
FAULT MAINTENANCE IN EMBEDDED SYSTEMS 
APPLICATIONS 

Multiple Lift Control System as Safety Critical Embedded Application 

Miroslav Sveda 
Faculty of Information Technology, Brno University of Technology, Bozetechova 2, 61266 Brno, Czech Republic 

Radimir Vrba 
Faculty of Electrical Engineering & Communication, Brno University of Technology, Brno, Czech Republic 

Keywords: Embedded system design, System architecture, Fault maintenance, Fail-stop safety model. 

Abstract: This paper describes principles of a designed multiple lift control system based on a dedicated embedded 
architecture. After reviewing dependable concepts used, the main attention is focused on the design of 
hardware architecture, software, and communication services and protocols fitting the application 
requirements. The multiple lift control system presents in this case a real-world solution of a safety critical 
embedded system application. The design employs a fail-stop safety model and dedicated distributed 
architecture to meet application requirements efficiently. The paper stresses those features that distinguish 
the real project from a demonstration case study. 

1 INTRODUCTION 

Requirements on current embedded system 
applications include both functional and non-
functional requirements on real-time behaviour and 
safety properties (Leveson, 1984) that can be 
formally specified and verified or, at least, properly 
explored before they are designed in detail and 
implemented. After reviewing utilized dependable 
concepts, the main attention of this paper is focused 
on hardware and software architecture of the 
developed system, and on communication services 
fitting the application domain. 

2 DEPENDABILITY 

The design of current embedded system applications 
should consider not only functionality but also 
dependability measures. Functionality means 
services delivery in the form and time fitting 
requirement specifications, where the service 
specification is an agreed description of the expected 
service. Functionality properties should be realized 

efficiently and cost-effectively, so reachable 
performance and maintainability of implementation 
belong to the checked properties. 

Dependability is that property of a system that 
allows reliance to be justifiably placed on the service 
it delivers. A failure occurs when the delivered 
service deviates from the specified service. 
Dependability measures consist of reliability, 
availability, security, safety and survivability. 
Availability is the ability to deliver shared service 
under given conditions for a given time, which 
means elimination of denial-of-service 
vulnerabilities. Security is the ability to deliver 
service under given conditions without unauthorized 
disclosure or alteration of sensitive information. 
Security attributes add requirements to detect and 
avoid intentional faults. 

Safety is the ability to deliver service under 
given conditions with no catastrophic affects. Safety 
attributes add requirements to detect and avoid 
catastrophic failures. A failure occurs when the 
delivered service deviates from the specified service. 
An error is that part of the system state which is 
liable to lead to failure. The cause of an error is a 
fault. Failures can be classified according to 

183
Sveda M. and Vrba R. (2006).
FAULT MAINTENANCE IN EMBEDDED SYSTEMS APPLICATIONS - Multiple Lift Control System as Safety Critical Embedded Application.
In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics, pages 183-186
DOI: 10.5220/0001202501830186
Copyright c© SciTePress



 

consequences upon the environment of the system. 
While for benign failures the consequences are of 
the same order of magnitude (e.g. cost) as those of 
the service delivered in the absence of failure, for 
malign or catastrophic failures the consequences are 
not comparable.  

A fail-safe system attempts to limit the amount 
of damage caused by a failure. No attempt is made 
to satisfy the functional specifications except where 
necessary to ensure safety. A fail-stop system never 
performs an erroneous state transformation due to a 
fault (Schneider, 1983). Instead, the system halts and 
its state is irretrievably lost. The fail stop model, 
originally developed for theoretical purposes, 
appears as a simple and useful conception 
supporting the implementation of some kinds of fail-
safe systems. Since any real solution can only 
approximate the fail-stop behaviour and, moreover, 
the halted system offers no services for its 
environment, some fault-avoidance techniques must 
support all such implementations. 

3 APPLICATION 

While a lift control system offers a classical example 
used in literature for presenting principles of 

requirements elicitation (Lamsweerde, 1998), 
simulation (Knuth, 1969), formal specification 
(Evans, 1994), validation (Valmari, 1987), design 
verification (Cuellar et al., 1994), rapid prototyping 
(Brink et al., 1993), and executable specification 
(Hale, 1990), little attention is de-voted to 
publishing the real world projects of this kind. 
Nevertheless, such dedicated system, with a long 
tradition of development, can demonstrate dedicated 
solutions that have to conform to the strict 
dependability requirements typical for safety-critical 
applications. 

