Towards Run-time Component I ntegration
on Ubiquitous Systems *

Macario Pold and Andres Florés

1 Escuela Superior de Infortica, Universidad de Castilla-La Mancha,
Paseo de la Universidad 4, Ciudad Real, Bspa
2 Departamento de Ciencias de la CompuiacUniversidad Nacional del Comahue,
Buenos Aires 1400, 3400 Neugn, Argentina

Abstract. This work is related to the area of Ubiquitous Systems and it fo-
cuses on a Component-based Integration process. This implies the evaluation of
whether components may or may not satisfy a given set of requirements. We pro-
pose a framework for such process and consider related concepts like Assessment
and Adaptation.

The Assessment procedure is based on meta-data added to components, involv-
ing assertions, and usage protocols. Assertions and usage protocols are evaluated
by applying a technique based on Abstract Syntax Trees. We also report on a
prototype developed to implement the proposed Assessment and Adaptation pro-
cedures which allowed us to gain understanding about the complexity and effec-
tiveness of our model.

Category. Work in progress by PhD Student

1 Introduction

An Integration Process for Component-based Systems (CBS) is assumed to enhance
reusability by consuming previously developed ‘off-the-shelf’ (OTS) components [1,
2]. Our main interest is on automating the process as a support for Ubiquitous Systems.
The goal on such environments is to provide a feeling of continuity on users’ daily
tasks. Hence, users do not expect a constrained environment [3, 4], and this can only be
achieved by an unlimited availability of resources. Applications are the main resources
that must remain available through changes on users context of operation. Some ap-
proaches assume a fixed range of applications, or externally developed applications.
However, suitability for such applications could be in high risk when the underlying
conditions change unfavorably. We assume the possibility to build applications ‘on de-
mand’ when necessary. This could be achieved by assembling OTS components [5],
and we believe the whole initiative needs the consideration of a more formal frame-
work. We give in this paper a preliminary scheme to address the automation of the
whole Integration Process, which concergsalification, * adaptatioh * assemblyand
‘integration. We are currently focused mainly on Qualification and Adaptation. In this

* This work is supported by the CyTED project VII-J-RITOS2, the UNCo MPDSbC project
04-E059 and the UCLM MAS project TIC 2003-02737-C02-02.

Polo M. and Flores A. (2005).

Towards Run-time Component Integration on Ubiquitous Systems.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 9-18
DOI: 10.5220/0002576100090018

Copyright © SciTePress

10

paper we present a Component Assessment procedure fofigaiadn, and introduce
a preliminar approach for adaptation.

When a required application is not available, #ssemblyrocedure could be ini-
tiated by previously executing a selection procedure gper@omponents. They could
be fetched from a repository or being discovered from sombilmalevice. In any
case evaluation should be thoroughly done [5, 6]. Our AssestProcedure intends
to compare behavioural aspects from components againgea gét of requirements.
The requirement specification is assumed in the form of a comapt interface — the
necessary set of component services. Thus our approaath whimpares components
interfaces, actually evaluates a component against arctgset of services. This im-
plies to evaluate services’ signatures at a syntactic levely identifiers, parameters,
and data types.

Additionally, components will be enriched by adding metdad— an adaptation
mechanism calle¢hstrumentation2]. Thus we intend to embrace semantic aspects.
The first concern is adding@ssertionswhich help to abstract out the black box func-
tionality hidden on components. Also, it is included tlhisage protocolfor services
which use regular expressions to describe the expected @irdse for component ser-
vices. This technique has been applied on inter-classitglst], and also on descriptions
for components [8].

Suppose post-conditions (for example) on services fromaiwolar components.
They should relate to a similar structure and semantic. Eletmey could be thought
as being one acloné of the other. Thus we apply some algorithms based on Ahistrac
Syntax Trees (AST) from [9], which were originally intendeddetect similar pieces
of code (clones) on existing programs. Then compatibilityefssertions and the usage
protocol is carried out by generating ASTs.

All such techniques applied on our assessment procedysédiatcomplish a con-
sistent mechanism to assure a fair component integrat®medproceed with our work,
reliability is mainly considered, since we base the whaledration process on the chal-
lenging Ubiquitous Systems.

