
SisBrAV – Brazilian Vulnerability Alert System

Robson de Oliveira Albuquerque, Daniel Silva Almendra, Leonardo Lobo Pulcineli,
Rafael Timoteo de Sousa Junior, Claudia J. B. Abbas

Universidade de Brasília - Campus Universitário Darcy Ribeiro - Faculdade de Tecnologia -
Depto de Engenharia Elétrica e Redes de Comunicação - Laboratório de Redes - sala B1 - CEP:

70910-900 - Brasília - DF – Brazil

Luis Javier Garcia Villalba

Universidad Complutense de Madrid (UCM) - Departamento de Sistemas Informáticos y
Programación (DSIP) - Facultad de Informática, Despacho 431- C/ Profesor José García

Santesmases s/n - Ciudad Universitaria - 28040 Madrid - Spain

Abstract. This paper describes the project and implementation of a vulnerability search and
alert system based on free software. SisBrAV (acronym in Portuguese for Brazilian
Vulnerability Alert System), will consist in a spider mechanism that explores several security-
related sites for information on vulnerabilities and an intelligent interpreter responsible for
analyzing and sorting the relevant data, feeding it into a database. With that information in
hands, an email notifier sends out alerts, in Portuguese, about new vulnerabilities to registered
clients, according to the operating systems and services run in their environment. In addition to
the email notifier, a web server will also be implemented, for systems administrators to perform
an on-demand custom search in the vulnerabilities database.

1 Introduction

In a daily basis, a large number of vulnerabilities, which affect a variety of systems
and services, are detected. Manufacturers and developers work extensively in order to
release, as fast as possible, a patch that fixes the problems found in their products. On
the other hand, the hacker community is continually growing, producing malicious
codes, exploits and viruses that take advantage of those vulnerabilities very rapidly.
With the incredibly large quantity of information that can be found on the Internet
today, as well as the increasing number of hacker sites that provide easy access to lots
of malicious tools and exploit codes, it is of great importance that every enterprise’s
systems security team be well advised and informed about what are the threats to their
environment and what they can do to avoid them, protecting their systems, services
and network quickly and proactively. Even individuals with one or two PCs at home
should be concerned with their system’s vulnerabilities, applying the latest patches in
their software, avoiding any security problem that may happen.

de Oliveira Albuquerque R., Silva Almendra D., Lobo Pulcineli L., Timoteo de Sousa Junior R., J. B. Abbas C. and Javier Garcia Villalba L. (2005).
SisBrAV – Brazilian Vulnerability Alert System.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 67-76
DOI: 10.5220/0002578700670076
Copyright c© SciTePress

Existing vulnerability database systems are created and maintained by human
administrators, who are responsible for searching, analyzing and evaluating new
vulnerabilities everyday, and then updating the database regularly with new entries, in
a pretty much manual process. The initial idea of the project depicted in this paper,
was that there could be an automatic process of gathering the relevant vulnerabilities
information, sorting it according to predefined rules, feeding a database and
generating email alerts for specific recipients whose environment could be affected.
The solution should be based on free software and should also be portable to many
platforms. SisBrAV project is, thus, the result of that idea.

2 Related Issues

Up to this date, in Brazil, there isn’t any system such as SisBrAV, which
automatically looks for new vulnerabilities and informs the users about them. In the
other hand, a large number of security sites can be found in the Internet, and almost
all of them have a vulnerability alert section, updated daily, enclosing vulnerabilities
for many systems and programs. Thus, information regarding vulnerabilities can be
easily accessed through the Internet, but it is very difficult to glimpse which
vulnerabilities represent real threats among the large number encountered. So, there is
plenty of information, but a lack of simplicity in the process of filtering these pieces
of information, in order to keep only in the important ones.

The main challenge in the SisBrAV project is the sorting process, since the system
will search for vulnerabilities in many sources, and each of them organizes the
information in a particular way. The interpretation of the data collected must be very
precise, as well as the sorting process, since the clients must be informed only about
the threats to his specific environment. The importance score for each vulnerability
must also be precisely assigned, making it possible for the client to assign different
priorities when establishing security countermeasures for the vulnerabilities he has
been informed about.

Two other elements are also critical for the efficiency of the SisBrAV system: the
organization of the vulnerability information and the generation of customized alerts
to each client according to his systems and services. The information must be sorted
in an accurate but simple manner, and the alerts must be clear and succinct, as well as
they must be sent only to the clients whose environment is threatened by the
vulnerabilities.

SisBrAV will implement a module for each function it performs. The following
section will describe how all these modules work and what functions they perform.

