
An Active Rule Base Simulator
based on Petri Nets

Joselito Medina-Marı́n and Xiaoou Li

1 Seccíon de Computación, Departamento de Ingenierı́a Eĺectrica
2 CINVESTAV-IPN, Av. IPN No. 2508, C.P. 07360, Mexico City, Ḿexico

Abstract. Event-condition-action rules, in active database systems, should be
performed carefully, because their firings can produce inconsistent states in data-
base systems. In this paper, an ECA rule base simulator is described, named
ECAPNSim, which uses a Conditional Colored Petri Net model to depict ECA
rules. It can model ECA rules, simulate their behavior, and perform a static analy-
sis.
Keywords: ECA rule, active database system, Petri nets.

1 Introduction

Active behavior of a database system (DBS) can be defined through a base of active
rules. The model most widely used is theevent-condition-action (ECA) rulemodel,
whose general form is:

on evente1 if conditionc1 then actiona1

This model works in the following way: when an evente1 occurs, if conditionc1 is
evaluated, then actiona1 is executed inside the database (DB).

Events in ADBs can be of two types:primitive or composite. Aprimitive eventis
generated by the execution of an operation over the DB information (insert, delete, up-
date, or select), a transaction, a clock event (which can be absolute, relative, or periodic),
or the occurrence of a DB external event. On the other hand,composite events(disjunc-
tion, conjunction, sequence, closure, times, negation, last, simultaneous, and any) are
formed by the occurrence of a combination of primitive and/or composite events.

In this work, an ECA rule base simulator is presented, which is named ECAPNSim.
In order to model an ECA rule base, ECAPNSim uses a Petri Net (PN) approach, which
is based in a PN extension named Conditional Colored Petri Net (CCPN). CCPN pro-
vides properties of ECA rules, therefore, ECA rule bases can be converted into a CCPN
and then, ECA rule base simulation can be performed by using ECAPNSim.

2 Conditional Colored Petri Net

Petri Nets are a graphical and mathematical tool for modeling concurrent, asynchro-
nous, distributed, parallel, nondeterministic, and/or stochastic systems. Petri net may
be extended widely and applied in every area with logic relations. Up to now, few re-
searches have adopted Petri nets as ECA rule specification language [1], [2]. SAMOS is

Medina-Mauın J. and Li X. (2005).
An Active Rule Base Simulator based on Petri Nets.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 96-101
DOI: 10.5220/0002566500960101
Copyright c© SciTePress

a successful ADB system, which partially uses Petri nets forcomposite event detection
and termination analysis. But, the framework is not Petri-net-based [3]. Conditional
Colored Petri Net (CCPN) is an extended PN model, which was modified in order to
support features of ECA rules [4]. In a CCPN it is very easy to detect the existence of
both relationships and dependencies between two or more rules according to its graph-
ics representation. Moreover, both primitive and composite events can be modeled.

2.1 General description

In a CCPN, ECA rule evente is stored as a placep1, conditional partc is stored inside
a transitiont, and the action rulea, because of its similarity to an event, is stored in a
placep2. Therefore, ift is the transition where is stored the condition of ruler, then
•t = {p1}, andt• = {p2}, where•t is the set of the input places oft, andt• is the set
of the output places oft.

During CCPN execution, events occurring inside DB are detected by the CCPN,
and if there is a CCPN placep1 representing to detected evente then a token is gen-
erated with information aboute (e.g. the record of an employee) and with a timestamp
according to the time when the event was raised. By CCPN execution, the new token is
sent to transitiont1, •t1 = {p1}, and the conditionc stored int1 is evaluated against
token information. If token information is not enough to evaluatec then a query to DB
is executed to know the DB state and perform the evaluation toc. If c is evaluated to
true then one token with information about the rule actiona is generated and it is sent
to placep2, t•

1
= {p2}, which represents the ECA rule actiona.

Composite events, that deal with time interval, evaluate token timestamp, and if it
belongs to composite event interval, the token is sent to itscorresponding transition.

Formally, a CCPN is defined as follows [5]:

Definition 1. A conditional colored Petri net (CCPN) is a 11-tuple
CCPN = {Σ,P, T,A,N,C,Con,Action,D, τ, I}

where
(i) Σ is a finite set of non-empty types, called color sets.
(ii) P is a finite set of places.P is divided into subsets, i.e.,P = Pprim ∪ Pcomp ∪

Pvirtual ∪ Pcopy, wherePprim represents primitive events and it is depicted graphi-
cally as a single circle.Pcomp represents composite eventsnegation, sequence, closure,
last, history, and simultaneousand it is depicted graphically as a double circle.Pvirtual

represents composite eventsconjunction, disjunction, and anyand it is depicted graph-
ically as a single dashed circle. And,Pcopy, is a set which is used when two or more
rules are triggered by the same event and it is depicted graphically as a double circle
where the interior circle is a dashed one.

(iii) T is a finite set of transitions.T = Trule ∪ Tcopy ∪ Tcomp., whereTrule repre-
sents the set of rule type transitions and it is depicted graphically as a rectangle.Tcopy

is the set of copy type transitions and it is depicted graphically as a single bar.Tcomp is
the set of composite type transitions and it is depicted graphically as a double bar.

