
Tree Automata for Schema-level Filtering of XML
Associations

Vaibhav Gowadia and Csilla Farkas

Information Security Laboratory
and

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208

Abstract. In this paper we present query filtering techniques based on bottom-
up tree automata for XML access control. In our authorization model (RXACL),
RDF statements are used to represent security objects and to express the security
policy. Our model allows to express and enforce access control on XML trees
and their associations. We propose a query-filtering technique that evaluate XML
queries to detect disclosure of association-level security objects. A queryQ dis-
closes a security objecto iff the (tree) automata corresponding too acceptsQ.
We show that our schema-level method detects all possible disclosures, i.e., it is
complete.

1 Introduction

Several XML access control models have been developed recently [1–6]. They allow
node-level security granularity by assigning access restrictions to the nodes and links
of XML documents. However, none of these models provide access control for data
associations. Intuitively, an association security object is an XML subtree that is disal-
lowed to be accessed by a user, while all of its proper subtrees are permitted separately.
Incorporating association in an access control model increases data availability while
preserving confidentiality.

The RXACL architecture, introduced in [7], provides flexible access control gran-
ularity by allowing security classification of XML nodes and subtrees (simple security
objects), and associations among nodes (association security objects). In [7] we pro-
posed a technique to enforce association-based access control at data-level (i.e., check
for security violation after query processing) and it is outside the scope of this paper.
In this paper we extend RXACL architecture by presenting techniques for performing
security check before the query is processed. Our work is similar to those proposed by
Murata et al. [5] and Luo et al. [6]. However, their method supports node-level security
objects only. The automata model, used by them is not sufficient to model association-
level security objects. In this paper, we use bottom-up tree automata to represent secu-
rity objects.

0 This work was partially supported by National Science Foundation grant number IIS-0237782.

Gowadia V. and Farkas C. (2005).
Tree Automata for Schema-level Filtering of XML Associations.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 136-145
DOI: 10.5220/0002575401360145
Copyright c© SciTePress

We propose a data-independent technique to recognize disclosure of association
level security objects by XML queries. Results of our analysis can be (1) association
objects are disclosed, (2) association objects are not disclosed, or (3) association objects
may be disclosed. Options 1 and 2 indicate that the query should be rejected or accepted,
respectively. If the third option is reached, data-level analysis is required to evaluate
whether a security violation is present or not.

We present a two-layered association filtering method. First we detect disclosure of
association in a given query-pattern, i.e., information encoded in the XML query itself.
Second, weextendquery-pattern with document schema to represent all schemainfor-
mation that the query answer would reveal to a user. XML query-patterns are labeled-
trees where node labels may be variables, constants, or the special symbol ’//’(self-
or-descendant axis [8]). We model association security objects withpattern automatas
(Definition 8). A pattern automata takes (extended) query-patterns as input and reaches
an accepting state if and only if the input discloses the security object represented by it.
The main technical contributions of this paper are the development of pattern automatas
for security objects and the notion of extended query-pattern. We present algorithms to
construct query-pattern, pattern automata, and to detect disclosure of security objects.

The organization of the paper is as follows: next section presents an overview of
RXACL architecture and query filtering mechanism. Section 3introduces formal defin-
itions of basic constructs used in this paper. Section 4 presents algorithms for construct-
ing query-pattern, association pattern automata and to detect association disclosure.
Section 5 introduces the notion of extended query-pattern and presents a schema-level
security analysis of query. We conclude in section 6 and listfuture work.

2 RDF-based XML Access Control Architecture

Figure 1 shows the RXACL architecture. The architecture contains four main compo-
nents: 1. Query filter 2. Query engine, 3. Data level access control, and 4. User history.
The query filtering component performs schema-level analysis to determine whether
answer to the input query : (1) violates access control policy (violating), (2) does not
violate the access control policy (safe), or (3) requires a data-level security check to de-
tect possible violations (unsafe). The XML query engine is responsible for generating
responses to user’s requests. RXACL uses an existing XML query engine, the devel-
opment of such an engine is outside of the scope of this paper.The data-level access
control component analyzes the query-answer based on the security policy and data
previously released to the user [7]. The history component keeps track of answered
query-patterns and data released to each user.1