3.1 Architectural Specifications 

The multiple lift control system governs the 
operation of N identical lifts servicing an M-storey 
building, see Figure 1. For this purpose, it interacts 
with its environment in the following way. Every lift 
cabin includes a control panel with one button for 
each floor, an emergency button, a key-lock handler 
for attendant-mode traffic, and a numerical display. 
These inputs/outputs should respect human 
physiological constants. Other inputs and outputs in 
the lift cabin involve load sensor, door driver, door 
position detector, and gate optical barrier, of course, 
with individual timing. On each floor (except ground 
and top with modified configuration for border line 

Dispatcher External Serial Bus

LIFT 
CONTROLLER 

    2 

LIFT 
CONTROLLER 

    N 

Shaft 
Controller

Comm WD 

WD

Comm

Scheduling Processor 

Two-port RAM 

Drive Control 
Processor 

Floor Controller M

Floor Controller M

Lift Cabin Controller

LIFT 
CONTROLLER 

    1 

D
ia

gn
os

tic
s 

In
te

rn
al

 S
er

is
al

 B
us

 

   Comm: Communication Processor 
   WD:  Watchdog Processor 

Figure 1: Multiple lift control system architecture. 

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

184



 

positions) there are two buttons, one to request a lift 
going upwards and the other for going downwards, 
and moreover course lights, time interval display 
and acoustic signalization with the same timing 
requirements as mentioned above for the lift cabin 
control panel. The position and speed of each lift is 
measured and controlled by a lift drive. This group 
of in-puts/outputs requires special attention because 
of hard real-time limits. 

The control system architecture stems from the 
following conception. The external serial bus 
interconnects N identical lift controllers and a 
dispatcher station; in addition, each lift controller 
embodies a dedicated distributed system with 
internal serial bus connecting a shaft controller, M 
floor controllers, and a cabin controller. The shaft 
controller, which is a dedicated multiprocessor, 
comprises one scheduling processor and one drive 
control processor communicating through a common 
memory, two communication processors enabling 
access to external and internal serial buses, and two 
simple watchdog processors. 

3.2 Functional Specifications 

The behaviour of each lift is directed by its 
scheduling processor using both global master 
directives, which consider orders from floors 
provided through a floor controller and local orders 
from the lift cabin provided through a cabin 
controller -- the global master, elected among all 
active scheduling processors during the initialization 
phase -- obtains also information about orders from 
all cabins to improve task allocation efficiency. For 
each shaft controller, a scheduling processor and a 
drive control processor share, in two-port RAM, data 
structures describing the state (position, speed, 
direction, load, and error status), list of orders to be 
serviced including allowed time limits, and the next 
serviced floor. 

Possible traffic modes implement a self-service 
administration with various N-lift scheduling 
strategies and a separate lift self-service or attendant 
management including also such special policies as 
maintenance and fire brigade support. While the 
scheduling processor communicates with the global 
master and, accordingly, updates the orders from 
floors, the drive control processor controls the lift 
position and speed and updates the lift state and 
cabin orders. The lift cabin controller serves the 
control panel and the load sensors and manages the 
door drive respecting the door position, the drive 
moment, and the gate optical barrier. Finally, the 
floor controller serves floor buttons, course lights, 

acoustic signalization of arriving lift, and display 
with approximate time interval to floor tending. 

The multiple lift control system is designed to be 
fully observable and controllable through its serial 
buses. In a special 'off-line' mode, every processor 
can upload or download through the incident serial 
bus its local data and local inputs or outputs. That 
feature administered by relevant modes of the 
dispatcher and diagnostic station behaviour props 
installation and repair of the control system. Both 
above mentioned stations can also emulate dedicated 
network analyzers and management terminals. 
While the dispatcher station can monitor, test, or 
supervise the whole interconnected system, the 
portable diagnostic station implements equivalent 
functions for the individual lift controller. Such 
property promotes both an adaptation of service 
strategies and regular system maintenance. 

After power supply initiation and successful 
power-up tests of all processors including memories, 
peripheries, and internal connections, the 
communication processors incident with the external 
interconnection elect, according to the lowest 
address on external serial bus, the current global 
master, which is responsible to allocate service tasks 
to the individual lifts. This allocation follows a 
strategy either prescribed by the dispatcher station or 
selected by the global master according to the traffic 
type of building serviced, week and month or season 
day, and day or night time. When the external serial 
bus is disconnected, the scheduling will proceed 
locally. 

The software of scheduling processors stems 
from a real-time executive with pre-emptive task 
planning based on fix priorities. The supervisor task, 
which is periodically activated by a timer, 
implements initialization, mode selection, and 
extraordinary events services. The scheduler task, 
which can be activated by a message, realizes global 
and local scheduling of lift services. Other auxiliary 
tasks support accessing and updating the lift data 
model based on above mentioned data structures. As 
for the drive control processors, their dedicated 
software in foreground/background format 
guarantees very short response times for speed and 
position drive control loops and transfers, without so 
strict temporal limits, information between the lift 
data model and the lift cabin or floor controllers. In 
each shaft controller, the communication controllers 
implement corresponding, special purpose protocols 
and release the execution processors from 
communication loads. The lift cabin and floor 
controllers fulfil the above stated functions using 
polling loops. 