(iv) A is a finite set of arcs.
(v) N is a node function. It is defined fromA to P × T ∪ T × P .

97

(vi) C is a color function. It is defined fromP to Σ.
(vii) Con is a condition function. It evaluates either the rule condition if t ∈ Trule

or it evaluates the time interval whent ∈ Tcomp.
(viii) Action is an action function. It creates tokens according to actionrules.
(ix) D is a time interval function.
(x) τ is a timestamp function.
(xi) I is an initialization function.

2.2 CCPN execution

CCPN execution is modified because CCPN token takes time information and CCPN
transitions are evaluated only in certain intervals, furthermore transitionst ∈ Trule are
evaluated with the conditional part of ECA rule. [5] In CCPN,composite transitions and
rule transitions fire conditionally. A composite (rule) transition fires once it is enabled
and the temporal (rule) condition is satisfied.

Definition 2. In CCPN, a token element is a triple (p, c, stamp) wherep ∈ P , c ∈ C(p),
and stamp specifies the natural time when the token is deposited into placep. The sets
of all markings is denoted byM .

Definition 3. Transitiont ∈ T is enabled at a markingM iff

1).∀p ∈ •t :| M(p) |= 0, type(t) = Negation

2).∀p ∈ •t :| M(p) |≥ 1, else

3 ECAPNSim

Active rules development is an activity that needs to be performed carefully. Nowadays,
there are few systems [2] which perform the analysis and debug the ECA rule base.
Most of commercial ADBs [7], [8] provide a syntax to ECA rule definition, however
static analysis of ECA rules cannot be performed inside these systems and the ECA rule
definition is only in a text way.

ECAPNSim (ECA Petri Nets Simulator) was developed under MACOS X Server
in Java. Taking advantage of Java portability, ECAPNSim canbe executed in different
operating systems. As an engine of ECA rules, ECAPNSim can beconnected with any
relational database systems such as Postgres, MS Access, Oracle, and Visual Fox Pro.

3.1 ECAPNSim architecture

ECAPNSim architecture consists of two building blocks:ECAPNSim KernelandECAP-
NSim tools environment. ECAPNSim Kernelprovides active functionality to passive
database. it consists of CCPN Rule Manager, CCPN rule base, Composite Event De-
tector, and Rule Execution Component.ECAPNSim tools environmenthas a set of tools
used by the ECA rule developers. Tools environment is composed by ECA rule editor,
analyzer of no-termination problem, converter of ECA rulesto CCPN, CCPN visual-
izer/editor and explanation components, termination analyzer and runtime tools.

ECAPNSim offers two modalities. InSimulation mode, an user can simulate the
behavior of the ECA rule base modeled by depositing tokens into the CCPN manually.
And, inReal mode, the CCPN is executed by state modification of the connectingDBS.

98

Fig. 1.ECAPNSim graphical interface.

3.2 ECAPNSim Design

ECAPNSim offers a graphical and visual interface to represent ECA rule bases by
CCPN model. Like any PN editor, ECAPNSim simulates the behavior of ECA rules
by executing the CCPN model. Meanwhile simulation is running, problems like no-
termination and confluence can be observed obviously in the CCPN, hence ECA rule
developer can modify the rule base to improve it.

The core of ECAPNSim is CCPN models. ECAPNSim contains a module to gener-
ate a CCPN structure from an ECA rule base definition written in a text file automati-
cally. Or a CCPN model can be edited directly from a ECAPNSim user.

ECAPNSim supports CCPN design and edition from an ECA rule base, which can
be moved to another position in the visualization panel. Moreover, because of there
are large ECA rule bases, ECAPNSim will generate large CCPN structures, so it has
zoom buttons to either increase or decrease the CCPN size. Simulation speed can be
controlled through a slide. Finally, the graphical interface has tools and icons to edit a
CCPN, simulate a CCPN behavior, and CCPN file management. (figure 1).

4 Example

In order to illustrate the use of ECAPNSim, a small ECA rule base is presented. The
rules are concerning to a small DB with three tables EMP, BONUS, and SALES. Table
EMP whose attributes are the employee’s id, the employee’s name, the employee’s rank,
and the employee’s salary. Table BONUS whose attributes arethe employee’s id for the
corresponding employee, and the bonus amount. Table SALES whose attributes are the
employee’s id, the month when the sales were made, and the number of products that
the employee sold. Table definition is as follows: EMP(empid, name, rank, salary),
BONUS(empid, amount), SALES(empid, month, number);

There are three events that will be monitored by the ECA rule base, a) when the
attributeBONUS.amount is modified e0 : updateBONUS amount); b) when the at-
tributeEMP.rank is modified (e1 : updateEMP rank), too; and c) when the sales of
a month are registered into the DB and a new record is added in table SALES (e2 :

99

Fig. 2.CCPN generated by ECAPNSim.

insertSALES). Four ECA rules are used to illustrate this example, which are related to
DB structure described above. ECA rules description is presented in the next rows:

Rule 1: When an employee’s bonus is increased by more than 100,then the em-
ployee’s rank is increased by 1. Rule 2: When an employee’s rank is updated, then
increased by 1, then the employee’s bonus is increased by 10 times the new rank. Rule
3: When an employee posts sales greater than 50 and its rank lower than 15, his bonus
is decreased by 100. Rule 4: When an employee’s rank reaches 15, increases the em-
ployee’s salary by 10%.

