
Towards Run-time Component Integration
on Ubiquitous Systems ⋆

Macario Polo1 and Andres Flores2

1 Escuela Superior de Inforḿatica, Universidad de Castilla-La Mancha,
Paseo de la Universidad 4, Ciudad Real, España

2 Departamento de Ciencias de la Computación, Universidad Nacional del Comahue,
Buenos Aires 1400, 3400 Neuquén, Argentina

Abstract. This work is related to the area of Ubiquitous Systems and it fo-
cuses on a Component-based Integration process. This implies the evaluation of
whether components may or may not satisfy a given set of requirements. We pro-
pose a framework for such process and consider related concepts like Assessment
and Adaptation.
The Assessment procedure is based on meta-data added to components, involv-
ing assertions, and usage protocols. Assertions and usage protocols are evaluated
by applying a technique based on Abstract Syntax Trees. We also report on a
prototype developed to implement the proposed Assessment and Adaptation pro-
cedures which allowed us to gain understanding about the complexity and effec-
tiveness of our model.

Category. Work in progress by PhD Student

1 Introduction

An Integration Process for Component-based Systems (CBS) is assumed to enhance
reusability by consuming previously developed ‘off-the-shelf’ (OTS) components [1,
2]. Our main interest is on automating the process as a support for Ubiquitous Systems.
The goal on such environments is to provide a feeling of continuity on users’ daily
tasks. Hence, users do not expect a constrained environment [3, 4], and this can only be
achieved by an unlimited availability of resources. Applications are the main resources
that must remain available through changes on users context of operation. Some ap-
proaches assume a fixed range of applications, or externally developed applications.
However, suitability for such applications could be in high risk when the underlying
conditions change unfavorably. We assume the possibility to build applications ‘on de-
mand’ when necessary. This could be achieved by assembling OTS components [5],
and we believe the whole initiative needs the consideration of a more formal frame-
work. We give in this paper a preliminary scheme to address the automation of the
whole Integration Process, which concerns ‘qualification’, ‘ adaptation’, ‘ assembly’ and
‘ integration’. We are currently focused mainly on Qualification and Adaptation. In this

⋆ This work is supported by the CyTED project VII-J-RITOS2, the UNCo MPDSbC project
04-E059 and the UCLM MAS project TIC 2003-02737-C02-02.

Polo M. and Flores A. (2005).
Towards Run-time Component Integration on Ubiquitous Systems.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 9-18
DOI: 10.5220/0002576100090018
Copyright c© SciTePress

paper we present a Component Assessment procedure for qualification, and introduce
a preliminar approach for adaptation.

When a required application is not available, theassemblyprocedure could be ini-
tiated by previously executing a selection procedure of proper components. They could
be fetched from a repository or being discovered from some mobile device. In any
case evaluation should be thoroughly done [5, 6]. Our Assessment Procedure intends
to compare behavioural aspects from components against a given set of requirements.
The requirement specification is assumed in the form of a component interface – the
necessary set of component services. Thus our approach, which compares components
interfaces, actually evaluates a component against an expected set of services. This im-
plies to evaluate services’ signatures at a syntactic level– e.g identifiers, parameters,
and data types.

Additionally, components will be enriched by adding meta-data – an adaptation
mechanism calledinstrumentation[2]. Thus we intend to embrace semantic aspects.
The first concern is adding ‘assertions’ which help to abstract out the black box func-
tionality hidden on components. Also, it is included the ‘usage protocol’ for services
which use regular expressions to describe the expected order of use for component ser-
vices. This technique has been applied on inter-class testing [7], and also on descriptions
for components [8].

Suppose post-conditions (for example) on services from twosimilar components.
They should relate to a similar structure and semantic. Hence, they could be thought
as being one a ‘clone’ of the other. Thus we apply some algorithms based on Abstract
Syntax Trees (AST) from [9], which were originally intendedto detect similar pieces
of code (clones) on existing programs. Then compatibility for assertions and the usage
protocol is carried out by generating ASTs.