The rest of the paper is organized as follows. Section 2 ptesmur proposal for
an integration process. Section 3 illustrates the proppssrkess with an example. Sec-
tion 4 discusses implementation alternatives. Conclissimal future work are presented
afterwards.

2 Process Framewor k

We consider a reference model to describe the required esgiy practices on our

targeted automated Integration Process. Figure 1 defidiigns showing components

through different phases. We add an extra step to distihgiisembly from integration

— adapted from [1]. For each phase we distil some steps agefitytexplained below.

Numbers imply a non-strict order of execution.

Qualification 2. AssessmenEvaluate compatibility upon
expected behaviours.

1. Recovery Fetch components from a
repository or disparate devices.

11

Qualification Adaptation Assembling Integration
/_\ /_\

< <

®@ © ©O ¢ d J|d @ EEm

[]

e ¥ o Jd| gkl KL

off-the-shelf qualified adapted assembled integrated
components components components components components

Fig. 1. Component Integration Reference Model

3. Component SelectionAnalyse options 1. Assembly Analysid\nalyse conditions for
from assessment results and extra require- assembly to create a new application.

ments (e.g. user preferences). 2. Building: Deployment of additional com-
ponents for the assembly process.
Adaptation 3. Composition Perform the final applica-

tion assembly.
1. Adaptation AnalysisEvaluate conditions)
from a selected component according to Htegration

client component. 4 -, .
P 1. Integration Feasibility Analyse condi-

tions to perform connection to an under-
lying infrastructure (middleware).
3. Tailoring: Perform the adaptation accord- 2. Creation Construction of additional com-

2. Wrapping SelectiarAnalyse the most ap-
propriate adaptation strategy.

ing to the selected strategy. ponents for such an integration process.
3. Glue Perform the final application inte-
Assembly gration.

Next we focus on our Component Assessment procedure aimen-ds part of the
Qualification phase. For this, we consider that a componedeuevaluation should
satisfy a certain degree of compatibility with respect taveig requirement specifica-
tion. We assume such specification describes the requiratidmality in the form of a
component by including the following aspects:

1. Expected InterfaceSignatures of expected services.
2. Abstract BehaviourAssertions for the component and its services.
3. Usage Protocal The expected protocol of use for services.

Based on this we make the following consideration upon sirityl between com-
ponents. A componerB offers similar functionalities toA when the two following
conditions are properly satisfied:

Condition 1.ComponenB offers, at least, the same or equivalent services to those offerAd by
Interface(A) C Interface(B)

Condidition 2.The protocol of use for services on both components is equivalentisé/ to
denote “equivalencé”

UsagePr ot ocol (A) =~ UsagePr ot ocol (B)

% Equivalence is measured according to both the element to be compatéesapplied tech-
nigue. From this, different thresholds can be distinguished.

12

Condition 1 is true when there exists equivalence on coomdipg services from
both components. A servicega of a componenA is equivalent to a serviceb of a
componenB when the four next conditions are satisfied:

Condition 1.1.The return type of both services is equivafent

typeOf (sa) ~ typed(sh)
Condition 1.2.The number of parameters on both services is the same:

par ms(sa) | = |par ms(sb)|

Condition 1.3 Parameter types on both services are equivalent:

V pa € parns(sa) 3 pb € parns(sb) / typeO(pa) =~ typeO (pb)

Condition 1.4 Pre and Post-Conditions of sa and sb are similar.

A data type insa (the return type or a parameter type) is equivalent to a data typb i
and only if either both data types are the same or the considered data typeismA and the
considered data type b is B:

typeOf(a) = typeOf(b) iif
[typeOf (a)=typeCf(b) Vv (typeOf(a)=A A typeCf(b)=B)]

Beingt ypeO (a) a function returning the type & (a can be a service or a parameter), and
respectively beind\ the component wher is included — the same fdr andB.