When a data request is submitted to a RXACL system, query filtering component
first checks for disclosure of disallowed association-level security objects in the query
(without utilizing the XML schema information). If a disallowed association-level secu-
rity object is disclosed, the query is immediately rejected. Otherwise, the query-pattern
is extended with schema information and query-patterns of previously answered queries
to the user. Extended query-pattern are now checked for disallowed objects. If no disal-
lowed association-level security object is disclosed in extended query-pattern the query

1 Due to space limitation the handling of the history file is not presented in this manuscript.

137

answer is labeledsafe. Otherwise, it is labeledunsafe. The query is submitted to XML
query engine for further processing. The result of unsafe query’s evaluation are further
evaluated for possible data-level violations as describedin [7]. Answer to safe queries
is returned to user without further security analysis. For all queries that are answered,
user history is updated with query-pattern and released data. The assurance of our query
level filtering is based on the completeness property of the filtering.

Answer

11.

11.

9.1. Query

14. No Violation

12. UnsafeSecurity Check

Data Level

12. Safe Answer

Violation
7. No

3.

15.

10

18.

13.

5.

4.

2.

File
History

Automata
Generate Pattern

Update
History

13, 19. Return Answer

8.

17. Reject (violation)

No Violation

16. Return Trees

17.

(Unsafe Query)
Violation

Policy
(RXACL)

Unite
Query Patterns Query Pattern

Extend

Schema

(Safe Query)
No Violation

Tree Extension

Security

Disclosure
Check

Check
Disclosure

6. Reject Query (Violation)

XML

Store

Fig. 1.RXACL architecture for enforcing XML access control

3 Definitions

This section describes definitions necessary to model XML queries , association objects,
and XML schema.

Definition 1. (Labeled-tree)
A labeled-tree, or a tree, is defined recursively as follows: (1) the empty set {} is a tree,
called the empty tree, (2) a singlenode{n} is a tree, and (3) ift1, t2, . . . , tk are trees,
then{n → {t1, t2, . . . , tk}} is a tree. In this case we say that{n → {t1, t2, . . . , tk}}
represents the tree whose rootn has outgoing edges to subtreest1, t2, . . . , tk.

The nodes of the trees are labeled. Labels may be constants, node variables (corre-
sponding to any node value), or path variables (corresponding to any path). Constants
correspond to element, attribute and text values. Nodes labeled with text-values are
called text nodes and are always leaf nodes. Attribute nodescan have only on child
node, a text node. Also, any two attribute nodes of a given element cannot have same
label. Element nodes can have zero or more child nodes that can be elements, attributes,
or text nodes. We denote element nodes withni, attribute nodes withai, and text nodes
with pcdata.

138

A labeled tree is called aground treeif all of its nodes are labeled with constants. An
XML instanceT is a ground-tree.

Definition 2. (Path-expression)
Let p = {n, {a1, . . . , aj}} represent a single noden and its child nodes corresponding
to attributesa1, . . . , aj , wheren is either a constant, or a variable. Apath-expression
is defined as: 1.p is a path expression, 2.{p1 → p2 → . . . → pk} is a path-
expression wherepi(i = 1, . . . , k) are path-expressions, 3. Let // denote an arbitrary
path-expression. Then the following are also path-expressions: {// → p1 → . . . →
pm}, {p1 → // → pm}.

DTD [9] and W3C XML Schema [10] satisfy a constraint that all child nodes of any
given node must have unique names. Trees satisfying this constraint are calledsingle-
typetree [11]. Path-expressions are single-type trees.
We consider XQuery syntax [12] of the following form:

Definition 3. (XML Query)
An XML query Q is of the following form:
FORv0 in P0

LET v1 := P1, . . . , vl := Pl

RETURN{n → {vk, . . . , vj}}
WHERE (vi == vj and. . . andvl == vm)
where,vi (i = 0, . . . , l) are variables of query (we refer to them asquery-variables
in rest of this paper),vi (i = 0, . . . ,m) represent a path-expression{vi → p′} (i =
1, . . . , l) andp′ is a path-expression that does not contain any query-variables,Pi (i =
0, . . . , l) are path-expressions, andn is a constant.