All such techniques applied on our assessment procedure help to accomplish a con-
sistent mechanism to assure a fair component integration. As we proceed with our work,
reliability is mainly considered, since we base the whole integration process on the chal-
lenging Ubiquitous Systems.

The rest of the paper is organized as follows. Section 2 presents our proposal for
an integration process. Section 3 illustrates the proposedprocess with an example. Sec-
tion 4 discusses implementation alternatives. Conclusions and future work are presented
afterwards.

2 Process Framework

We consider a reference model to describe the required engineering practices on our
targeted automated Integration Process. Figure 1 depicts partitions showing components
through different phases. We add an extra step to distinguish assembly from integration
– adapted from [1]. For each phase we distil some steps as is briefly explained below.
Numbers imply a non-strict order of execution.
Qualification

1. Recovery: Fetch components from a
repository or disparate devices.

2. Assessment: Evaluate compatibility upon
expected behaviours.

10

off-the-shelf

components

qualified

components

adapted

components

assembled

components

integrated

components

Qualification Adaptation Assembling Integration

Fig. 1. Component Integration Reference Model

3. Component Selection: Analyse options
from assessment results and extra require-
ments (e.g. user preferences).

Adaptation

1. Adaptation Analysis: Evaluate conditions
from a selected component according to a
client component.

2. Wrapping Selection: Analyse the most ap-
propriate adaptation strategy.

3. Tailoring: Perform the adaptation accord-
ing to the selected strategy.

Assembly

1. Assembly Analysis: Analyse conditions for
assembly to create a new application.

2. Building: Deployment of additional com-
ponents for the assembly process.

3. Composition: Perform the final applica-
tion assembly.

Integration

1. Integration Feasibility: Analyse condi-
tions to perform connection to an under-
lying infrastructure (middleware).

2. Creation: Construction of additional com-
ponents for such an integration process.

3. Glue: Perform the final application inte-
gration.

Next we focus on our Component Assessment procedure at run-time, as part of the
Qualification phase. For this, we consider that a component under evaluation should
satisfy a certain degree of compatibility with respect to a given requirement specifica-
tion. We assume such specification describes the required functionality in the form of a
component by including the following aspects:

1. Expected Interface. Signatures of expected services.
2. Abstract Behaviour. Assertions for the component and its services.
3. Usage Protocol. The expected protocol of use for services.

Based on this we make the following consideration upon similarity between com-
ponents. A componentB offers similar functionalities toA when the two following
conditions are properly satisfied:

Condition 1.ComponentB offers, at least, the same or equivalent services to those offered byA.
Interface(A) ⊆ Interface(B)

Condidition 2.The protocol of use for services on both components is equivalent. Weuse≈ to
denote “equivalence”3.

UsageProtocol(A) ≈ UsageProtocol(B)

3 Equivalence is measured according to both the element to be compared and the applied tech-
nique. From this, different thresholds can be distinguished.

11

Condition 1 is true when there exists equivalence on corresponding services from
both components. A servicesa of a componentA is equivalent to a servicesb of a
componentB when the four next conditions are satisfied:

Condition 1.1.The return type of both services is equivalent4:

typeOf(sa) ≈ typeOf(sb)

Condition 1.2.The number of parameters on both services is the same:

|parms(sa)| = |parms(sb)|

Condition 1.3.Parameter types on both services are equivalent:

∀ pa ∈ parms(sa) ∃ pb ∈ parms(sb) / typeOf(pa) ≈ typeOf(pb)

Condition 1.4.Pre and Post-Conditions of sa and sb are similar.
A data type insa (the return type or a parameter type) is equivalent to a data type insb if

and only if either both data types are the same or the considered data type insa is A and the
considered data type insb is B:

typeOf(a) ≡ typeOf(b) iif
[typeOf(a)=typeOf(b) ∨ (typeOf(a)=A ∧ typeOf(b)=B)]

BeingtypeOf(a) a function returning the type ofa (a can be a service or a parameter), and
respectively beingA the component wherea is included – the same forb andB.

