Tree Automata for Schema-level Filtering of XML
Associations

Vaibhav Gowadia and Csilla Farkas

Information Security Laboratory
and
Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208

Abstract. In this paper we present query filtering techniques based on bottom-
up tree automata for XML access control. In our authorization model (RXACL),
RDF statements are used to represent security objects and to express the security
policy. Our model allows to express and enforce access control on XML trees
and their associations. We propose a query-filtering technique that evaluate XML
queries to detect disclosure of association-level security objects. A qudry-

closes a security objeetiff the (tree) automata corresponding dacceptsQ.

We show that our schema-level method detects all possible disclosures, i.e., it is
complete.

1 Introduction

Several XML access control models have been developed recently [1-6]. They allow
node-level security granularity by assigning access restrictions to the nodes and links
of XML documents. However, none of these models provide access control for data
associations. Intuitively, an association security object is an XML subtree that is disal-
lowed to be accessed by a user, while all of its proper subtrees are permitted separately.
Incorporating association in an access control model increases data availability while
preserving confidentiality.

The RXACL architecture, introduced in [7], provides flexible access control gran-
ularity by allowing security classification of XML nodes and subtrees (simple security
objects), and associations among nodes (association security objects). In [7] we pro-
posed a technique to enforce association-based access control at data-level (i.e., check
for security violation after query processing) and it is outside the scope of this paper.
In this paper we extend RXACL architecture by presenting techniques for performing
security check before the query is processed. Our work is similar to those proposed by
Murata et al. [5] and Luo et al. [6]. However, their method supports node-level security
objects only. The automata model, used by them is not sufficient to model association-
level security objects. In this paper, we use bottom-up tree automata to represent secu-
rity objects.

° This work was partially supported by National Science Foundation grant number 11S-0237782.

Gowadia V. and Farkas C. (2005).

Tree Automata for Schema-level Filtering of XML Associations.

In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 136-145
DOI: 10.5220/0002575401360145

Copyright © SciTePress

137

We propose a data-independent technique to recognizeoslisel of association
level security objects by XML queries. Results of our analysn be (1) association
objects are disclosed, (2) association objects are ndbdisd, or (3) association objects
may be disclosed. Options 1 and 2 indicate that the quernjdhetrejected or accepted,
respectively. If the third option is reached, data-levedlgsis is required to evaluate
whether a security violation is present or not.

We present a two-layered association filtering methodt Riesdetect disclosure of
association in a given query-pattern, i.e., informatiooasted in the XML query itself.
Second, wextendquery-pattern with document schema to represent all sclviora
mation that the query answer would reveal to a user. XML opertyerns are labeled-
trees where node labels may be variables, constants, op#uas symbol '//'(self-
or-descendant axis [8]). We model association securitgabjwithpattern automatas
(Definition 8). A pattern automata takes (extended) quextyepns as input and reaches
an accepting state if and only if the input discloses the tyanbject represented by it.
The main technical contributions of this paper are the dgmaknt of pattern automatas
for security objects and the notion of extended query-patié/e present algorithms to
construct query-pattern, pattern automata, and to deistdbdure of security objects.

The organization of the paper is as follows: next sectiorsgmés an overview of
RXACL architecture and query filtering mechanism. Sectiam@®duces formal defin-
itions of basic constructs used in this paper. Section 4gmtssalgorithms for construct-
ing query-pattern, association pattern automata and ctlassociation disclosure.
Section 5 introduces the notion of extended query-pattedhpeesents a schema-level
security analysis of query. We conclude in section 6 anduisire work.

2 RDF-based XML Access Control Architecture

Figure 1 shows the RXACL architecture. The architecturgaios four main compo-
nents: 1. Query filter 2. Query engine, 3. Data level accessaoand 4. User history.
The query filtering component performs schema-level aisalysdetermine whether
answer to the input query : (1) violates access control pdlilating), (2) does not
violate the access control policgdfe, or (3) requires a data-level security check to de-
tect possible violationsufisaf¢. The XML query engine is responsible for generating
responses to user’s requests. RXACL uses an existing XMkygergine, the devel-
opment of such an engine is outside of the scope of this p@perdata-level access
control component analyzes the query-answer based on theitgepolicy and data
previously released to the user [7]. The history componeepk track of answered
query-patterns and data released to each’user.