In figure 2 can be observed that evente0 is depicted by placep0, evente1 is depicted
by placep1, and evente2 is depicted by placep2. Placesp3, p4 ∈ Tcopy because event
e1, depicted byp1, is used in the firing of two rules (rules 2 and 4). Placep5 is only
output place, i.e.p5 represents the action part of rule 4. Transitionst0, t1, t2, t3 ∈ Trule

store rules 1,2,3, and 4, respectively; and transitiont4 ∈ Tcopy is used to replicate
information of evente1 in order to trigger transitionst1 andt3.

In order to start the CCPN simulation in ECAPNSim, a console application is started
too. Console application establishes a communication process with ECAPNSim to send
the SQL instructions typed in it from an user. After that, ECAPNSim takes the messages
sent by console and convert them in tokens, that are placed inthe corresponding CCPN
places. In this case, the simulation is started by typing in the console the instruction:
update bonus set amount = 150 where empid = 1. When ECAPNSim receives the
instruction, a token is generated and it is placed inp1. Because ofp1 is the input place
of t1, thent1 is activated and fired,t1 takes token information to evaluate the condition
stored in it, and if it is true according to the random evaluation, thent1 sends a token
to its output placep2. If all transitionst ∈ Trule are evaluated to true, then the possible
DB states reachable from an event occurrence can be predicted.

In real mode, the evaluation of condition stored in transitionst ∈ Trule is verified
against the DB state. If the instruction typed in console is executed in real mode, then
token generator will put a new token in placep0 with information about the update

100

command. Condition part int0 is evaluated to true, because amount is equal to 150,
and the condition isif amount > 100. Then, token generator creates a new token
according to action part of rule 1 stored int0, where the employee’s rank is increased
by one, i.e. the value for employee’s rank now is 4. New token is sent to the output
placep1, which sends the token tot4. t4 replicates the token and it sends one token to
p3 and the other one top4. Transitionst1 andt3 are activated, but they are not triggered
because both conditional parts of these transitions are evaluated to false against the
token information.

5 Conclusion and Future Work

In this research work, an ECA rule base simulator ECAPNSim isdeveloped. ECAP-
NSim uses a Conditional Colored Petri Net (CCPN) as a model todepict ECA rules.
Unlike other ECA rule simulators or DB management systems, ECAPNSim is indepen-
dent on the actual database system, i.e., a developed ECA rule base can work with any
database system the communication bridge ODBC-JDBC between ECAPNSim and its
DBMS. Through the CCPN model, ECAPNSim can simulate an ECA rule base behav-
ior and analyze its static properties. Furthermore, the portability of the programming
language Java makes it possible to connect ECAPNSim with many DBMS in different
operating systems, such as Postgresql in both Linux and Macintosh platforms, and MS
Access, MS Visual Fox Pro, and Oracle, in MS Windows platform, etc.

For future, ECAPNSim will be enhanced with distribution functions such as defin-
ing interarrival times among primitive events.

References

1. Zimmer, D.: ”Rule Termination Analysis based on a Rule Meta Model”. In: Cadlab Report 2,
Cadlab, Bahnhofstr. 32, 33102 Paderborn, Germany, April 1995

2. Schlesinger, M. and L̈orincze, G. : ”Rule modeling and simulation in ALFRED”. 3rd Interna-
tional workshop on Rules in Database (RIDS’97), Skövde, Sweden, June, pp. 83-99, 1997

3. Gatziu S., Dittrich K.R., “Detecting Composite Events in Active Database Systems Using
Petri Nets”, Proc. 4th International Workshop on Research Issues inData Engineering: Active
Database Systems, Houston, Texas, February 1994

4. Li X., Medina Maŕın J., and Chapa S. V., ”A Structural Model of ECA Rules in Active
Database”,Mexican International Conference on Artificial Intelligence 02, Mérida, Yucatan,
México, April 22-26, 2002

5. Li X., Medina Maŕın J., ”Composite Event Specification in Active Database Systems: A Petri
Net Approach”, IEEE International Conference on System, Man, and Cybernetics, The Hague,
The Netherlands, Oct, 2004.

6. Jensen K., ”An Introduction to the Theoretical Aspects of Colored Petri Nets”. Lecture Notes
in Computer Science: A Decade of Concurrency, vol. 803, edited by J. W. de Bakker, W.-P. de
Roever, G. Rozenberg , Springer-Verlag, 1994, pp. 230-272

7. Hanson E.N., ”The Design and Implementación of the Ariel Active Database Rule System”,
IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 1, february 1996.

8. Widom J., ”The Starburst Active Database Rule System”, IEEE Transactions on Knowledge
and Data Engineering, Vol. 8, No. 4, August 1996.

101