3 Example

Suppose we have awindow to operate with banking accounts. A user may create an
account by defining the account number and then deposit or withdraw any amount of
money. Figure 2 shows the shape of thewindow. The ‘build’ button allows to create an
instance from a typicalBankingAccount component, whose interface is presented
on Figure 3. In some scenario, it is possible that such component is not available to be
used bywindow. However, another component with a similar functionality could be
recovered from a repository. Suppose theFinancialAccount component is found,
which presents the interface given below. Then, in order to be sure about their similarity
we run the Assessment Procedure as explained in the next section.

component FinancialAccount {
FinancialAccount buildFAccount(string number);
double obtainBalance();
void deposit(double quantity);
void extract(double quantity);
void transfer(FinancialAccount target, double quantity);}

4 For built-in types, types onsb must have at least as much precision as types onsa have – e.g.
compare double w.r.t. integer.

12

Account Window

Withdraw

Deposit

Account # :

Balance :

Amount :

Build

Search Component

11112233334444

100

Fig. 2. Account Manager Window

BankingAccount

#mNumber: string

#mBalance: double

+BankingAccount(number: string)

+buildBAccount(number: string):

BankingAccount

+deposit(amount: double)

+withdraw(amount: double)

+getBalance(): double

Fig. 3. Banking Account Component

3.1 Assessment Procedure

The Assessment task must verify that Condition 1 and 2 are satisfied – as we pointed
out on Section 2. Thus we begin exploring Condition 1.

Interface Equivalence. For Condition 1 to be true we must verify four conditions.
However, lets consider first only Conditions 1.1 to 1.3. An equivalence is found on
buildFAccount and buildBAccount. Their number of parameters and para-
meter types are equal; and their return types are equivalent– both refer to the con-
tainer component. Next aregetBalance andobtainBalance, since they have
no parameters and the same return type. In case ofdeposit andwithdraw from
BankingAccount two services from the other component could be similar:deposit
andextract. They match on the return and parameter types, and the numberof pa-
rameters.BankingAccount does not include a service equivalent totransfer.
However, all of their services are, at a first glance, also offered byFinancialAccount.

In order to be accurate on checking Condition 1, Condition 1.4 must be satisfied as
well. For this, the comparison of pre and post-conditions from corresponding services
is required. For brevity reasons we describe this procedureonly for deposit (from
both components),withdraw andextract. For such services are specified by using
OCL the following assertions.

BankingAccount

deposit
pre: amount > 0
post: mBalance@pre

+ amount = mBalance

withdraw
pre: amount < mBalance@pre
post: mBalance =

mBalance@pre − amount

FinancialAccount

deposit
pre: 0 < quantity

post: mBalance =

mBalance@pre + quantity

extract
pre: quantity < mBalance@pre

post: mBalance =

mBalance@pre − quantity

13

To check assertions similarity we derive Abstract Syntax Trees (ASTs). We show on
Figure 4 only ASTs for assertions ofdeposit from both components. On each node
in the tree we also save a ‘type’ that is used to operate with its sub-trees. Thus, nodes
with values= or + are of typeInterchangeable Operator(IO), meaning that beinga
andb two sub-trees,a+b is the same thatb+a. Nodes with value>, < or − are of
typeNon-Interchangeable Operator(NIO). Nodes with numbers or variable names are
of typeText(TXT).

<

quantity0

=

mBalance +

quantitymBalance@pre

Pre-Condition

Post-Condition

>

amount 0

=

mtBalance+

amountmBalance@pre

BankingAccount FinancialAccount

Fig. 4. ASTs fordeposit’s assertions on both Components

We start evaluating post-conditions fromdeposit. For this, the root node of both
trees are compared and, if they are equal, the respective left and right subtrees are re-
cursively compared. Beinga andb two trees with IO root nodes, we say that they are
equivalent (a ≈ b) iif:

(a.leftChild ≈ b.leftChild ∧ a.rightChild ≈ b.rightChild) ∨

(a.leftChild ≈ b.rightChild ∧ a.rightChild ≈ b.leftChild)

In our example, both trees present IO root nodes. Thus, we cancompare the left sub-
tree of one post-condition with the right sub-tree of the other, and vice versa. This allows
to detect the equivalence on both trees and so for the corresponding post-conditions
of both services. However, values on leave nodes imply a different case. For this, we
consider that two trees with no children with TXT root nodes are equivalent. Hence,
all the sub-trees are equivalent regarding both post-conditions, and then also the whole
post-conditions are.

