An Active Rule Base Simulator
based on Petri Nets

Joselito Medina-Mdn and Xiaoou Li

1 Seccon de Computaéin, Departamento de Ingeri@Ectrica
2 CINVESTAV-IPN, Av. IPN No. 2508, C.P. 07360, Mexico City,ico

Abstract. Event-condition-action rules, in active database systems, should be
performed carefully, because their firings can produce inconsistent states in data-
base systems. In this paper, an ECA rule base simulator is described, nhamed
ECAPNSIm, which uses a Conditional Colored Petri Net model to depict ECA
rules. It can model ECA rules, simulate their behavior, and perform a static analy-
sis.

Keywords: ECA rule, active database system, Petri nets.

1 Introduction

Active behavior of a database system (DBS) can be defined through a base of active
rules. The model most widely used is theent-condition-action (ECA) rulmodel,
whose general form is:

on evente; if conditionc; then actiona,

This model works in the following way: when an eventoccurs, if conditiore; is
evaluated, then actiasy is executed inside the database (DB).

Events in ADBs can be of two typeprimitive or composite. Aprimitive eventis
generated by the execution of an operation over the DB information (insert, delete, up-
date, or select), a transaction, a clock event (which can be absolute, relative, or periodic),
or the occurrence of a DB external event. On the other haordposite even{glisjunc-
tion, conjunction, sequence, closure, times, negation, last, simultaneous, and any) are
formed by the occurrence of a combination of primitive and/or composite events.

In this work, an ECA rule base simulator is presented, which is named ECAPNSIim.
In order to model an ECA rule base, ECAPNSIm uses a Petri Net (PN) approach, which
is based in a PN extension named Conditional Colored Petri Net (CCPN). CCPN pro-
vides properties of ECA rules, therefore, ECA rule bases can be converted into a CCPN
and then, ECA rule base simulation can be performed by using ECAPNSim.

2 Conditional Colored Petri Net

Petri Nets are a graphical and mathematical tool for modeling concurrent, asynchro-
nous, distributed, parallel, nondeterministic, and/or stochastic systems. Petri net may
be extended widely and applied in every area with logic relations. Up to now, few re-

searches have adopted Petri nets as ECA rule specification language [1], [2]. SAMOS is

Medina-Mauin J. and Li X. (2005).

An Active Rule Base Simulator based on Petri Nets.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 96-101
DOI: 10.5220/0002566500960101

Copyright © SciTePress

97

a successful ADB system, which partially uses Petri netsdonposite event detection
and termination analysis. But, the framework is not PettHpased [3]. Conditional
Colored Petri Net (CCPN) is an extended PN model, which wadified in order to
support features of ECA rules [4]. In a CCPN it is very easydtedt the existence of
both relationships and dependencies between two or mars aglcording to its graph-
ics representation. Moreover, both primitive and comgositents can be modeled.

2.1 General description

In a CCPN, ECA rule everttis stored as a plage, conditional part is stored inside
a transitiont, and the action rule, because of its similarity to an event, is stored in a
placep,. Therefore, ift is the transition where is stored the condition of rujehen
t = {p1}, andt® = {p2}, where*t is the set of the input places ofand¢* is the set
of the output places af

During CCPN execution, events occurring inside DB are deteby the CCPN,
and if there is a CCPN plagg representing to detected eventhen a token is gen-
erated with information about(e.g. the record of an employee) and with a timestamp
according to the time when the event was raised. By CCPN ¢érecthe new token is
sent to transitiort;, *¢; = {p1}, and the conditior: stored int; is evaluated against
token information. If token information is not enough to lexsdec then a query to DB
is executed to know the DB state and perform the evaluatian tfoc is evaluated to
true then one token with information about the rule actida generated and it is sent
to placep,, t = {p2}, which represents the ECA rule action

Composite events, that deal with time interval, evaluakenaimestamp, and if it
belongs to composite event interval, the token is sent toitsesponding transition.

Formally, a CCPN is defined as follows [5]:

Definition 1. A conditional colored Petri net (CCPN) is a 11-tuple
CCPN ={X,P,T,A,N,C,Con, Action, D, 1,1}

where

(i) X is a finite set of non-empty types, called color sets.

(i) P is afinite set of placed? is divided into subsets, i.el = Pprim U Peomp U
Pyirtuat U Peopy, Where Py,.;,, represents primitive events and it is depicted graphi-
cally as a single circlel,.,,, represents composite evenegation, sequence, closure,
last, history, and simultaneowd it is depicted graphically as a double cirdR;,+,.q:
represents composite evegtmjunction, disjunction, and argnd it is depicted graph-
ically as a single dashed circle. And,,,,, is a set which is used when two or more
rules are triggered by the same event and it is depicted maphas a double circle
where the interior circle is a dashed one.

(iii) T is afinite set of transitions’ = T}y U Teopy U Teomp-, WhereT,.,;. repre-
sents the set of rule type transitions and it is depictedigcafly as a rectanglel,,,,
is the set of copy type transitions and it is depicted graadlyi@s a single bafl.,,,, is
the set of composite type transitions and it is depictedigcaftly as a double bar.

