whether system security policy involves a 
safety problem. The SPR interprets the SPSL-based specifications and checks the 
system to meet the System Safety Statement: it evaluates the initial security settings by 
the given OSCV-criteria; then it generates all reachable states and checks them by the 
criteria. SPR tool is a logical machine based on the Prolog kernel and supplies with 
API implemented in C++ programming language. 

Other components of the SEW are built around the core modules and make the 
user's work more handy.  

6   Security Evaluation Example 

6.1   Sample Vulnerability Detection 

For easy understanding of security specification and SEW's functionality technique, 
we show a Sample Vulnerability Checking (SVC) applied in Microsoft Windows 
2000. 

269



Like in office workstation, our sample computer has MS Office installed. All of the 
MS Word templates of the user documents are located in the given folder, e.g. 
C:\Documents and Settings\Administrator\Application Data\Microsoft\Templates. 
Now let's imagine the situation when user named 'Administrator' shares her template 
with other users. To do it, she grants the access to read and write the template for the 
Microsoft Windows built-in group named 'Users'. If the violator, the member of the 
'Users' group changes the Normal.dot template file in the given folder so it contains 
the malicious code (e.g. macro viruses), all new documents of Administrator will be 
infected. This is the sample of the OSCV, in which user ignores or forgets the 
recommendations to protect the MS Word templates. 

6.2   The State Scope 

Like in well-known security models, our security states are the collections of all 
entities of the system (subjects, objects) and their security attributes (e.g. ACLs). In 
our example, we assume that a target of OSCV-criteria is a C:\Documents and 
Settings\Administrator\Application Data\Microsoft\Templates folder. The system 
security states may be presented as the M3S-scope. 

According to M3S-scopc mentioned above, we used the State Analyzer component 
of SEW to specify SVC's security state. The following code example shows the M3S-
scope of SVC generated with the State Analyzer. 

..........[abbreviation]........ 

subj('s-1-5-21-73586283-484763869-854245398-500', 

[type(user),name('administrator'), 

privileges([security,...,remoteinteractivelogon]), 

groups(['s-1-5-32-544'])]). 

..........[abbreviation]........ 

subj('s-1-5-32-545', 

[type(group),name(['users']), 

privileges([shutdown,...,networklogon])]). 

 

..........[abbreviation]........ 

obj('c:\\documents and settings\\user\\application 
data\\microsoft\\templates\\normal.dot', 

[type(file), 

owner(['s-1-5-21-73586283-484763869-854245398-
500']),inheritance(yes)], 

[['s-1-5-21-73586283-484763869-854245398-
500',tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]], 

['s-1-5-18',tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]], 

270



['s-1-5-32-544', 

tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]], 

['s-1-5-32-545',tnn,[0,1]]]). 

..........[abbreviation]........ 

This state specifies three entities: two subjects (one user, one group) and one object 
(the template file). Every entity is specified in SPSL format. Each predicate declares 
the security attributes of the corresponding unit. For example, user 'Administrator' has 
SID equal to S-1-5-21-73586283-484763869-854245398-500, some system 
privileges, and owns membership in the 'Administrators' group. The second predicate 
specifies the group named 'Users', which is characterized with some system privileges 
only. The third expression declares the object, the template file C:\Documents and 
Settings\Administrator\Application Data\Microsoft\Templates, which is the goal of 
vulnerability evaluation. The attributes of this file are: the owner SID, inheritance 
flag, and the object's ACL. As in the operating system, ACL is a set of access control 
entities, presented in the form of " SID – 'rights delegation' – 'access bits' ".  

In the same manner, using the State Analyzer, we can gather all of the system 
objects of the user mode as well as of the kernel mode. For example, the following 
predicate specifies the COM-object and its security configuration:  

obj('tlntsvr.exe', 

[type(com), owner(['s-1-5-32-544']), 

appID(['{b8c54a54-355e-11d3-83eb-00a0c92a2f2d}'])], 

[['s-1-5-32-544',tnn,[0]],['s-1-5-4',tnn,[0]], 

['s-1-5-18',tnn,[0]], 

['s-1-5-18',tnn,[1]]]).  

6.3   The Access Control Rules 

Access control rules express the restrictions on a system behavior. The system states 
transformation is able after the access authorized by the system reference monitor 
(access control mechanism). It checks the authorization possibility against the security 
policy requirements represented by access control rules. In SVC example, a subject 
can have actions of reading or writing according to the SRM policy of Microsoft 
Windows. To embody this mechanism we have investigated the Microsoft Windows 
inside (e.g. using the black-box testing strategy) and looked through innumerous 
Microsoft Press. It made us able to re-compose the protection subsystem in the form 
of clauses.  