When a data request is submitted to a RXACL system, queryifigaromponent
first checks for disclosure of disallowed associationdleeeurity objects in the query
(without utilizing the XML schema information). If a disallved association-level secu-
rity object is disclosed, the query is immediately rejectetherwise, the query-pattern
is extended with schema information and query-patternsafipusly answered queries
to the user. Extended query-pattern are now checked fdialigal objects. If no disal-
lowed association-level security object is disclosed ieersted query-pattern the query

! Due to space limitation the handling of the history file is not presented in thissoept

138

answer is labeledafe Otherwise, it is labelednsafe The query is submitted to XML
query engine for further processing. The result of unsaéyjsi evaluation are further
evaluated for possible data-level violations as describgd]. Answer to safe queries
is returned to user without further security analysis. Hbgeeries that are answered,
user history is updated with query-pattern and released @it assurance of our query
level filtering is based on the completeness property of tteifig.

13, 19. Return Answer 12. Safe Answer
| Updae 17.
History -
1 No Violation| Data Level -
18 Security - »-| Security Check | 15 nsate
: Policy 17. Reject (violation)k Answer
(RXACL)
14. No Violation
4. 16. Return Tree!
v 1s. Y -
History =
File \i Tree Extension|
Generate Patter+ 10
2 Automata
. . 11.Violation
! : 7. No Y (Unsafe Query),
1-Query [ynjte : Violation| Extend 9 [check
—® | Query Patterns Query Pattern Disclosure e o |
8 11.No Violation
. (Safe Query)
6. Reject Query (Violation)

Fig. 1. RXACL architecture for enforcing XML access control

3 Definitions

This section describes definitions necessary to model XMirigs , association objects,
and XML schema.

Definition 1. (Labeled-tree)
A labeled-tregor a tree, is defined recursively as follows: (1) the empty bés a tree,

called the empty tree, (2) a singhede{n} is a tree, and (3) ify, to, . . ., t; are trees,
then{n — {t1,ts,...,t;}} is a tree. In this case we say tHat — {t1,t2,...,tx}}
represents the tree whose raohas outgoing edges to subtreests, . . ., t.

The nodes of the trees are labeled. Labels may be constamis, variables (corre-

sponding to any node value), or path variables (corresporidi any path). Constants
correspond to element, attribute and text values. Nodeslddbwith text-values are

called text nodes and are always leaf nodes. Attribute nodashave only on child

node, a text node. Also, any two attribute nodes of a givemele cannot have same
label. Element nodes can have zero or more child nodes thdtecalements, attributes,
or text nodes. We denote element nodes withattribute nodes with;, and text nodes

with pcdata

139

A labeled tree is called ground treeif all of its nodes are labeled with constants. An
XML instanceT is a ground-tree.

Definition 2. (Path-expression)

Letp = {n, {a1,...,a,}} represent a single nodeand its child nodes corresponding
to attributesay, . .., a;, wheren is either a constant, or a variable.path-expression

is defined as: 1p is a path expression, Zp; — p» — ... — pi} is a path-
expression where,; (i = 1,...,k) are path-expressions, 3. Let // denote an arbitrary
path-expression. Then the following are also path-exfyess{// — p1 — ... —

pmb Ap1 = // = Pm}-

DTD [9] and W3C XML Schema [10] satisfy a constraint that aildimodes of any
given node must have unique names. Trees satisfying thistreamt are calledingle-
typetree [11]. Path-expressions are single-type trees.

We consider XQuery syntax [12] of the following form:

Definition 3. (XML Query)

An XML query Q is of the following form:

FORwyg in P,

LET vy := Py,...,v:= B

RETURN{n — {w,...,7;}}

WHERE (; == 7; and. .. andt; == 7,,)

where,v; (¢ = 0,...,1) are variables of query (we refer to them @sery-variables
in rest of this paper)y; (i = 0,...,m) represent a path-expressi¢n, — p'} (i =
1,...,1) andp’ is a path-expression that does not contain any query-‘asa (i =
0,...,1) are path-expressions, ands a constant.