ASTs for pre-conditions of bothdeposit services present NIO root nodes, but
their values are operators which are indeedopposite operators. In fact, the opposite
operator to> is <, and the transformation can be applied to any of both trees tomake
the comparison. Hence, also the trees corresponding to pre-conditions are equivalent.

Similar procedures are followed up for each candidate pair of services. In the exam-
ple, the same operations are made forextract andwithdraw. This process makes
clear the real correspondence ondeposit andwithdraw fromBankingAccount
with respect todeposit andextract from FinancialAccount.

Since all the assertions are equivalent, Condition 1.4 is fulfilled. Therefore, we can
also conclude that Condition 1 is true.

14

Usage Protocol Equivalence. Now, we must check whether the protocol of use for
both components is equivalent. Here it has to be remembered that the usage protocol is
described by regular expressions. The usage protocols forFinancialAccount com-
ponent (1), andBankingAccount component (2) are given below. Note that we have
excluded servicesgetBalance andobtainBalance to make the example simpler.

buildFAccount� deposit� (extract+deposit+transfer)* (1)

buildBAccount� deposit� (withdraw+deposit)* (2)

For usage protocols, only services actually required, are used for checking. In our
example,transfer is recognized as an extra service and as such is removed from
regular expression (1), as follows:

buildFAccount� deposit� (extract+deposit)* (3)

Usage protocols comparison is also made deriving ASTs from regular expressions
(1) and (3), as can be seen on Figure 5.

ASTs deriving from regular expressions have a different setof operators. The con-
catenation operator (�) is aNon-Interchangeable Operator(NIO). Alternative (+) is an
Interchangeable Operator(IO). Repetition (∗) is anUnary Operator(UO) – a tree with
just one child. Two nodes corresponding to services with no children in two different
trees are equivalent if the services are equivalent from Condition 1 point of view. Thus,
as the node labelled with+ corresponds to a IO operator,extract is equivalent to
withdraw. Since the trees on Figure 5 are equivalent, Condition 2 is satisfied.

Therefore, as both Condition 1 and 2 are fulfilled, we can infer thatFinancial-
Account offers similar functionalities to those ofBankingAccount.

•

buildBAccount •

∗deposit

+

depositwithdraw

BankingAccount FinancialAccount

•

buildFAccount •

∗deposit

+

depositextract

Fig. 5. AST for Usage Protocols

3.2 Searching and Adaptation Procedure

Figure 6 presents a collaboration diagram describing an approach – developed on Mi-
crosoft .Net – to achieve the Recovery and Adaptation procedures.

Window is an instance ofFormAccount component – as the one in Figure 2. In
order to operate with accounts, it needs to be connected witha component representing

15

accounts. A special component calledRetriever searches for components equivalent
to a given specification. In our example,BankingAccount component represents
such a requirement specification provided byWindow. Retriever asks for a com-
ponent by using aComponentManager which may return a similar component from
aComponentRepository. In order to solve likely inconsistencies with the expected
component,ComponentManager creates an instance from aWrapper component,
calledaWrapper.FinancialAccount is found on theComponentRepository
and is connected toaWrapper. Hence, it is applied the wrapping mechanism named
adapter[2], to provide the expected signatures form – e.g.withdraw andamount.
A reference ofaWrapper is returned toRetriever by ComponentManager. Fi-
nally, Retriever returns such reference towindow, so to be able to start operating
by being connected toFinancialAccount.

:Retriever
:Component

Manager

aWrapper:

Wrapper
:FinancialAccount

1: findEquivalentComponents

For(“BankingAccount”)

2: findFor(“BankingAccount”) 4: searchFor(“BankingAccount”): Component

3: newWrapper()

5: add(FinancialAccount)

contains

associatedTo

7: return aWrapper
8: return

aWrapper

9: windows is

associatedTo aWrapper

window:

FormAccount

associatedTo

Component

Repository

6: aWrapper is

associatedToFinancialAccount

Fig. 6. Recovery and Adaptation procedures

4 Implementation

We have developed a first prototype to check the feasibility of our proposal. The proto-
type is based on Microsoft .NET technology and it includes simple but effective imple-
mentations of different elements and algorithms describedin the previous section.