3 Example

Suppose we haved ndow to operate with banking accounts. A user may create an
account by defining the account number and then deposit ddveitv any amount of
money. Figure 2 shows the shape of thendow. The ‘build’ button allows to create an
instance from a typicaBanki ngAccount component, whose interface is presented
on Figure 3. In some scenario, it is possible that such coemtan not available to be
used bywi ndow. However, another component with a similar functionalibuid be
recovered from a repository. Suppose Fienanci al Account component is found,
which presents the interface given below. Then, in ordeetsurye about their similarity
we run the Assessment Procedure as explained in the nexirsect

conmponent Fi nanci al Account {
Fi nanci al Account bui |l dFAccount (string numnber);
doubl e obt ai nBal ance();
voi d deposit(double quantity);
voi d extract (doubl e quantity);
voi d transfer(Financial Account target, double quantity);}

4 For built-in types, types oab must have at least as much precision as typesaohave — e.g.
compare double w.r.t. integer.

13

& Account Window —laix BankingAceount
Account # : I11112233334444 #mNumber: string
#mBalance: double
Build - -
Balance : I ‘ +BankingAccount(number: string)
+buildBAccount(number: string):
A . p ‘ Deposit BankingAccount
mount
Withdraw +deposit(amount: double)
| +withdraw(amount: double)
Search G t
S TN +getBalance(): double

Fig. 2. Account Manager Window Fig. 3. Banking Account Component

3.1 Assessment Procedure

The Assessment task must verify that Condition 1 and 2 arsfisgt— as we pointed
out on Section 2. Thus we begin exploring Condition 1.

Interface Equivalence. For Condition 1 to be true we must verify four conditions.
However, lets consider first only Conditions 1.1 to 1.3. Aigglence is found on
bui | dFAccount and bui | dBAccount . Their number of parameters and para-
meter types are equal; and their return types are equivaldxath refer to the con-
tainer component. Next arget Bal ance andobt ai nBal ance, since they have
no parameters and the same return type. In caskepbsi t andwi t hdr aw from
Banki ngAccount two services from the other component could be simidaposi t
andext r act . They match on the return and parameter types, and the nuhper
rametersBanki ngAccount does not include a service equivalentttoansf er.
However, all of their services are, at afirst glance, alsereff byFi nanci al Account .

In order to be accurate on checking Condition 1, Conditi@nmust be satisfied as
well. For this, the comparison of pre and post-conditionsnficorresponding services
is required. For brevity reasons we describe this procednhe for deposi t (from
both componentsii t hdr awandext r act . For such services are specified by using
OCL the following assertions.

BankingAccount FinancialAccount
deposit deposit

pre: amount > 0 pre: 0 < quantity

post: nBal ance@r e post: nBal ance =

+ anpbunt = nBal ance nBal ance@re + quantity

withdraw extract

pre. amount < nBal ance@re pre. quantity < nBal ance@re

post: nBal ance = post: nBal ance =

nBal ance@r e — anount nBal ance@re — quantity

14

To check assertions similarity we derive Abstract Syntaeesr(ASTs). We show on
Figure 4 only ASTs for assertions deéposi t from both components. On each node
in the tree we also save a ‘type’ that is used to operate wathub-trees. Thus, nodes
with values= or + are of typelnterchangeable OperatailO), meaning that being
andb two sub-treesa+b is the same thdb+a. Nodes with value>, < or — are of
type Non-Interchangeable OperatdNIO). Nodes with numbers or variable names are
of type Text(TXT).

/>\ :
amount 0 Pre-Condition 0 quantity
+ mtBalance mBalance +
mBalance@pre ~ amount Post-Condition mBalance@pre quantity
BankingAccount FinancialAccount

Fig.4. ASTs fordeposi t 's assertions on both Components

We start evaluating post-conditions frateposi t . For this, the root node of both
trees are compared and, if they are equal, the respectiveuhef right subtrees are re-
cursively comparedBeinga andb two trees with IO root nodes, we say that they are
equivalent 4 ~ b) iif:

(a.leftChild ~ b.leftChild A a.rightChild ~ b.rightChild) Vv
(a.leftChild ~ b.rightChild A a.rightChild ~ b.leftChild)

In our example, both trees present 10 root nodes. Thus, wearapare the left sub-
tree of one post-condition with the right sub-tree of theeothnd vice versa. This allows
to detect the equivalence on both trees and so for the camdspy post-conditions
of both services. However, values on leave nodes imply arifft case. For this, we
consider that two trees with no children with TXT root nodes equivalent. Hence,
all the sub-trees are equivalent regarding both post-tiongi and then also the whole
post-conditions are.