(iv) A is a finite set of arcs.

(v) N is a node function. It is defined fromito P x TUT x P.

98

(vi) C is a color function. It is defined fron® to X.

(vii) Con is a condition function. It evaluates either the rule caodiif ¢t € T,
or it evaluates the time interval where T¢,, .

(viii) Action is an action function. It creates tokens according to actibes.

(ix) D is a time interval function.

(X) 7 is a timestamp function.

(xi) I is an initialization function.

2.2 CCPN execution

CCPN execution is modified because CCPN token takes timeniafiton and CCPN
transitions are evaluated only in certain intervals, fenthore transitions € T,.,,;. are
evaluated with the conditional part of ECA rule. [5] In CCRMmposite transitions and
rule transitions fire conditionally. A composite (rule)risition fires once it is enabled
and the temporal (rule) condition is satisfied.

Definition 2. In CCPN, atoken elementis a triple (p, ¢, stamp) whee P, c € C(p),
and stamp specifies the natural time when the token is depdsito placep. The sets
of all markings is denoted hy/.

Definition 3. Transitiont € T is enabled at a marking/ iff

1).Vp e *t:| M(p) |=0,type(t) = Negation
2).Vpe*t:| M(p) |> 1, else

3 ECAPNSIm

Active rules development is an activity that needs to bequeréd carefully. Nowadays,
there are few systems [2] which perform the analysis and gi¢he ECA rule base.
Most of commercial ADBs [7], [8] provide a syntax to ECA rulefahition, however
static analysis of ECA rules cannot be performed insidegthgstems and the ECA rule
definition is only in a text way.

ECAPNSIm (ECA Petri Nets Simulator) was developed under M2& X Server
in Java. Taking advantage of Java portability, ECAPNSimlmaexecuted in different
operating systems. As an engine of ECA rules, ECAPNSIim caiobheected with any
relational database systems such as Postgres, MS Acceste (and Visual Fox Pro.

3.1 ECAPNSIm architecture

ECAPNSIm architecture consists of two building blodk€ APNSim KernedndECAP-
NSim tools environment. ECAPNSIim Kerpebvides active functionality to passive
database. it consists of CCPN Rule Manager, CCPN rule basap@site Event De-
tector, and Rule Execution ComponeBCAPNSIm tools environmehas a set of tools
used by the ECA rule developers. Tools environment is coeubby ECA rule editor,
analyzer of no-termination problem, converter of ECA rule€CCPN, CCPN visual-
izer/editor and explanation components, terminationyaealand runtime tools.
ECAPNSIm offers two modalities. IBimulation mode, an user can simulate the
behavior of the ECA rule base modeled by depositing toketostie CCPN manually.
And, inReal mode the CCPN is executed by state modification of the conne&Bg.

99

(ECAPNSim: Eveni-Condition-Action & Petri Net Simulatar
‘[ile Edit Insert Mode Execution Tools Help

7 nlalawlala]al

Fig. 1. ECAPNSIim graphical interface.

3.2 ECAPNSIm Design

ECAPNSIm offers a graphical and visual interface to repre&CA rule bases by
CCPN model. Like any PN editor, ECAPNSIm simulates the biehasf ECA rules

by executing the CCPN model. Meanwhile simulation is rugniproblems like no-
termination and confluence can be observed obviously in ®@BNG hence ECA rule
developer can modify the rule base to improve it.

The core of ECAPNSiIm is CCPN models. ECAPNSIm contains a heddigener-
ate a CCPN structure from an ECA rule base definition writtea text file automati-
cally. Or a CCPN model can be edited directly from a ECAPNS&eru

ECAPNSIm supports CCPN design and edition from an ECA rugepanhich can
be moved to another position in the visualization panel. &édwer, because of there
are large ECA rule bases, ECAPNSiIm will generate large CCiRNtsIres, so it has
zoom buttons to either increase or decrease the CCPN sipelaion speed can be
controlled through a slide. Finally, the graphical inted#as tools and icons to edit a
CCPN, simulate a CCPN behavior, and CCPN file managemenirgfig.

4 Example

In order to illustrate the use of ECAPNSIim, a small ECA rulsé&s presented. The
rules are concerning to a small DB with three tables EMP, BGNahd SALES. Table
EMP whose attributes are the employee’s id, the employessnthe employee’s rank,
and the employee’s salary. Table BONUS whose attributetharemployee’s id for the
corresponding employee, and the bonus amount. Table SAllESaattributes are the
employee’s id, the month when the sales were made, and thberuh products that
the employee sold. Table definition is as follows: EMP(eishpname, rank, salary),
BONUS(empid, amount), SALES(emjid, month, number);

There are three events that will be monitored by the ECA ralseba) when the
attributeBONUS. anount is modified €0 : updatBONUS amount); b) when the at-
tribute EMP. r ank is modified (el : updat&MP_rank), too; and ¢) when the sales of
a month are registered into the DB and a new record is addesbla BALES (e2 :

100

P2

F1

Fig. 2. CCPN generated by ECAPNSIm.

insert SALES). Four ECA rules are used to illustrate this exampléctvare related to
DB structure described above. ECA rules description iseguresl in the next rows:

Rule 1: When an employee’s bonus is increased by more thanti®®the em-
ployee’s rank is increased by 1. Rule 2: When an employeel imnpdated, then
increased by 1, then the employee’s bonus is increased lisn&6 the new rank. Rule
3: When an employee posts sales greater than 50 and its raektloan 15, his bonus
is decreased by 100. Rule 4: When an employee’s rank reachasciéases the em-
ployee’s salary by 10%.