Such specification can be called as the ACR-scope. The following code example 
shows the ACR-scope of SVC. For want of paper space, we do not describe all of the 
Microsoft Windows ACR-scope in SPSL. We just prepared a sample of the read 
access checking with some comments describing the SRM working: 

 

271



..........[abbreviation]........ 

allow_file_read(U, F):- 

% System security settings allow user U to traverse 

% through containers of file F 

   allow_traverse(U, F),  

% EPL is effective permissions list 

% for user U and file F 

   effective_permissions(U, F, EPL),  

% Get PL, the list of privileges granted to user U                         

   privileges_list(U, PL),            

% Privilege "Backup files and directories" 

% is granted to user U 

   ( member(backup, PL), !;           

% Permission "Read data" is granted to user U                              

   member(0, EPL),                    

% Permission "Read attributes" is granted to user U 

   ( member(7, EPL),!;                

% P is direct container of file F 

   container_of_file(P, F),           

% Permission "List folder" is granted to 

% user U for direct container of file F 

   group_permissions(U, P, 0) ),      

% Privilege "Backup files" is granted to user U                            

   ( member(restore, PL), !;          

% Permission "Synchronize" is granted to user U 

   member(20, EPL) ) ).               

..........[abbreviation]........ 

 

The 'read' access to the file is granted, if user has a 'traverse' permission for the file, 
or she has a 'Read Data' bit in her ACE referred to the file, or the user's group 
membership gives her some abilities to access the file. 

6.4   The Criteria 

The security criteria allow the customer or evaluator to delimit the secure and 
insecure states in security model. The criteria have the form of constraints which state 

272



the necessary conditions of the secure state. The system is safe by the OSCV-criteria 
if all logical goals corresponding to the criteria are true. If some criterion goal is true, 
then system breaks the safety conditions specified in the criterion. In SEW facility, 
security criteria can be noted as the SSC-scope. The special component of SEW, the 
Criteria Manager, allows to compose and edit the vulnerability criteria. This code 
example shows the SSC-scope written in SPSL. 

 

..........[abbreviation]........ 

criterion('Criterion #1: Users are not allowed to edit 
the file Normal.dot',  

mask, 

[obj('c:\\documents and settings\\administrator\\ 

application data\\microsoft\\templates\\normal.dot'), 

inheritance('tnn'), 

's-1-5-32-544'(0,1,2,3,4,5,7,8,6,16,17,18,19,20), 

's-1-5-18'(0,1,2,3,4,5,7,8,6,16,17,18,19,20)]). 

..........[abbreviation]........ 

 

The logical predicate denotes one of the criteria to be checked in Microsoft 
Windows system. It specifies the criterion description: criterion refers to Normal.dot. 
The type 'mask' points that there is a mask criterion, i.e. the checking of the concrete 
access rights to the given Normal.dot object. There is also a condition of safe system: 
only SYSTEM (its SID equals to S-1-5-18) and 'Administrators' group (S-1-5-32-544) 
are allowed to do 'Full Access' to Normal.dot. All other cases are considered to be 
vulnerable. 

In the mentioned style, we can compose a full range of OSCV-criteria. It becomes 
able to handle even context-related conditions, such as "The system is vulnerable, if 
Administrator can modify object X, provided she is connected to the local console". 
Such conditions are indeed part of Microsoft Windows security model. From the point 
of security, all kinds of user's activity in the system (such as connection to the local 
console, applications running, etc) are mapped to Win32API functions calls operated 
with the Windows recourses. List of functions calls and set of resources maintained 
by the Windows security (so named as securable objects) are defined in MSDN. 
Because of monitoring a variety of operations over the securable objects, we can 
analyze the user's activity in the system.  

6.5   Safety Evaluation Results Processing 

We have SPR input with a triple (M3S-scopc, ACR-scope, and SSC-scope) written in 
SPSL. Then we have run the resolving program for SVC. After the running 

273



procedure, we have got a result file — the security evaluation Report. The following 
text example shows the report file for SVC. 

 

*** SYSTEM SAFETY RESOLUTION *** 

CRITERION #1:  

Users are not allowed to edit the file Normal.dot 

 

>> VIOLATION DETECTED: 

subject        group  <Users> 

has unauthorized permissions  

       bits   [0,  1] 

          [Read Data,   Write Data] 

for object(s)    file c:\documents and settings\ 

       administrator\ 

       application data\ 

          microsoft\templates\ 

          normal.dot 

..........[abbreviation]........ 

The result for checking criterion 1 is failed. It means that there is some 
vulnerability in the security configuration. After analyzing unsafe state, the SEW 
discloses nature of security flaw, detecting the subject, object, and their attributes that 
lead to weakness. The evaluation verdict is "system is unsafe by this criterion", 
because members of group 'Users' have the 'Read Data' and 'Write Data' bits in the 
ACL, corresponding to the file Normal.dot.  