Given a XML query@, the first step in query filtering architecture is to build gue
pattern ofQ. LetV = {vy,vq,...,v;} be the set of query-variables definedijnand
V = {v1,73,...,0m} be the path-expressions in the RETURN or WHERE clause of
the query. Intuitively, the query-pattern is constructgdibitingthe path-expressions in
V. Since path-expressions may contain query-variables.atd a method to eliminate
query variables. A formal definition of variable-subsiibat follows.

Definition 4. (Variable-Substitution)

Let$v; = {pr — ... — p}, and$v; = {$v; — p} — ...p},} be two assignments in
the FOR or LET clause of the XML query. Yariable substitutiorreplacestv; in the
second assignment witp; — ... — p;}.

Example 1. Consider the single-type tfBe= {$x — {a,d}}, where$z = {// —
{r}} is a query-variableSubstituting$z, we getl’ = {// — {r — {a,d}}}. O

Definition 5. (Single-type Tree-Merge)

LetP, ={n}{ —ny —...n, = ngq —...n;yandP, = {n} —nj —...nj —
ni,, — ...n%} be two ground path-expressions over the same schema. We defin
mergeof path expressions as follows:

if ni =ni,ny =n3,....,n, =ni,andn} , #ni, ,, then

PlUs Py={n{ - n}...n, — {{ni_i_l —>...Hnll},{n£+1 — ... —n2}}

140

We extend the notion of merging paths to merging single-tyges. Letl; = {n —
{t1,t2,...,tx}} andTy = {n’ — {t},15,...,t;}} be two trees, then their merger
Ty Ug Ty is defined as follows:

LTus Y pust™r

2. ifn#n/, Ty Us To = {T1, T> },(trees cannot be merged).
3. if n = n’, then letT" = {}. For all pathg originating from the root irf’; andTx,
doT =T Ugp.T1 Us Ty =T.

The query-pattern of an XML querg is a labeled-tree representing all data dis-
closed byQ, i.e., all data returned to the user or accesse@ by

Definition 6. (Query-Pattern)

Let @ be the given XML query and, ..., P, are path-expressions that occur in the
RETURN or the WHERE clause @. If P, == P; is a condition in the WHERE
clause, we add a new leaf node labeled with a data-varietol®; andP;. Substitute all
query-variables irPy, . .., P,,. Query patterrP is the labeled-tree produced by merging
pathsPy, ..., P,. Algorithm 1 shows the construction of the query-pattern.

Example 2. Consider the following XML que@¥s: FOR $ in //r LET $y = $/d,
$z := $x/a RETURN<answer- {$z/c} </answer- WHERE{ $z/b == $y }. LetT,
be the tree in the return statement of Qué}y. T, specifies structure of query answer
being returned to the user. To evaluate the query-an$wgl and $y must be accessed.
Query-pattern constructed from quef is shown in Fig. 2(c). m|

Algorithm 1 : Algorithm to construct query-pattern

input : QueryQ

output: Query-Pattern Tre®

LetV= {vy, ..., vy} bethe setof variables defined@

LetP= {py,..., pm } be the set of path-expressions in RETURN and WHERE clauge of
i+ 1

list «— {} I*List of sets, where each set contains path-expressioWdHERE clause o), such that their values are transitively equal*/
I* Extend the path-expressions with a data-variable, shahgath-expressions equated in WHERE clause have sameatithle.*/
foreachexpressionp; == pp,) in WHERE clause o@ do
if p; € SandSisasetinlist then

Append leaf node op; to pp,

Add p, to S

elseifpp, € S andS isasetinlist then
Append leaf node op, to p;
Addp; to S

else
Create a new data-variabie;
Appendv; top; andpp,
Createasef = {p;, pn}
Add S tolist
i+—i+1
I* Removing query-variables from path-expressions*/
for i := 1tom do
LetT; « p;, wherep; €P
Letr « root node ofT’;
repeat
Substituter in T'; , with its assigned value (by= or in operator) inQ
7 <« root node ofT’;
until r is a constant or '/