Given a XML queryQ, the first step in query filtering architecture is to build query-
pattern ofQ. Let V = {v1, v2, . . . , vl} be the set of query-variables defined inQ, and
V = {v1, v2, . . . , vm} be the path-expressions in the RETURN or WHERE clause of
the query. Intuitively, the query-pattern is constructed by uniting the path-expressions in
V . Since path-expressions may contain query-variables. We need a method to eliminate
query variables. A formal definition of variable-substitution follows.

Definition 4. (Variable-Substitution)
Let $vi = {p1 → . . . → pl}, and$vj = {$vi → p′1 → . . . p′m} be two assignments in
the FOR or LET clause of the XML query. Avariable substitutionreplaces$vi in the
second assignment with{p1 → . . . → pl}.

Example 1. Consider the single-type treeT = {$x → {a, d}}, where$x = {// →
{r}} is a query-variable.Substituting$x, we getT = {// → {r → {a, d}}}. 2

Definition 5. (Single-type Tree-Merge)
Let P1 = {n1

1 → n1
2 → . . . n1

k → n1
k+1

→ . . . n1
l } andP2 = {n2

1 → n2
2 → . . . n2

k →
n2

k+1
→ . . . n2

m} be two ground path-expressions over the same schema. We define
mergeof path expressions as follows:
if n1

1 = n2
1, n

1
2 = n2

2, . . . , n
1
k = n2

k, andn1
k+1

6= n2
k+1

, then
P1 ∪S P2 = {n1

1 → n1
2 . . . n1

k → {{n1
k+1

→ . . . → n1
l }, {n

2
k+1

→ . . . → n2
m}}.

139

We extend the notion of merging paths to merging single-typetrees. LetT1 = {n →
{t1, t2, . . . , tk}} andT2 = {n′ → {t′1, t

′

2, . . . , t
′

l}} be two trees, then their merger
T1 ∪S T2 is defined as follows:

1. T ∪S {}
def
= {} ∪S T

def
= T

2. if n 6= n′, T1 ∪S T2 = {T1, T2},(trees cannot be merged).
3. if n = n′, then letT = {}. For all pathsp originating from the root inT1 andT2,

doT = T ∪S p. T1 ∪S T2 = T .

The query-pattern of an XML queryQ is a labeled-tree representing all data dis-
closed byQ, i.e., all data returned to the user or accessed byQ.

Definition 6. (Query-Pattern)
Let Q be the given XML query andP1, . . . , Pn are path-expressions that occur in the
RETURN or the WHERE clause ofQ. If Pi == Pj is a condition in the WHERE
clause, we add a new leaf node labeled with a data-variablev toPi andPj . Substitute all
query-variables inP1, . . . , Pn. Query patternP is the labeled-tree produced by merging
pathsP1, . . . , Pn. Algorithm 1 shows the construction of the query-pattern.

Example 2. Consider the following XML queryQ2: FOR $x in //r LET $y := $x/d,
$z := $x/a RETURN<answer> {$z/c} </answer> WHERE{ $z/b == $y }. Let Tr

be the tree in the return statement of QueryQ2. Tr specifies structure of query answer
being returned to the user. To evaluate the query-answer$z/b and$y must be accessed.
Query-pattern constructed from queryQ2 is shown in Fig. 2(c). 2

Algorithm 1 : Algorithm to construct query-pattern
input : QueryQ
output: Query-Pattern TreeT

Let V = {v1, . . . , vk} be the set of variables defined inQ.
Let P = {p1, . . . , pm} be the set of path-expressions in RETURN and WHERE clause ofQ.
i← 1
list← {} /* List of sets, where each set contains path-expressions inWHERE clause ofQ, such that their values are transitively equal*/
/* Extend the path-expressions with a data-variable, such that path-expressions equated in WHERE clause have same data-variable.*/
foreachexpression (pl == pn) in WHERE clause ofQ do

if pl ∈ S andS is a set inlist then
Append leaf node ofpl to pn
Add pn to S

else ifpn ∈ S andS is a set inlist then
Append leaf node ofpn to pl
Add pl to S

else
Create a new data-variablevi
Appendvi to pl andpn
Create a setS = {pl, pn}
Add S to list
i ← i + 1

/* Removing query-variables from path-expressions*/
for i := 1 to m do

Let Ti ← pi , wherepi ∈ P
Let r ← root node ofTi
repeat

Substituter in Ti , with its assigned value (by:= or in operator) inQ
r ← root node ofTi

until r is a constant or ’//’

