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Abstract: In this paper we investigate the relationships between individual mode stability and mean square stability of
jump linear system. It is well known that generally stability of a dynamical system in all its modes does not
guarantee stability of the jump linear system defined by all these modes. We present conditions under which
stability of all modes implies the mean square stability of the overall system.

1 INTRODUCTION

Linear dynamical systems with Markovian jumps in
parameter values have recently attracted a great deal
of interest. The main reason is that such systems may
serve as models for a large variety of industrial con-
trol processes. One class of examples is given by non-
linear control plants characterized by linearized mod-
els corresponding to several operating points which
appear due to abrupt changes. Such problems are
typical in control systems of a solar thermal central
receiver (Sworder and Rogers, 1983), electric load
modeling (Malhame and Chong, 1985), aircraft flight
control systems (Moerder et al., 1989) or ship autopi-
lot systems (Astrom and Wittenmark,1989). Markov-
ian jumps in parameter values may also result from
the random failure/repair processes( see e.g. (Siljak,
1980), (Willsky, 1976), (Petkovski, 1987)) and result-
ing fault prone control systems ((Siljak, 1980), (Sil-
jak, 1980), (Swierniak et al., 1998)). Yet another
class of processes with Markov jumps could be met
in flexible manufacturing systems (see e.g. (Boukas
and Haurie, 1990), (Boukas et al., 1995), (Boukas and
Liu, 2001)). Moreover in (Athans, 1987) Athans sug-
gested that such a model setting has also the poten-
tial to become a basic framework in solving control-
related issues in battle management, command, and
communications systems.

This paper deals with the problem of stability of the
linear discrete time dynamical systems with Markov-
ian jumps in the parameters values. This problem has
been investigated in a number of papers (see e. g.

(Fang and Loparo, 2002), (Ji and Chizeck, 1990a),
(Feng et al., 1992), (Li et al., 2000)) not only be-
cause of its theoretical complexity but also because
its broad practical implications. The way of modeling
is to represent the overall system by a number of de-
terministic linear plants and a Markov chain the states
of which called modes define which among these de-
terministic plants describes the dynamics of the sys-
tem in given time. The interesting but well known
property of the jump linear systems (see e.g. (Fang
and Loparo, 2002)) is that deterministic stability of
all system matrices in all modes is neither necessary
nor sufficient condition for mean square stability of
the considered process.

More precisely let us fix an underlying probability
space{Ω,F , P} and consider the linear system with
Markovian jumping parameters

x (n + 1) = A(r(n))x (n) , (1)

or it controlled analogue

x (n + 1) = A(r(n))x (n) + B(r(n))u (n) , (2)

wherex(n) ∈ Rl denotes the state vector,u(n) ∈
Rm is the control input,r(n) is a Markov chain which
takes values in a finite setS = {1, 2, ..., s} with tran-
sition probability matrixP = [p (i, j)]i,j∈S and ini-
tial distribution P (r (0) = i0) = 1. Furthermore,
for r(n) = i, Ai := A(i) and Bi := B(i) are
constant matrices of appropriate sizes. Denote by
x (n, x0, i0) the solution of (1) with initial condition
x(0) = x0 and initial distributionP (r (0) = i0) = 1
at timen = 0. The controlu (n) is assumed to be
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measurable with respect to theσ−field generated by
{r(0), ..., r(n)} .

In the literature three types of stability of system (1)
are considered: mean square stability, moment sta-
bility and almost sure stability. In this paper we in-
vestigate the mean square stability and stabilizability.
Their formal definitions are as follows.

Definition 1 System (1) is mean square stable( MS
stable), if for all(x0, i0) ∈ Rl × S, we have

lim
n−→∞

E ‖x (n, x0, i0)‖
2

= 0.

In that case we call the pair(A,P ), whereA =
(A1, ..., As) mean square stable. System (2) is mean
square stabilizable (MS stabilizable) if there exists a
feedback controlu(n) = K(r(n))x(n) such that the
resulting closed loop system is mean square stable.
In that case we call(A,B, P ) MS stabilizable, where
B = (B1, ..., Bs) .

The natural question which we have mentioned at
beginning is how the individual properties of matrices
Ai or pairs of matrices(Ai, Bi) such as deterministic
stability or deterministic stabilizability (controllabil-
ity) are related to the MS stability of (1) or MS stabi-
lizability of (2).

It is known that deterministic stability of all ma-
trices Ai, i ∈ S is neither necessary nor sufficient
for MS of (1) (see (Ji and Chizeck, 1990b), Examples
6.1). However the deterministic stability of each ma-
trices

√
p(i, i)Ai is necessary for MS stability (see

Theorem 2.1 in (Ji and Chizeck, 1990b)). It is also
known that individual deterministic stability of each
pair (Ai, Bi) is neither sufficient nor necessary (see
Example 6.2 in (Ji and Chizeck, 1990b)) for MS sta-
bilizability of (2). Moreover the individual determin-
istic controllability of each pair(Ai, Bi) is not suffi-
cient for MS stabilizability of (2) (see Example 6.2 in
(Ji and Chizeck, 1990b)).

It is also known that if the switching signalr in (1)
is deterministic and all matricesAi, i ∈ S are stable,
then it is possible to ensure the stability of the sys-
tem by switching sufficiently slowly. This means that
instability arises in (1) as a result of rapid switching.
Given this basic fact, a natural and obvious method to
ensure the stability of (1) is to somehow constrain the
rate at which switching takes place. This idea has ap-
peared in many studies on time varying systems (see,
(Guo and Rugh, 1995), (Ilchmann et al., 1987)).