/* Uniting path-expressions to obtain query-pattern */
Initialize T — {}
for i := 1tom do

L T—TuUgT;

return T

141

Definition 7. (Protection Object)

A simple security objeectis a node-labeled tree, where all distinct subteges, . . ., ty,
of o have the same access permissiom.aghat is, for every proper subtreég € o,
A(o) = A(t;), whereA(o) andA(t;) denote the security classification@éndt; respec-
tively. Simple security objects are equivalent to nodeslesecurity classification. An
association security objectis a node-labeled tree where every proper subtreeo,
Ao) > At) i=1,...,n).

We construcPattern AutomatagPA) (similar to the tree-automatas in [13, 14]) to
represent security objects.

Definition 8. (Pattern Automata)

Let E be a set of node-labels for elements, A be a set of ndmidldor attributes,
and let the labebcdatarepresent all text nodes. A Pattern Automata is definetl as
{X,Q,q,Q¢,0}, whereQ = {qo,..., ¢} is a finite set of automaton states, =
EUAU{pcdata, //} is automata alphabet, '//" is a symbol for self-or-descemnaais,
qo Is start state) s C @, (qo & Q) is set of accepting final states, afi set of state
transition rules.

Leto € Yislabel of scanned nod¥ of a query pattern and therefore the next input
symbol for the automata, ar@l. C @ is set of states associated with child nodegvof
A valid transition is of the formg (¢;, . .., q;) — qx, where{g;, ..., ¢;} C Q., andgy,
is state associated with N after scanning. For simplicigy,will often write transition
rule in the formo(Q;) — g, whereQ; = {q,...,q;} is set of states required for
transition. To distinguish data values from labels of elete@and attributes, we write
data values inside []. I# does not contain a valid transition rule, by default theestat
associated with the scanned nodegjis

4 Security Analysis of Query Pattern

RXACL performs security analysis by evaluating query-@attwith the pattern au-
tomatas corresponding to protection objects. An accetiatg is reached if the pro-
tection object is disclosed by the input pattern. Theseraatas can also be used for
recognizing possible disclosure of security objects byynpatterns extended with doc-
ument schema as discussed later in section 5.

A pattern automatoi’ accepts a query-pattefiff there is at least one accepting
path of transitions that reads complé®e For clarity, in this paper we allow use of
wildcard symbol §) to represenanyalphabet symbol. Let us now consider an example.

Example 3. The following automatoty = {X,Q, g0, Qs,0} is a XML Pattern Au-
tomata that accepts query patterns disclosing associatigr(see Fig. 2(b)). An ac-
cepting run of this automaton on que®y is shown in Fig. 2(d). It means that answers
of QQ discloseAs. O

We now present an algorithm (See Alg. 2 and Proc. AddRulegkterate pattern
automata for associationsGiven a query-patter® a pattern automatoX is gener-
ated, such that on input’, X accepts iffP is contained inP’. Algorithm 2 performs

2 Full version of our security analysis algorithms is given in technical nepoailable at
http://www.cse.sc.edu/research/isl/

142

Q = {90 9a> W, qc} an
Y ={a,b,c,//}, é @q
Q- {0} b
f = Ways» 9a
5= {) — . @ @ @ . :
) — 4o é &
a — @ @ G 9o
(qln(JC) Ga / q
(40) — 42} S CRC
() (b) (c) (d)

Fig. 2. (a) Pattern automata examptg (b) Example associatiod; (c) Query-pattern of). (d)
States oft; (¢;) on query-pattern o). as input.

a bottom up traversal of the association security objedlfaled-tree). At each step of
traversal the label of current node is read. If the label &irfor first time, it is added
to pattern automaton’s alphabet and a new state is alscedrdéithe label denotes a
self-or-descendant edge in the query-pattern then a timmsule with a wildcard (*)
for read symbol is added to the pattern automata. Othervdsasition rule with symbol
read at the current node is added.