/* Uniting path-expressions to obtain query-pattern */
Initialize T ← {}
for i := 1 to m do

T ← T ∪S Ti

return T

140

Definition 7. (Protection Object)
A simple security objecto is a node-labeled tree, where all distinct subtreest1, t2, . . . , tk
of o have the same access permission aso. That is, for every proper subtreeti ∈ o,
λ(o) = λ(ti), whereλ(o) andλ(ti) denote the security classification ofo andti respec-
tively. Simple security objects are equivalent to node-level security classification. An
association security objecto is a node-labeled tree where every proper subtreeti ∈ o,
λ(o) > λ(ti) (i = 1, . . . , n).

We constructPattern Automatas(PA) (similar to the tree-automatas in [13, 14]) to
represent security objects.

Definition 8. (Pattern Automata)
Let E be a set of node-labels for elements, A be a set of node-labels for attributes,

and let the labelpcdatarepresent all text nodes. A Pattern Automata is defined asX =
{Σ,Q, q0, Qf , δ}, whereQ = {q0, . . . , qn} is a finite set of automaton states,Σ =
E ∪A∪{pcdata, //} is automata alphabet, ’//’ is a symbol for self-or-descendant axis,
q0 is start state,Qf ⊂ Q, (q0 6∈ Qf) is set of accepting final states, andδ is set of state
transition rules.

Letσ ∈ Σ is label of scanned nodeN of a query pattern and therefore the next input
symbol for the automata, andQc ⊆ Q is set of states associated with child nodes ofN .
A valid transition is of the form,σ(qi, . . . , qj) → qk, where{qi, . . . , qj} ⊆ Qc, andqk

is state associated with N after scanning. For simplicity, we will often write transition
rule in the formσ(Qt) → qk, whereQt = {qi, . . . , qj} is set of states required for
transition. To distinguish data values from labels of elements and attributes, we write
data values inside []. Ifδ does not contain a valid transition rule, by default the state
associated with the scanned node isq0.

4 Security Analysis of Query Pattern

RXACL performs security analysis by evaluating query-pattern with the pattern au-
tomatas corresponding to protection objects. An acceptingstate is reached if the pro-
tection object is disclosed by the input pattern. These automatas can also be used for
recognizing possible disclosure of security objects by query-patterns extended with doc-
ument schema as discussed later in section 5.

A pattern automatonX accepts a query-patternP iff there is at least one accepting
path of transitions that reads completeP. For clarity, in this paper we allow use of
wildcard symbol (∗) to representanyalphabet symbol. Let us now consider an example.

Example 3. The following automatonX3 = {Σ,Q, q0, Qf , δ} is a XML Pattern Au-
tomata that accepts query patterns disclosing associationA2 (see Fig. 2(b)). An ac-
cepting run of this automaton on queryQ2 is shown in Fig. 2(d). It means that answers
of Q2 discloseA2. 2

We now present an algorithm (See Alg. 2 and Proc. AddRules) togenerate pattern
automata for associations.2 Given a query-patternP a pattern automatonX is gener-
ated, such that on inputP ′, X accepts iffP is contained inP ′. Algorithm 2 performs

2 Full version of our security analysis algorithms is given in technical report available at
http://www.cse.sc.edu/research/isl/

141

Q = {q0, qa, qb, qc},
Σ = {a, b, c, //},
q0 = q0,
Qf = {qa},
δ = { b() → qb,

c() → qc,
a(qb, qc) → qa,
∗(qa) → qa}

a

c

//

b

b c

ad

r

//

1v

1v
c

ad

b

r

//
a

q0

q0

qa

qa

q0

qb
q c

q0

q

(a) (b) (c) (d)

Fig. 2. (a) Pattern automata exampleX3 (b) Example associationA2 (c) Query-pattern ofQ2 (d)
States ofX3 (qi) on query-pattern ofQ2 as input.

a bottom up traversal of the association security object (a labeled-tree). At each step of
traversal the label of current node is read. If the label is read for first time, it is added
to pattern automaton’s alphabet and a new state is also created. If the label denotes a
self-or-descendant edge in the query-pattern then a transition rule with a wildcard (*)
for read symbol is added to the pattern automata. Otherwise transition rule with symbol
read at the current node is added.