3 SisBrAV Modules

SisBrAV will be consisted of 5 modules. The Vulnerability Search Mechanism
(VSM) module will consist in a spider that accesses and indexes many vulnerability
documents in several security sites. The Interpreter, Parser and Sorter (IPS) module
will be a program that analyses the data provided from the spider, defining priorities

68

and classifying the entries, according to predefined rules. The Central Database
(CDB) module will store all vulnerability data, clients’ info and keywords for
English-Portuguese translation. The Email Notifier (E-Note) module will alert by
email the registered clients about new/updated vulnerabilities specific to each client’s
environment. At last, the Vulnerability Web Server (VWS) module will be a server,
accessible by any registered client, to perform an on-demand, customized
vulnerability search in the Vulnerability Database. The details of each module are
depicted in the next sections.

3.1 Vulnerability Search Mechanism

The vulnerability search and indexing process is made by a spider mechanism. A
spider is a program that explores the Internet by retrieving a document and recursively
retrieving some or all the documents that are referenced in it. It acts as an untiring
human being who follows all links he finds in a web site, and all the links in the
subsequent documents he sees. The spider indexes (fully or partially) all the
documents that it accesses into a database, which can afterwards be used by a search
engine.

The spider tool used in SisBrAV will be htdig, which is one of the programs that
constitute the Ht://Dig package (6). Ht://Dig is a free web search engine, created in
accordance to the GPU (General Public License) rules, and is consisted of many
individual programs, like htdig, htdump and others.

The most recent stable version of Ht://Dig is 3.1.6, so this will probably be the
version implemented in SisBrAV. A brief description of the htdig program is
necessary, for there are some options which are used in the system, for its best
performance and accuracy.

Htdig is a spider program (or search robot), which does what is called the
“digging” process, retrieving HTML documents using the HTTP protocol, gathering
information from these documents and indexing them, creating specific database files
which can then be used to perform a search through these documents.

Htdig has many options, which are/will be used in the SisBrAV system, either to
produce a desired result or for debugging purposes. The –c <configfile> option
specifies another configuration file instead of the default. Another important option is
the -h <maxhops> option, used to restrict the dig to documents that are at most
maxhops links away from the starting document. This option is used every time the
initial digging is run, to assure that htdig will index only the relevant documents for
each site. The –i option is used to perform an initial digging. With this option, the old
databases are removed, and new ones are created. There are also some options very
useful for debugging, such as –s and –v, used to print statistics about the dig after
completion and to set the verbose mode, respectively. For test purposes, one
important option is the -t option, which tells htdig to create an ASCII version of the
document database, making it easier to parse with other programs, so that information
can be extracted from it for purposes other than searching. It generates the files
db.docs and db.worddump, which formats will be explained later.

Finally, the url_file argument can also be passed, telling htdig to get the URLs to
start indexing from the file provided, overriding the default start_url in the
configuration file.

69

As said before, when using htdig with the –t option, it produces two ASCII files,
db.docs and db.worddump. The db.docs file contains a series of lines, each of them
relating to an indexed document. The lines contain information such as the document
URL, title, modification time, size, meta description, excerpt, and many other useful
document information. The db.wordlist file has a line for each word found in the
indexed documents. Each line in this file contains a word, followed by the document
ID where it was found, its location in the document, its weight, number of
occurrences, etc.

The default configuration file for htdig is the file htdig.conf. That’s where all
configuration options for htdig (and the other tools, if they are used) are set. Since all
of its parameters will probably be left with their default values, this file’s content will
not be copied in this paper. At first, the security sites indexed by SisBrAV’s htdig will
be the ones listed in the items (5), (7), (8), (9) and (10) in the References section. The
number of sites can be (and will be) expanded to a much higher number, but initially
only these five sites were chosen. The way htdig indexes each site will be almost the
same: the only parameter that will differ from one site to another is the number of
hops from the starting URL. For example, if maxhops is set to 2, htdig will index the
starting URL, then it will follow all the links in that URL and index all the
documents, and finally it will also follow the links in these documents, indexing the
documents it finds, and then stop the digging process. Since each site has its way of
displaying their documents, the number of hops necessary to gather all relevant
vulnerability information will vary from site to site.

To solve this issue, a simple UNIX bash script will be used to read a file that
contains lines with an URL and a number (which defines the maximum hops from the
initial URL), separated by a TAB. The script will produce different htdig commands,
according to the number of maximum hops defined. The number of maximum hops
for each site is defined by the SisBrAV administrators, who inspect the sites and
check the number of levels the spider will have to crawl down in order to obtain the
maximum amount of relevant information about the vulnerabilities, and the minimum
unnecessary information.