ASTs for pre-conditions of botldeposi t services present NIO root nodes, but
their values are operators which are indeggbosite operatorsin fact, the opposite
operator to> is <, and the transformation can be applied to any of both treesake
the comparison. Hence, also the trees corresponding toquitions are equivalent.

Similar procedures are followed up for each candidate gaiecvices. In the exam-
ple, the same operations are maded®t r act andwi t hdr aw. This process makes
clear the real correspondencedeposi t andwi t hdr awfrom Banki ngAccount
with respect taleposi t andext ract fromFi nanci al Account .

Since all the assertions are equivalent, Condition 1.4lf#lédl. Therefore, we can
also conclude that Condition 1 is true.

15

Usage Protocol Equivalence. Now, we must check whether the protocol of use for
both components is equivalent. Here it has to be remembleatthe usage protocol is
described by regular expressions. The usage protocdts foeenci al Account com-
ponent (1), an®anki ngAccount component (2) are given below. Note that we have
excluded serviceget Bal ance andobt ai nBal ance to make the example simpler.

buildFAccount. deposit. (extract-deposit-transfer)* Q)
buildBAccount. deposit. (withdraw+-deposit)* 2)

For usage protocols, only services actually required, aeg dior checking. In our
examplet r ansf er is recognized as an extra service and as such is removed from
regular expression (1), as follows:

buildFAccount. deposit. (extract-deposit)* 3)

Usage protocols comparison is also made deriving ASTs femmlar expressions
(1) and (3), as can be seen on Figure 5.

ASTs deriving from regular expressions have a different§eperators. The con-
catenation operator)(is aNon-Interchangeable Operat¢NIO). Alternative (+) is an
Interchangeable OperatdiO). Repetition §) is anUnary Operator(UO) — a tree with
just one child. Two nodes corresponding to services withhilgien in two different
trees are equivalent if the services are equivalent frondiion 1 point of view. Thus,
as the node labelled with- corresponds to a 10 operat@xt r act is equivalent to
wi t hdr aw. Since the trees on Figure 5 are equivalent, Condition 2isfieal.

Therefore, as both Condition 1 and 2 are fulfilled, we canrittfatFi nanci al -
Account offers similar functionalities to those &anki ngAccount .

buildBAccount i buildFAccount .
deposit 63 deposit *
| |
+ +
withdraw deposit extract deposit
BankingAccount FinancialAccount

Fig.5. AST for Usage Protocols

3.2 Searching and Adaptation Procedure

Figure 6 presents a collaboration diagram describing anoagh — developed on Mi-
crosoft .Net — to achieve the Recovery and Adaptation pnaees

W ndow s an instance ofFor mMAccount component — as the one in Figure 2. In
order to operate with accounts, it needs to be connectedavtttimponent representing

16

accounts. A special component callRet r i ever searches for components equivalent
to a given specification. In our exampBanki ngAccount component represents
such a requirement specification providedWyndow. Ret ri ever asks for a com-
ponent by using &onponent Manager which may return a similar component from
aConponent Reposi t ory. In order to solve likely inconsistencies with the expected
componentConponent Manager creates an instance fromV apper component,
calledaW apper .Fi nanci al Account isfound onthe&Conmponent Reposi t ory
and is connected taW apper . Hence, it is applied the wrapping mechanism named
adapter[2], to provide the expected signatures form — > hdr aw andanount .

A reference oW apper isreturned tdRet ri ever by Conponent Manager . Fi-
nally, Ret ri ever returns such reference t ndow, so to be able to start operating
by being connected tBi nanci al Account .

2: findFor(“BankingAccount”) 4: searchFor(“BankingAccount”): Component
:Component
‘Retriever : Component
«— Manager Repository
7: return aWrapper
8: return 3: newWrapper() y
aWrapper contains
1: findEquivalentComponents 5: add(FinancialAccount)
For(“BankingAccount”)
window: associatedTo aWrapper: associatedTo N
—————————————————— :FinancialAccount
FormAccount Wrapper ¢ E—
9: windows is i 6: aWrapper is
associatedTo aWrapper associatedToFinancialAccount

Fig. 6. Recovery and Adaptation procedures

4 Implementation

We have developed a first prototype to check the feasibifityuo proposal. The proto-
type is based on Microsoft .NET technology and it includegpé but effective imple-
mentations of different elements and algorithms describélde previous section.