Algorithm 2 : Algorithm to generate pattern automata
input : Association patternP
output: Pattern AutomataX = {Σ, Q, q0, Qf , δ}

Q ← {q0}
Σ ← {//, pcdata}
Qf ← {}

δ ← {}
X← {Σ, Q, q0, Qf , δ} Let S be a global stack

S ← ∅ /* S is a global stack used to remember states of child nodes during bottom-up traversal ofP */
X← AddRules (P, X)
Qf ← pop(S)

return X

Theorem 1. LetQ be an XML query,P the query-pattern generated fromQ (Def. 6),O
an association object andAO the association-automata representingO. The association-
automataAO accepts a input query-patternP iff there exists an XML instanceI such
that the answer toQ overI disclosesO.

Proof Sketch: (⇒) The pattern-automata performs bottom-up traversal ofP , i.e., states
of child nodes are evaluated before evaluating state for root node. Letn be a node inP
scanned to detect disclosure ofO. If n is a leaf node inO, there must exist a valid transi-
tion of form{n() → q} ∈ δ, whereδ is the transition function of pattern-automataAO
created by Algorithm 2. Ifn is an internal node with child nodes{n1, . . . , nk}, Algo-
rithm 2 generates a transition rule of the form{n(q1, . . . , qk) → q}, whereq1, . . . , qk

are states associated withn1, . . . , nk respectively. Clearly there exists an accepting path

142

Procedure AddRules(Root, Pattern Automata)
input : Pattern treeP, Pattern AutomataX = {Σ, Q, q0, Qf , δ}

output: Modified Pattern AutomataX

root← root node ofP
Qc← {}
list← child nodes ofroot
foreachnode in list do

X← AddRules(node, X) /* Perform bottom-up tree traversal */

if list 6= ∅ then
n ← Length oflist
while n > 0 do

Qc ← Qc∪ pop(S) /*Retrieve automata states after scanning child nodes */
n ← n − 1

label← LabelOf(root)
if label = ’//’ then

foreach stateq ∈ Qc do
δ ← δ ∪ {∗(q) → q}}

else
Find set of transition rulesR, of the form{label (Q′)→ q} in δ
if R is emptythen

Create a new stateqnew /* label(Q′) is read for the first time*/
Q ← Q ∪ {qnew}
δ ← δ ∪ {label(Qc) → qnew}
push(S,{qnew})

else ifQc 6= Q′ for all rules inR then
Create a new stateqnew /* Transitions exist forlabelQ′ but are not applicable*/
Q ← Q ∪ {qnew}
δ ← δ ∪ {label(Qc) → qnew}
push(S,{qnew})

else
push(S,{q}) /* An existing transition leading to stateq is applicable*/

return X

of automata evaluation if the association pattern is traversed. Thus, pattern-automata
finds the accepting path if it exists.

(⇐) For this, we show how to construct instanceI such that the answer toQ overI
must containO. Let ζ be a mapping fromP to O with following properties:ζ maps (1)
a constant to the same constant, (2) variable topcdata , and (3) a arbitrary pathp to //.

If there exists aζ such that the patternP ′ created fromP by replacing all variables
of P with ζ(v) andp with //, andO is a subtree ofP ′ then we generateI as follows:
(1) replace all mapped variablesv ∈ P with ζ(v), (2) replace all non-mapped variables
in P with pcdatac, and (3) replace // with the empty path, i.e., remove //.

5 Security Analysis of Extended Query-Pattern

In addition to the structural information contained in the RETURN and the WHERE
clauses of the query, a query answer also contains subtrees of the original XML doc-
ument, where each returned subtree originates from one of the path-expressions in the
RETURN clause. To incorporate this knowledge in our model, we define the notion of
extended query-pattern.