In this paper we consider the system (1) with matri-
cesAi, i ∈ S being stable and investigate the problem
how to characterize the transition probabilitiesP for
which the system is MS stable. We also propose cer-
tain new sufficient conditions for MS stability of (1)
in terms of spectra of matricesAi and basing on this
result we propose new sufficient conditions for MS
stabilizability of (2) given in terms of individual pair

of matrices(Ai, Bi) . Finally we present a procedure
for MS stabilization of system (2) by pole placement
of pairs(Ai, Bi) .

2 STABILITY OF MATRICES AI

VERSUS MS STABILITY

The necessary and sufficient conditions for mean
square stability of (1) are given by the following the-
orem (see, (Costa and Fragoso, 1993) ).

Theorem 1 The system (1) is mean square stable if
and only if there exists a positive definite solutionPi,
i ∈ S of the following coupled Lyapunov inequality

Pi − A′
i



∑

j∈S

pijPj


Ai > 0.

For a symmetric matrixX of sizen by n denote
λ1(X), ..., λn(X) the eigenvalues arranged such that
λ1(X) ≥ ... ≥ λn(X). We have the following theo-
rem.

Theorem 2 If matrices Ai, i ∈ S are such that
λ1 (AiA

′
i) < 1, and there exists a sequence of pos-

itive numbers(xi)i∈S such that

xi

λ1 (AiA
′
i)

>
∑

j∈S
j 6=i

pijxj(
1 − λ1

(
AjA

′
j

)) , i ∈ S. (3)

Then the system (1) is mean square stable.

Proof. Define the followingn by n matrices

Qi = xi · I.

If λ1 (AiA
′
i) < 1, i ∈ S then by inequality

|λ1 (Ai)| ≤
√

λ1 (AiA
′
i),

(see (Weyl, 1949))|λ1 (Ai)| < 1, matricesAi are
stable and consequently discrete Lyapunov equation

Pi − A′
iPiAi = Qi, (4)

has a positive definite solutionPi. Moreover the as-
sumption thatλ1 (AiA

′
i) < 1 implies that the solu-

tion has the following upper bound (see (Yasuda and
Hirai, 1979))

λ1 (Pi) ≤
λ1 (Qi)

1 − λ1 (AiA
′
i)

.

Using this inequality with the fact thatλ1 (Qj) = xj

we have

λ1 (Pj) ≤
xj

1 − λ1

(
AjA

′
j

) .
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Therefore
∑

j∈S
j 6=i

pijPj ≥
∑

j∈S
j 6=i

pijxj

1 − λ1

(
AjA

′
j

) · I

and

A′
i



∑

j∈S
j 6=i

pijPj


Ai ≥



∑

j∈S
j 6=i

pijxj

1 − λ1

(
AjA

′
j

)


λ1 (AiA

′
i) .

Using the last inequality together with (4) we have

Pi − A′
i



∑

j∈S

pijPj


Ai = Pi − piiA

′
iPiAi−

A′
i



∑

j∈S
j 6=i

pijPj


Ai ≥

Pi − A′
iPiAi − A′

i



∑

j∈S
j 6=i

pijPj


Ai ≥≥

xi · I − A′
i



∑

j∈S
j 6=i

pijPj


Ai


xi − λ1 (AiA

′
i)
∑

j∈S
j 6=i

pijxj

1 − λ1

(
AjA

′
j

)


 · I

and from the assumption 3 we conclude that

Pi − A′
i



∑

j∈S

pijPj


Ai > 0,

and on the basis of Theorem 1, (1) is MS stable.
Using the Theorem 2 withxi = 1, i ∈ S and ob-

serve that
∑

j∈S
j 6=i

pij(
1 − λ1

(
AjA

′
j

)) ≤



∑

j∈S
j 6=i

pij


 max

j∈S
j 6=i

(
1

1 − λ1

(
AjA

′
j

)
)

=

(1 − pii)
1

min
j∈S
j 6=i

(
1 − λ1

(
AjA

′
j

))

=
1 − pii

1− max
j∈S
j 6=i

λ1

(
AjA

′
j

)

we obtain the following Corollary.

Corollary 3 If matrices Ai, i ∈ S are such that
λ1 (AiA

′
i) < 1, and

λ1 (AiA
′
i) + max

j∈S
j 6=i

λ1

(
AjA

′
j

)
− 1

λ1 (AiA
′
i)

< pii, i ∈ S.

(5)
Then the system (1) is mean square stable.

In the next theorem we will propose a design proce-
dure for MS stabilization of system (2) under the addi-
tional constrains on the transition rates matrix. How-
ever it is worth to notice another possible application
of this result. Sometimes (see (Ji and Chizeck, 1989)
for details) it is reasonable to consider the system (2)
with matrix P which is separately controlled. In that
case the Theorem 2 may be used to find the values of
P for which the system is MS stable.

As a straightforward consequence of Theorem 2
and the definition of MS stabilizability we have the
following result.

Theorem 4 Suppose that for system (2) there ex-
ist positive numbers(xi)i∈S and feedback matrices
(Ki)i∈S , such that

xi

λ1

(
ÃiÃ

′
i

) >
∑

j∈S
j 6=i

pijxj(
1 − λ1

(
ÃjÃ

′
j

)) , i ∈ S,

whereÃi = Ai + KiBi, then(A,B, P ) is MS stabi-
lizable and(Ki)i∈S is a stabilizable feedback.

3 CONCLUSIONS

We have discussed links between individual mode sta-
bility (stabilizability) and MS stability (MS stabiliz-
ability) of jump linear system. The main result states
that if the individual mode are stable then the jump
linear system is mean square stable provided that the
probabilitiespii are close to 1. It means that it is
possible to ensure the stability of the jump system
by switching sufficiently slowly between individual
modes. Another consequence of the main result is a
procedure to stabilize the jump linear system by pole
placement of system matrices for all modes.
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