In figure 2 can be observed that evegts depicted by placg,, evente; is depicted
by placep;, and event, is depicted by place,. Placegs, ps € Tepy because event
e1, depicted byp,, is used in the firing of two rules (rules 2 and 4). Plagds only
output place, i.eps represents the action part of rule 4. TransitionNg:, ta, ts € Trule
store rules 1,2,3, and 4, respectively; and transitipre 7.,,, is used to replicate
information of event; in order to trigger transitiong andts.

In order to start the CCPN simulation in ECAPNSIm, a conspfdiaation is started
too. Console application establishes a communicationgaowith ECAPNSIim to send
the SQL instructions typed in it from an user. After that, BEMSIm takes the messages
sent by console and convert them in tokens, that are pladbe icorresponding CCPN
places. In this case, the simulation is started by typindiéxdonsole the instruction:
update bonus set amount = 150 where achp 1. When ECAPNSIm receives the
instruction, a token is generated and it is placeg inBecause op; is the input place
of ¢1, thent, is activated and fired; takes token information to evaluate the condition
stored in it, and if it is true according to the random evabhrgtthent; sends a token
to its output place,. If all transitionst € T;.,;. are evaluated to true, then the possible
DB states reachable from an event occurrence can be predicte

In real mode, the evaluation of condition stored in trans#it € T;.,,;. is verified
against the DB state. If the instruction typed in consolexecated in real mode, then
token generator will put a new token in plapg with information about the update

101

command. Condition part ity is evaluated to true, because amount is equal to 150,
and the condition isf ampunt > 100. Then, token generator creates a new token
according to action part of rule 1 storedt§) where the employee’s rank is increased
by one, i.e. the value for employee’s rank now is 4. New tolesent to the output
placep;, which sends the token tq. ¢4 replicates the token and it sends one token to
p3 and the other one tp,. Transitiong; andtz are activated, but they are not triggered
because both conditional parts of these transitions areiaea to false against the
token information.

5 Conclusion and Future Work

In this research work, an ECA rule base simulator ECAPNSifeigeloped. ECAP-
NSim uses a Conditional Colored Petri Net (CCPN) as a moddépict ECA rules.
Unlike other ECA rule simulators or DB management syster@ABNSIm is indepen-
dent on the actual database system, i.e., a developed EEAask can work with any
database system the communication bridge ODBC-JDBC bat&t€APNSIim and its
DBMS. Through the CCPN model, ECAPNSIim can simulate an EGé&lase behav-
ior and analyze its static properties. Furthermore, théapdity of the programming
language Java makes it possible to connect ECAPNSIm witly &MS in different
operating systems, such as Postgresql in both Linux andritesti platforms, and MS
Access, MS Visual Fox Pro, and Oracle, in MS Windows platfosta.

For future, ECAPNSIim will be enhanced with distribution étions such as defin-
ing interarrival times among primitive events.

References

1. Zimmer, D.: "Rule Termination Analysis based on a Rule Meta Model"Cladlab Report 2,
Cadlab, Bahnhofstr. 32, 33102 Paderborn, Germany, April 1995

2. Schlesinger, M. anddrincze, G. : "Rule modeling and simulation in ALFRED". 3rd Interna-
tional workshop on Rules in Database (RIDS'97)p&#te, Sweden, June, pp. 83-99, 1997

3. Gatziu S., Dittrich K.R., “Detecting Composite Events in Active Databasgeths Using
Petri Nets”, Proc. 4th International Workshop on Research IssueatamEngineering: Active
Database Systems, Houston, Texas, February 1994

4. Li X., Medina Main J., and Chapa S. V., "A Structural Model of ECA Rules in Active
Database’Mexican International Conference on Atrtificial Intelligence 02erida, Yucatan,
México, April 22-26, 2002

5. Li X., Medina Main J., "Composite Event Specification in Active Database Systems: A Petri
Net Approach”, IEEE International Conference on System, MathGyrbernetics, The Hague,
The Netherlands, Oct, 2004.

6. Jensen K., "An Introduction to the Theoretical Aspects of Colordd Rets”. Lecture Notes
in Computer Science: A Decade of Concurren@y/. 803, edited by J. W. de Bakker, W.-P. de
Roever, G. Rozenberg , Springer-Verlag, 1994, pp. 230-272

7. Hanson E.N., The Design and Implementéci of the Ariel Active Database Rule System
IEEE Transactions on Knowledge and Data Engineering, Vol. 8, Nehktuary 1996.

8. Widom J., The Starburst Active Database Rule SystdEBEE Transactions on Knowledge
and Data Engineering, Vol. 8, No. 4, August 1996.