7   Conclusion 

In this paper, we have addressed to formal specification and vulnerability verification 
approach for secure operating systems. We discussed a technique of the security 
system analysis and a formal evaluation tool, the SEW. All these allow to specify the 
system security-related elements and verify the system safety. 

We illustrated the SEW-based checking which enables to verify safety property for 
secure systems, based on the security scopes. The SEW tool is to be useful for 
customers and evaluators of secure systems. These kinds of tools are rare in the 
security field, and no one of the known tools allows the criteria composing, the 
system inside inspecting, and the configurations influence predicting. The SEW 
facility brings the safety problem resolving to practice. The targets of its applications 

274



are the computer systems based on state machine presentation: the operating systems, 
DBMSs, and firewalls.  

At last decades, a number of individual countries developed their own security 
evaluation standards (e.g. [11]). In addition to, opening the way to world-wide mutual 
recognition of security evaluation results, the new Common Criteria (CC) [12] have 
been developed. For example, CC define 7 levels (EAL1…7) of assurance for 
security systems. To get a higher assurance, over EAL5, developers require to specify 
security model and verify its safety property using formal methods approach. Vendors 
are discouraged from offering secure systems because significant time and efforts are 
needed to develop a system capable for meeting the evaluation criteria and to marshal 
it through the evaluation process. Moreover, because of evaluation delays, an 
evaluated product is typically no longer the current version of the system, which 
necessitates repeated reevaluation. For high assurance systems, the difficulties of 
using formal methods add further complexity to both development and evaluation. 
However, given the lack of suitable mature, "industrial-strength tools" and the cost of 
a formal verification activity, informal approach represents a suitable compromise. 

The SEW is very useful for administrators and security officers to monitor the 
system securable resources (files, printers, accounts, processes, etc). The SEW allows 
any user to discover security of her system in-the-depth, and thus open the 'holes' in 
the protection. The OSCVs, as mentioned, represent a very serious problem in the 
modern operating systems. Contemporary systems operate with a huge number of 
security settings, and the user needs some tools that could explain the whys and 
wherefores of security weaknesses. The SEW utility makes this process closer to 
person than ever, because while logical resolving it marks the clause that caused fault 
of OSCV-criterion, and supplies user with a true reason of the security flaw. 

The current versions of the mentioned facility are aimed at such well-known 
systems as Microsoft Windows 2000/XP and Linux-style systems. For the future 
works, we will develop and elaborate the SEW components such as the State 
Analyzer, Criteria Manager, and Security State Explorer to support easy modeling and 
analyses for safety problem in Microsoft Windows Server solutions (i.e. Active 
Directory and Group Policy support). Besides, we are targeted at the remote security 
analysis. To achieve this we develop the Remote Agent module of the SEW which 
starts the State Analyzer remotely and transmits the scope through the networks. 

References 

1. J. McLean. Security Model, In Encyclopedia of Software Engineering, Wiley Press, 1994. 
2. J. Goguen and J. Meseguer. Security Policies and security models, In Proceedings of the 

1982 IEEE Symp. on Research in Security and Privacy, IEEE Computer Security Press. 
3. L.J. LaPadula and D.E. Bell. Secure computer systems: A mathematical model, ESD-TR-

278, VOL.2, The Mitre Corp., Bedford, MA, 1973. 
4. M.H. Harrison, W.L. R.uzzo, and J.D. Ullman. Protection in operating systems, 

Communications of the ACM, 19(8):461-471, 1976. 
5. M. Bishop and L. Snyder. The transfer of information and authority in a protection system, 

In Proceedings of the 7th ACM Symp. on Operating System Principles, pp. 45-54, 1979. 

275



6. S. Castano, M.G. Fugini, G. Martella, P. Samarati. Database Security, Addison-Wesley, 
1995. 

7. S. Jajodia, P. Samarati, and V.S. Subrahmanian. A Logical Language for Expressing 
Authorizations. Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA, 
1997. 

8. 2. J.A. Hoagland, R. Panday, and K.N. Levitt. Security Policy Specification Using a 
Graphical Approach. Tech. report CSE-98-3, UC Davis Computer Science Dept., 1998. 

9. 3. N. Damianou, N. Dulay, E. Lupu, M. Sloman. The Ponder Policy Specification 
Language. Proc. Policy 2001: Workshop on Policies for Distributed Systems and Networks, 
Bristol, UK, 2001. 

10. P.D. Zegzhda, D.P. Zegzhda, M.O. Kalinin. Logical Resolving for Security Evaluation, 
MMM-ACNS, pp. 147-156, 2003. 

11. Trusted Computer System Evaluation Criteria, DOD 5200.28-STD, Dec 1985. 
12. Common Criteria for Information Technology Security Evaluation, Part, 1: Introduction 

and General Model, Version 2.1. CCIMB-99, Aug 1999. 

276