Algorithm 2: Algorithm to generate pattern automata

input : Association patter®
output: Pattern AutomatX = { 2, Q, qq, Qf, 5}

Q «— {ao}

> «— {//, pcdata}

Qs — {}

§— {}

X—{¥,Q,q0, Qf, 5} LetS be a global stack

S « 0 /*Sisaglobal stack used to remember states of child nodesgibottom-up traversal d® */
X « AddRul es (P, X)

Qy — pop(S)

return X

Theorem 1. Let@ be an XML queryP the query-pattern generated fragn(Def. 6),0
an association object amtD the association-automata representihd he association-
automatadO accepts a input query-pattefiff there exists an XML instancé such
that the answer t@ overI disclosesD.

Proof Sketch: (=) The pattern-automata performs bottom-up traversél,afe., states

of child nodes are evaluated before evaluating state fdnrode. Letn be a node inP?
scanned to detect disclosure®@flIf » is a leaf node D, there must exist a valid transi-
tion of form {n() — ¢} € J, whered is the transition function of pattern-automat&
created by Algorithm 2. If is an internal node with child nod€s., . .., ns}, Algo-
rithm 2 generates a transition rule of the fofm(q1,...,qx) — ¢}, whereq, ..., qx

are states associated with, . . . , ny, respectively. Clearly there exists an accepting path

143

Procedure AddRul es(Root, Pattern Automaja

input : Pattern tre@, Pattern AutomatX = { X, Q, qq, Qf, 5}
output: Modified Pattern Automatx

root «— root node of?
Qc— {}
list «<— child nodes ofoot
foreachnode in list do
| X <« AddRul es(node, X) /* Perform bottom-up tree traversal */
if list # @ then
n «— Length oflist
while n. > 0 do
Q¢ «— QcUpop(S) /*Retrieve automata states after scanning child nodes */
n—mn-—1

label < Label Of (root)
if label ="//" then
foreach stateq € Q. do
L 6 —=du{+(q) — q}}

else

Find set of transition ruleg, of the form { label (Q”) — ¢} in &

if R is emptythen
Create a new staigy, ey /* label(Q’) is read for the first time*/
Q— QU {anew}
§ — 6 U {label(Qc¢) — qnew}
push(S.{anew})

elseifQ. # Q' forallrulesin R then
Create a new staigy, ¢ v, /* Transitions exist fo abel Q” but are not applicable*/
Q — QU {dnew}
§ — s U {label(Qc) — qnew}
push(S.{anew})

else

L push(S,{q}) /* An existing transition leading to statgis applicable*/

return X

of automata evaluation if the association pattern is tsmaer Thus, pattern-automata
finds the accepting path if it exists.

(<) For this, we show how to construct instancsuch that the answer @ over I
must contairO. Let ¢ be a mapping fronP to O with following properties{ maps (1)

a constant to the same constant, (2) variablectiata , and (3) a arbitrary pathto //.

If there exists & such that the patterR’ created fromP by replacing all variables
of P with ¢(v) andp with //, andO is a subtree of’ then we generaté as follows:
(1) replace all mapped variabless P with {(v), (2) replace all non-mapped variables
in P with pcdatac, and (3) replace // with the empty path, i.e., remove //.

5 Security Analysis of Extended Query-Pattern

In addition to the structural information contained in thETRIRN and the WHERE
clauses of the query, a query answer also contains subtfeles original XML doc-
ument, where each returned subtree originates from oneeqfdth-expressions in the
RETURN clause. To incorporate this knowledge in our model define the notion of
extended query-pattern.