Definition 9. (Extended Query-Pattern)
Let P denote a query-pattern andS the schema (ground-tree) of the XML document
that Q is posed on. The extended-query-pattern (EQP) is defined as aset of trees
{T1, . . . , Tm}, whereTi(i = 1, . . . ,m) are constructed as follows: Letν denote a
symbol mapping from the symbols ofP to the symbols ofS such that: (1) for con-
stantsν is an identity mapping, (2)ν maps the data-variables to the empty node∅,

143

and (3)ν maps ’//’ to any ground path inS. We extendν to map paths ofP , such
that given a pathp = {n1 → n2 → . . . → nl}, its mappingν(p) = {ν(n1) →
ν(n2) → . . . → ν(nl−1) → tl}, wheretl is a tree rooted atν(nl) such thatν(p) ∈ S.
Finally, given pathsp1, . . . , pk of of all leaf nodes inP we constructTi ∈ EQP as
Ti = ν(p1) ∪S ν(p2) ∪S . . . ∪S ν(pk) andTi ∈ S for all possible symbol mappingν.

Theorem 2. Let Q be an XML query,S be the schema of XML document,EQP be
the query-pattern extended withS, O an association object, andAO be the association-
automaton representingO. If AO does not accept the extended query-patternEQP ,
then the query is safe to answer for any XML document that satisfiesS. That is for all
XML instances overS the queryQ will not discloseO.

Proof Sketch: Lets assume by contradiction that the queryQ discloses an association
objectAO and the pattern-automata generated fromAO does not accept the extended
query-pattern. But then, either the specifying query itself disclosesO, i.e., the union of
the pathsp1, . . . , pk in the FOR, LET, RETURN, and WHERE clause ofQ disclose
O, or the answer generated from any XML instance conforming toS together with
p1 ∪S p2 ∪S . . . ∪S pk discloseO. But this is exactly the information used to generate
the extended query-pattern. Using Theorem 1 this implies that the tree-automata must
accept the extended query-pattern, which is a contradiction.

6 Conclusions

In this paper we have presented a bottom-up tree automata (pattern-automata) based
technique for filtering XML association before query evaluation. We have also given
algorithms for constructing query-pattern, pattern automata, detect disclosure of as-
sociation security object in a query-pattern itself and query-pattern is extended with
schema information. We have also shown that our security-analysis is complete, i.e.,
our method detects all possible disclosures.

We have considered only simple XQueries in this work. In future, we plan to extend
our analysis to incorporate nested queries. At present our schema-level analysis requires
the schema to be a single-type tree language (DTD or W3C XML schema). We also plan
to extend our schema-level security analysis to incorporate regular tree languages, like
RELAX NG.

References

1. Bertino, E., Castano, S., Ferrari, E.: Securing XML Documents withAuthor-X. IEEE Inter-
net Computing3 (2001)

2. Bertino, E., Castano, S., Ferrari, E., M.Mesiti: Specifying and Enforcing Access Control
Policies for XML Document Sources. In: World Wide Web Journal. Volume 3. Baltzer
Science Publishers (2000)

3. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: XML Access Control Sys-
tems: A Component-Based Approach. In: IFIP WG11.3 Working Conference on Database
Security, The Netherlands (2000)

144

4. Kudo, M., Hada, S.: XML Document Security based on ProvisionalAuthorizations. In: Proc.
of the 7th ACM conference on Computer and Communications Security, Athens, Greece
(2000)

5. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Control using Static Analysis.
In: CCS ’03: Proceedings of the 10th ACM conference on Computer and communications
security, ACM Press (2003) 73–84

6. Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: Fine-Grained Run-Time XML Access Con-
trol via NFA-based Query Rewriting. In: Proc. of ACM Conference onInformation and
Knowledge Management (CIKM). (2004)

7. Gowadia, V., Farkas, C.: RDF metadata for XML Access Control. In: Proceedings of the
2003 ACM workshop on XML security, ACM Press (2003) 39–48

8. W3C Recommendation: XML Path Language (XPath) Version 1.0. (1999)
9. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language Language 1.0

specification. W3C Recommendation. (2000)
10. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1: Structures.

Technical report, W3C Consortium (2001)
11. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XMLSchema Languages

using Formal Language Theory. ACM Trans. on Internet Technology (2005)
12. Ferńandez, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0

Data Model. Technical report, W3C (2003) W3C Working Draft 12 November 2003.
13. Chidlovskii, B.: Using Regular Tree Automata as XML Schemas. In: ADL ’00: Proceedings

of the IEEE Advances in Digital Libraries 2000, IEEE Computer Society (2000) 89
14. Neven, F.: Automata theory for XML researchers. SIGMOD Rec.31 (2002) 39–46

145