FAULT MAINTENANCE IN EMBEDDED SYSTEMS APPLICATIONS - Multiple Lift Control System as Safety Critical
Embedded Application

185



 

3.3 Fault Maintenance Concepts 

The methods used accomplish the fault management 
in the form of (a) hazardous state reachability 
control and (b) hazardous state maintenance. In safe 
states, the lift cabins are fixed at any floors. The 
system is allowed to reach any hazardous state when 
all relevant processors successfully passed the start-
up checks of inputs and monitored outputs and of 
appropriate communication status. The hazardous 
state maintenance includes operational checks and, 
for shaft controller, the fail-stop support by two 
watchdog processors performing consistency 
checking for both execution processors. To comply 
with safety-critical conception, all critical inputs and 
monitored outputs are doubled and compared; when 
the relevant signals differ, the respective lift is either 
forced (in case of need with the help of an substitute 
drive if the shaft controller is disconnected) to reach 
the nearest floor and to stay blocked, or (in the case 
of maintenance or fire brigade support) its services 
are partially restricted. The basic safety hard core 
includes mechanical, emergency brakes. 

Because permanent blocking or too frequently 
repeated blocking is inappropriate, the final 
implementation must employ also fault avoidance 
techniques. The other reason for the fault avoidance 
application stems from the fact that only 
approximated fail-stop implementation is possible. 
Moreover, the above described configurations create 
only skeleton carrying common fault-tolerant 
techniques see e.g. (Maxion et al., 1987). In short, 
while auxiliary hardware components maintain 
supply-voltage levels, input signals filtering, and 
timing, the software techniques, namely time 
redundancy or skip-frame strategy, deal with non-
critical inputs and outputs. 

4 CONCLUSIONS 

The multiple lift control system presents a real-
world solution of a safety critical embedded 
application employing the introduced fail-stop safety 
model and dedicated distributed architecture. The 
specification and design of the multiple lift control 
system, ordered and supported by a lift 
manufacturer, were completed a couple of years ago. 
For other than technical reasons the project was 
cancelled before full implementation of the target 
system and preparation of production stages. What 
appears as an advantage in this not too optimistic 
state of affairs is the fact that this situation enabled 

to publish such details of the project that could not 
be disclosed in the opposite case. 

ACKNOWLEDGEMENTS 

The research has been supported by the Czech 
Ministry of Education in the frame of MSM 
0021630503 Research Intention MIKROSYN: New 
Trends in Microelectronic Systems and Nano-
technologies, and by the Grant Agency of the Czech 
Republic through the grants GACR 102/05/0723: A 
Framework for Formal Specifications and 
Prototyping of Information System’s Network 
Applications and GACR 102/05/0467: Architectures 
of Embedded Systems Networks. 

REFERENCES 

Brink K., Huijsman R., van Katwijk J.: SEAL: A Simple 
Language for Prototyping Action-Event 
Specifications. Microprocessing and Micro-
programming, Vol. 38 (1993) 87-95. 

Cuéllar J., Wildgruber I., Barnard D.: Combining the 
Design of Industrial Systems with Effective 
Verification Techniques. In: Naftalin M., Denvir T., 
and Bertran M. (Eds.): FME'94: Industrial Benefit of 
Formal Methods, LNCS 873, Springer-Verlag, Berlin 
(1994) 639-658. 

Evans A.S.: Specifying & Verifying Concurrent Systems 
Using Z. In: Naftalin M., Denvir T., and Bertran M. 
(Eds.): FME'94: Industrial Benefit of Formal Methods, 
LNCS 873, Springer-Verlag, Berlin (1994) 366-380. 

Hale R.: Using Temporal Logic for Prototyping: The 
Design of a Lift Controller. In: Zedan H.S.M. (Ed.) 
Real-Time Systems, Theory and Applications, North-
Holland, Amsterdam (1990) 81-118. 

Knuth D.E.: The Art of Computer Programming: Basic 
Algorithms (Vol. 1), Addison-Wesley, London (1969). 

van Lamsweerde A.: Inferring Declarative Requirements 
Specifications from Operational Scenarios.  Trans. on 
Software Engineering, Vol. 24 (1998) 1089-1114. 

Leveson N.G.: Software Safety in Computer-Controlled 
Systems. IEEE Computer, February (1984) 48-55. 

Maxion R. A., Siewiorek D. P., Elkind S. A.: Techniques 
and Architectures for Fault-Tolerant Computing. Ann. 
Rev. Comput. Sci., No. 2 (1987) 469-520. 

Schneider F.B.: Fail-Stop Processors. COMPCON'83 
SPRING, Digest of Papers 26th IEEE CS Int. Conf. 
(1983) 66-70. 

Valmari A.: Reachability Analysis-Based Validation of 
Embedded Systems. Microprocessing and Micro-
programming, Vol. 21 (1987) 393-404. 

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

186