Definition 9. (Extended Query-Pattern)

Let P denote a query-pattern arftithe schema (ground-tree) of the XML document
that @ is posed on. The extended-query-pattern (EQP) is defined s af trees
{T1,..., T}, whereT;(i = 1,...,m) are constructed as follows: Let denote a
symbol mapping from the symbols @t to the symbols ofS such that: (1) for con-
stantsv is an identity mapping, (2) maps the data-variables to the empty néde

144

and (3)v maps '/I' to any ground path i¥. We extendv to map paths ofP, such
that given a patlp = {n; — ns — ... — n;}, its mappingv(p) = {v(n1) —
v(ng) — ... — v(n_1) — t;}, wheret, is a tree rooted at(n;) such that/(p) € S.
Finally, given path®;, ..., p; of of all leaf nodes inP we constructl; € EQP as
T; = v(p1) Us v(p2) Us ... Us v(pr) andT; € S for all possible symbol mapping

Theorem 2. Let Q be an XML query,S be the schema of XML documenEQP be
the query-pattern extended with O an association object, amD be the association-
automaton representing. If AO does not accept the extended query-pattéépr,
then the query is safe to answer for any XML document thas®asiS. That is for all
XML instances ovelS the query@ will not discloseO.

Proof Sketch: Lets assume by contradiction that the quéryliscloses an association
object AO and the pattern-automata generated frdé does not accept the extended
query-pattern. But then, either the specifying query ftdislicloses0, i.e., the union of
the pathspy, ..., px in the FOR, LET, RETURN, and WHERE clause @fdisclose

O, or the answer generated from any XML instance conforming tmgether with

p1 Ug p2 Ug ... Ug pi discloseO. But this is exactly the information used to generate
the extended query-pattern. Using Theorem 1 this impliasttie tree-automata must
accept the extended query-pattern, which is a contradictio

6 Conclusions

In this paper we have presented a bottom-up tree automatar(pautomata) based
technique for filtering XML association before query evéio. We have also given
algorithms for constructing query-pattern, pattern awtandetect disclosure of as-
sociation security object in a query-pattern itself andrgymattern is extended with
schema information. We have also shown that our securifyais is complete, i.e.,
our method detects all possible disclosures.

We have considered only simple XQueries in this work. Infetwe plan to extend
our analysis to incorporate nested queries. At presentohi@rsa-level analysis requires
the schema to be a single-type tree language (DTD or W3C XMérsel). We also plan
to extend our schema-level security analysis to incorpaegular tree languages, like
RELAX NG.

References

1. Bertino, E., Castano, S., Ferrari, E.: Securing XML Documents Auittnor-X. IEEE Inter-
net Computing3 (2001)

2. Bertino, E., Castano, S., Ferrari, E., M.Mesiti: Specifying andEiig Access Control
Policies for XML Document Sources. In: World Wide Web Journal. Votugh Baltzer
Science Publishers (2000)

3. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, FIL Xccess Control Sys-
tems: A Component-Based Approach. In: IFIP WG11.3 Working €mrfce on Database
Security, The Netherlands (2000)

[ee]

10.

11.

12.

13.

14.

145

. Kudo, M., Hada, S.: XML Document Security based on Provisidwhorizations. In: Proc.

of the 7th ACM conference on Computer and Communications Securitgn&thGreece
(2000)

. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Cohtrsing Static Analysis.

In: CCS '03: Proceedings of the 10th ACM conference on Computércammunications
security, ACM Press (2003) 73-84

. Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: Fine-Grained Rumd& XML Access Con-

trol via NFA-based Query Rewriting. In: Proc. of ACM Conferenceloformation and
Knowledge Management (CIKM). (2004)

. Gowadia, V., Farkas, C.: RDF metadata for XML Access Control.Phoceedings of the

2003 ACM workshop on XML security, ACM Press (2003) 39-48

. W3C Recommendation: XML Path Language (XPath) Version 1.@9)19
. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Malkanguage Language 1.0

specification. W3C Recommendation. (2000)

Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.1>D@dhema Part 1: Structures.
Technical report, W3C Consortium (2001)

Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XMichema Languages
using Formal Language Theory. ACM Trans. on Internet Techryo(2g05)

Ferrandez, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuer§ and XPath 2.0
Data Model. Technical report, W3C (2003) W3C Working Draft 12 Nober 2003.
Chidlovskii, B.: Using Regular Tree Automata as XML Schemas. DL A0: Proceedings
of the IEEE Advances in Digital Libraries 2000, IEEE Computer Socie®p(@ 89

Neven, F.: Automata theory for XML researchers. SIGMOD R&¢2002) 39-46