Htdig generates several Berkeley DB type files. These files will then be analyzed
by the IPS Module, as explained in the next section.
by the IPS Module, as explained in the next section.

3.2 Interpreter, Parser and Sorter

The IPS Module will probably be written in Java. It will use an heuristics algorithm to
perform the content analysis of the data stored in the Berkeley DB files created by
htdig, in order to feed the Central Database with accurate vulnerability information.
The data is parsed and the vulnerabilities are grouped between previously determined,
hierarchically distributed classes.

At first, the IPS program will perform the sorting process. Initially, it analyses all
the entries in the database, to find ambiguous or duplicated information for a same
vulnerability. Then, it parses the content of the information, in order to group the
vulnerability entries in classes, according to its main aspects: remote/local, type,
low/medium/high importance score, etc. It also determines the systems/services in
which that vulnerability occurs. If there is more than one entry for the same
vulnerability, it correlates all the information found in the entries, to make sure the
attributes are set as precisely as possible. For example, if a given vulnerability is

70

issued in three different sites, and one of them scores the vulnerability as of medium
importance and the others say its importance is high, the IPS will set this attribute to
“high”.

The hierarchical class tree used to group the vulnerabilities is described in figure
1.

Each document indexed by the spider in the VSM module will be related to a
specific vulnerability. The IPS module performs the vulnerability sorting process for
each document, by following the tree shown in the above figure. Initially, the
algorithm determines if the vulnerability is local or remote, according to the
information found in the document. It then classifies the vulnerability into a specific
vulnerability type, among the predefined types registered in the system, such as
Denial of Service, Buffer Overflow, Password Retrieval, Authentication Bypass, etc.
Afterwards, an importance score is assigned to the vulnerability. At last, the IPS finds
out what operating systems – and their versions – are affected by the vulnerability,
and what programs/services – and their versions – are threatened by it. As well as the
vulnerability types, there will also be a large list of systems and services (and their
respective versions), which IPS will use in the sorting process.

After a given vulnerability is sorted, the IPS checks if there is any other
vulnerability with exactly the same characteristics, affecting the same
systems/services. If so, it performs a series of tests, to check if both entries refer to the
same vulnerabilities. In these tests, other information is analyzed, such as the
vulnerability date, the document URL (if the root site is the same, it’s probably not
the same vulnerability, since a security site must not have duplicated documents for
the same vulnerability), and other information.

After the vulnerabilities have been classified, the IPS feeds the Central Database
with that data.

 Fig. 1. IPS – Hierarchical Classes Tree: the vulnerabilities are sorted and grouped into
different classes

71

Since the database is not hierarchical, but relational, the IPS will also have to
convert the results of the sorting process before actually feeding the Central Database.

3.3 Central Database

In order to store all the information regarding vulnerabilities and their attributes,
clients’ profiles, systems and services data, as well as the English-Portuguese
translation data, SisBrAV will have a Central Database. It is most likely that it will be
implemented using a MySQL server, which is GPU compliant, and its architecture
will follow the SQL ANSI standard, to guarantee its portability and scalability.

The CDB will be divided into three smaller databases, each one storing specific
information, although the three of them relate to each other. The first database is the
Vulnerability Database, which will contain all the vulnerability information already
sorted into defined groups, as seen in the IPS section. The second base is the Client
Database, which will keep the client-related data, such as their names, contact
information and the systems and software running in their environment. At last, the
third database will be the English-Portuguese Translation Database, storing a number
of keywords, each one relating to keywords in the other idiom, according to certain
parameters.

Mostly based on the schema designed by the Open Source Vulnerability Database
Team (5), the Vulnerability Database is the most important part of the whole
SisBrAV system, for it is the central repository of all vulnerability information. Its
structure, which is still being developed, will probably keep the main OSVDB
structure, although there will be some changes in certain tables, and other tables will
be removed or added. The Vulnerability Database, when fully implemented, will be
similar to figure 2.

Fig. 2. Vulnerability Database Schema

72

The External Text section in this database consists in tables that describe certain
aspects about a vulnerability. They exist inside the database, but usually describe
information that one would use externally to the database. For example, a Solution
Description, or a Vulnerability Description is an external text.