4.1 Representing Assertions and Usage Protocol

.NET allows to add meta-data to components using theAttributemechanism. This help
to annotate classes, methods, parameters, etc. To describeassertions, we have created
a class calledContraintthat specializesSystem.Attribute. This class includes the am-
bit where the attribute is valid –methodsin this case. Each constraint will contain a
String representing the text of the pre or postcondition. Following is presented both
the Constraint class and an example of assertions added to the deposit service on
FinancialAccount.

16

using System;
namespace Components.attribs
{[AttributeUsage(AttributeTargets.Method)]
public class Constraint: System.Attribute

{ protected String mText;
public Constraint(String text)

{ this.mText=text; }
. . . } }

// Assertions for deposit
[Precondition(‘‘<(0,amount)")]
[Postcondition(‘‘=(mBalance,

+(mBalance@pre,amount))")]

public void deposit(double
amount)

{ mBalance+=amount;}

Regular expressions for the usage protocol are representedin a similar way, where
the ambit in this case isclass. In order to facilitate evaluation both, the assertions and
the usage protocol, are described in a prefix form as can be seen above.

4.2 Recovering the Interface

In order to inspect the set of members of any element, .NET includes theReflection
mechanism. This can be used to recover the set of methods fromcomponents to be
evaluated. Reflection can be of substantial help in cases where components are discov-
ered from some mobile devices.

5 Conclusions

We have presented a preliminary scheme to address the automation of a Component-
base Integration Process for Ubiquitous Systems. We are particularly working on the
Qualification and Adaptation phases. Our approach of component Assessment is based
on meta-data added to components, describing assertions and the usage protocol by
means of OCL.

We have developed a simple prototype on Microsoft .Net to implement our ap-
proach. As reliability is our main concern, selecting appropriate methods, techniques
and languages, must be accurately accomplished. This is theemphasis of our next de-
velopment in this area.

Acknowledgments

We would like to thank Dr. Juan Carlos Augusto, from School ofComputing and Math-
ematics, University of Ulster, Newtownabbey, UK. His participation provides a mean-
ingful complementary view giving accuracy and confidence tothe project.

References

1. Brown, A., Wallnau, K.: Engineering of Component-Based Systems. In: IEEE 2nd

ICECCS’96, Montreal, Canada (1996) 414–422
2. Flores, A., Polo, M.: Dynamic Assembly & Integration on Component-based Systems. In:

4th JIISIC, Madrid, Espãna (2004) 349–360
3. Flores, A., Cechich, A.: Quality Considerations on Ubiquitous Systems. In: II Workshop de

Ingenieŕıa de Software, at JCC’02, Copiapo, Chile (2002)

17

4. Garlan, D.e.: Software Architecture-based Adaptation for Pervasive Systems. In: ARCS’02.
Volume 2299 of LNCS., Karlsruhe, Germany (2002) 67–82

5. Flores, A., Polo, M.: Considerations upon Interoperability on Pervasive Computing Environ-
ments. In: 6th WICC, pp. 162-166, Neuquen, Argentina (2004)

6. Flores, A., Augusto, J.C., Polo, M., Varea, M.: Towards Context-aware Testing for Semantic
Interoperability on PvC Environments. In: IEEE 17th SMC’04, special session: CRIPUC,
The Hague, Netherlands (2004) 1136–1141

7. Kirani, S.: Specification and Verification of Object-Oriented Programs. PhD thesis, Computer
Science, University of Minnesota, Minneapolis, USA (1994)

8. Brada, P.: Towards Automated Component Compatibility Assessment.In: 6th Wrkshp on
Comp-oriented Prog, at ECOOP’01, Budapest, Hungary (2001)

9. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: CloneDetection Using Abstract
Syntax Trees. In: ICSM’98, pp. 368-377, Maryland, USA (1998)

18