4.1 Representing Assertions and Usage Protocol

.NET allows to add meta-data to components usingittiébute mechanism. This help
to annotate classes, methods, parameters, etc. To deasgbdions, we have created
a class calledContraintthat specialize$System.AttributeThis class includes the am-
bit where the attribute is valid methodsn this case. Each constraint will contain a
String representing the text of the pre or postconditiorloling is presented both
the Constraint class and an example of assertions addee tteffosi t service on
Fi nanci al Account .

17

usi ng System

namespace Conponents.attribs /1 Assertions for deposit
{[AttributeUsage(AttributeTargets. Method)] [Precondi tion(‘* <(0,anmount)")]
public class Constraint: SystemAttribute [Post condi tion(‘* =(nBal ance,
{ protected String niext; +(nBal ance@r e, amount))")]
public Constraint(String text)) .)
{ this.nText=text; } public void deposit(double
Yo} anount)

{ mBal ance+=anount ; }

Regular expressions for the usage protocol are represengesimilar way, where
the ambit in this case iglass In order to facilitate evaluation both, the assertions and
the usage protocol, are described in a prefix form as can Ipeabewe.

4.2 Recoveringthelnterface

In order to inspect the set of members of any element, .NELidles theReflection
mechanism. This can be used to recover the set of methodsdoomponents to be
evaluated. Reflection can be of substantial help in casesvdmenponents are discov-
ered from some mobile devices.

5 Conclusions

We have presented a preliminary scheme to address the didnrnha Component-
base Integration Process for Ubiquitous Systems. We at&larly working on the
Qualification and Adaptation phases. Our approach of coeptofissessment is based
on meta-data added to components, describing assertichtharusage protocol by
means of OCL.

We have developed a simple prototype on Microsoft .Net tolément our ap-
proach. As reliability is our main concern, selecting ampiate methods, techniques
and languages, must be accurately accomplished. This entipasis of our next de-
velopment in this area.

Acknowledgments

We would like to thank Dr. Juan Carlos Augusto, from SchoaComputing and Math-
ematics, University of Ulster, Newtownabbey, UK. His paigation provides a mean-
ingful complementary view giving accuracy and confidenceh&project.

References

1. Brown, A., Wallnau, K.: Engineering of Component-Based Systenis: IEEE 2*¢
ICECCS’96, Montreal, Canada (1996) 414-422

2. Flores, A., Polo, M.: Dynamic Assembly & Integration on Componsaged Systems. In:
4th J11SIC, Madrid, Esphia (2004) 349-360

3. Flores, A., Cechich, A.: Quality Considerations on Ubiquitous Systéms| Workshop de
Ingeniefa de Software, at JCC'02, Copiapo, Chile (2002)

18

. Garlan, D.e.: Software Architecture-based Adaptation for Pee/&@ystems. In: ARCS’02.

Volume 2299 of LNCS., Karlsruhe, Germany (2002) 67—82

. Flores, A., Polo, M.: Considerations upon Interoperability on P#veaComputing Environ-

ments. In: 8" WICC, pp. 162-166, Neuquen, Argentina (2004)

. Flores, A., Augusto, J.C., Polo, M., Varea, M.: Towards Cartéevare Testing for Semantic

Interoperability on PvC Environments. In: IEEE*#7SMC’04, special session: CRIPUC,
The Hague, Netherlands (2004) 1136-1141

. Kirani, S.: Specification and Verification of Object-Oriented Progra?hd thesis, Computer

Science, University of Minnesota, Minneapolis, USA (1994)

. Brada, P.: Towards Automated Component Compatibility Assessnten6’" Wrkshp on

Comp-oriented Prog, at ECOOP’01, Budapest, Hungary (2001)

. Baxter, I., Yahin, A., Moura, L., Sant'/Anna, M., Bier, L.: Clometection Using Abstract

Syntax Trees. In: ICSM’98, pp. 368-377, Maryland, USA (1998)