The tables in the above schema also deserve some explanation. The vuln table is
the main table in the schema. It's where the SisBrAV IDs live. Other information
stored in this table includes various dates and vulnerability classification data. The
ext_txt_type table defines the types of external texts. For example, Vulnerability
Description, Solution Description, Technical Description, Manual Testing Notes. The
ext_txt table stores the external text blobs for any type of text that is larger than 1024
characters. Other information stored is the language, type, author, and revision. When
the texts are updated/fixed/modified the new text is reinserted into this table and the
revision number is incremented. The contributors for anything in the ext_txt table are
identified in the author table, making it possible to have a contributor's line to any
SisBrAV ID. The authors are used to track the external text authors, as well as the
credited researcher of each vulnerability. In the Products section, the object
correlation table performs a link between the PK of the vuln table and a key named
Object Key (OK).

As a result, it is possible for other tables to link to the Products tables without
using a PK. The object table binds vendor, base, version and vulnerability together,
storing product information.

The name object might seem sort of vague, but it means the object that the
vulnerability exists within. The object_base table contains product names. For
example, Windows, Exchange, Apache, and MySQL are all examples of product
names. The object_vendor table contains the vendor names. For example, Microsoft,
Sun Microsystems, and Apache Software Foundation are all examples of vendor
names. The object_version table contains the version names. For example, 1.0, 2.0,
0.1, XP, 2000, or 95 are all examples of version names. Another crucial table is the
score table, used to bind a scoring weight to a vulnerability. It is intended to allow
every vulnerability in the database to be associated with one scoring weight. The
score_weight table is used to store any type of scoring information needed for scoring
calculations. Finally, the credit table adds support for identifying credit for
discovering a vulnerability. Instead of storing author like information, a reference to
the author table is made, as the data is extremely similar.
The second part of the CDB is the Client Database, responsible for storing all client-
related data, involving personal/enterprise identification information, contact emails,
products (systems and services) running, etc. Its structure is shown in figure 3.

Fig. 3. Client Database Schema

73

In the above schema, the Products section refers to the products that each client
registers, in order to receive only vulnerability alerts related to the systems running in
his/her environment. The initial date to look in for vulnerabilities is also stored for
each client. Specific product characteristics data is kept in the Vulnerability Database,
as it was shown in the previously. All data related to a client himself is found in the
Personal Data section. Contact emails, telephone numbers, addresses and
personal/enterprise information, as well as the clients’ passwords are entered in this
part of the database.

The Name table consists in the main table of the Client Database, containing each
client’s account ID. All the clients are bound to their products through the
Products/Objects table. The initial_date table stores the initial date to search for
vulnerabilities, for each product a client registers in the database, while the
Initial_search table contains entries that specify if a client is a new registered client in
the system (represented by a “Yes” entry) or not (“No”). These entries are used by E-
Note, to define if an initial search must be executed or not. At last, the Personal Data
tables, such as address, e-mail and others, store client specific information, such as
email, telephone numbers, address, personal/enterprise information and login
username and password.

The last subpart of the CDB is the English-Portuguese Translation Database,
which is still being designed. It will contain a large number of keywords in English
and in Portuguese, in addition to semantics and syntax rules, making it possible for
the E-Note module to translate the main description of a vulnerability entry to
compose a mainly Portuguese email alert.

3.4 Email Notifier (E-Note)

This program will look for updated vulnerability information in the database. After
retrieving the information, the program checks, for each registered client, if there are
any new/updated vulnerabilities which affect the client’s environment. If so, an email
message – in Portuguese – is formatted, to inform the client about the new
vulnerabilities discovered in his systems and services.

This message consists in a brief explanation of the vulnerability, in Portuguese,
and one or more links for further information on that issue.

When a client registers in the SisBrAV system, he will have to inform what
systems he has and what programs he runs, thus defining the scope of vulnerabilities
SisBrAV should be concerned with, when generating alerts to that specific client.
Besides that, the client also defines the start date, determining the initial point from
which the system should begin the search in the vulnerability database. With that data
in hands, E-Note will search in the database only the information that is really
necessary for that client, generating a customized email message to him.

The E-Note module will also be written in Java, to guarantee its portability. E-
Note is divided in two programs: one program performs the search in the database and
the other sends the email alert.

For each new client added in the system, all the data about his systems and
services is stored in the clients table, in the SisBrAV database, and a flag is set for this
client, with a logical value that represents “NEW”. The start date from which he
wants to be informed about existing vulnerabilities is also stored in the database
clients table.

74

Every time E-Note is run, it checks if there are any new clients in order to search
for all the vulnerability entries that occur specifically in their systems and are newer
than the start date defined by the client. It then generates the email alert to those
clients, notifying about all vulnerabilities found. Afterwards, the “NEW” flag in the
clients’ entry in the database is set to a value that stands for “OLD”.

For existing clients, the E-Note will simply check if there are new/updated
vulnerabilities regarding their systems/services. If so, it generates the email alert for
the specific clients whose systems are affected.

Due to the fact that the vulnerability information stored in the database is mainly
in English, the vulnerabilities selected by E-Note are also in English. To make it
possible for E-Note to generate Portuguese messages, an English-Portuguese
translation database will bind English keywords to previously defined Portuguese
sentences. E-Note performs, thus, a simple translation in the main vulnerability
description. The main aspects – remote/local, high/low importance, etc – of the
vulnerability are also translated. For example, if the main description of a
vulnerability is “HP-UX DCE Remote Denial of Service Vulnerability”, and its
importance is critical, the Portuguese message would be “HP-UX DCE:
Vulnerabilidade Remota de Negação de Serviço. Importância: Crítica”. The
translation database is in the format described in the previous section.

Along with the main description of the vulnerability, the email also contains links
to the sites where that vulnerability is described and discussed.

3.5 Vulnerability Web Server

The idea of SisBrAV is not only to inform its users, emailing them alerts about
vulnerability issues. The registered clients will also be able to perform a custom
search in the Vulnerability Database through the web. With that functionality in mind,
the fifth module of SisBrAV will be a Web Server that will handle these web
requests.

The users will access an authentication site, where they provide their username
and password (which are created and informed to him/her during the registering
process). If successfully authenticated, they will be redirected to a customized
database search page.

The site interface is being designed to be friendly and simple, although its security
will be fundamental. The web site will probably be based in PHP, due to the fact that
this language is very portable, and through its use, the database access can be
implemented in a secure and simple manner. The web server chosen for the SisBrAV
system was Apache, mainly because it is a multi-platform server, and also because
fully supports the web publishing technology which will probably be used (PHP).

There are also other technologies which utilization is currently in discussion, such
as Java servlets or JSP, because through using it would be easier to integrate the VWS
module to the other modules in SisBrAV. XML is also in discussion, since it is
another efficient way of implementing the database access from web. If JSP ends up
being implemented, Tomcat (which is the servlet container that is used in the official
Reference Implementation for the Java Servlet and JavaServer Pages technologies,
fully integrated with Apache) will also be used.

75

4 Conclusions

In the current scenario, it is really important for anyone connected to the World Wide
Web to protect his/her systems and data against the threats that continually arise.
Besides having a nice antivirus tool, a firewall efficiently configured and other
security technologies implemented in their network, users and enterprises must keep
all of their Operating Systems, services and other software up-to-date, by applying all
their latest patches and fixes. With that in mind, it's of great importance that systems
and network administrators be informed quickly about any vulnerability that may be
encountered in their systems, so that they can act proactively to build up defense
countermeasures to guarantee the security of their environment.

SisBrAV will be an important security innovation, since it implements an idea of
an automatic vulnerability searching and alerting mechanism, with very little human
administration needed. Since it will have many trustable security sites as sources
where it will look for vulnerabilities information, SisBrAV will be a very reliable
system, extending the horizons of systems and network security. In addition to that
features, it is also important to remember SisBrAV, being a Brazilian project, will
implement a translation feature in order to produce Portuguese email alerts, so that
Brazilian clients will feel comfortable with it. In the future, the language support can
be expanded to other idioms.

Nowadays, where free software gradually gains space in the software business, a
program must support many platforms, so that it can be installed in a variety of
systems and interact with different technologies without incurring into stability loss or
performance troubles. SisBrAV is being designed using only free software products
and platform independent languages, resulting in a solution with great portability and
scalability.

References

1. Deitel, H. M. – Java, Como Programar / H. M. Deitel e P. J. Deitel; trad. Carlos Arthur.
Lang Lisboa. – 4.ed. – Porto Alegre: Bookman, 2003.

2. SQL Tutorial. Available from: http://www.w3schools.com/sql.
3. PHP/MySQL Tutorial. Available from: http://www.freewebmasterhelp.com/tutorials/phpmy
4. Portal Java Home Page. Available from: http://www.portaljava.com/home/index.php.
5. Open Source Vulnerability Database. Available from: http://www.osvdb.org.
6. http://Dig Project Home Page. Available from: http://www.htdig.org.
7. Internet Security Systems X-force Home Page. Available from: http://xforce.iss.net.
8. Cert Knowledge Base. Available from: http://www.cert.org/kb.
9. SANS Newsletters. Available from: http://www.sans.org/newsletters.
10. Security Focus Home Page. Available from: http://www.securityfocus.com.

76

http://www.freewebmasterhelp.com/tutorials/phpmy

