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Abstract: The paper presents a methodology for the development of robot software controllers, based on actual 
software component approaches and robot control architectures. A proposed control architecture pattern, 
useful for analysis and integration of expertise during design process is presented. A dedicated component-
based language, focusing on reusability and upgradeability of controller architectures parts, is used to design 
and to implement software architectures. 

1 INTRODUCTION 

Robots are complex systems whose complexity is 
continuously increasing as more and more 
intelligence (decisional and operational autonomies, 
human-machine interaction, robots cooperation, etc.) 
is embedded into their controllers. This complexity 
also depends, of course, on the mechanical portion 
of the robot that the controller has to deal with, 
ranging from simple vehicles to complex humanoid 
robots. These two portions of a robot, its mechanical 
part (including its sensors and actuators) and its 
control logic, are intrinsically interdependent. 
Nevertheless, for reasons of reusability and 
upgradeability, the controller design should separate, 
as far as possible, these two aspects: the 
functionalities that are expected from the robot on 
the one hand, and, on the other, the representation of 
both the mechanical part that implements them, of 
the environment with which it interacts. One current 
limitation in the development of robot software 
controllers is the difficulty of integrating different 
functionalities into a same controller, as they are 
often closely designed and developed for a given 
robot (i.e., for a given mechanical part). Hence, 
upgradeability and reusability are aims that are 
currently almost impossible to achieve since both 
aspects of the robot (control and mechanical 
descriptions) are tightly merged. The reuse of 
decision-making/control systems parts is also a big 
challenge, because of the different approaches 
(behavioral or hierarchical) that can be used to 
design it. 

We aim to provide a methodology that rationalizes 

the development process of a robot software 
controller in order to help overcoming these 
limitations. We thus present the CoSARC 
(Component-based Software Architecture of Robot 
Controllers) development methodology based on: 
actual component (Szyperski, 1999) and architecture 
descriptions languages (Medvidovic & Taylor, 
1997), approaches in software engineering and 
control architectures design techniques in robotics. 
CoSARC defines a process that guides developers 
during analysis, design, implementation, deployment 
and operation of a robot controller. Its structure is 
based on two concepts: a controller architecture 
pattern for analysis, presented in section 2, and a 
component-based language, presented in section 3. 
They cover design process life cycle from analysis, 
to implementation. This paper concludes by citing 
actual work on the CoSARC methodology. 

2 ARCHITECTURE PATTERN 

Robot control architectures are a widely studied 
domain. Three categories of architectures have so far 
emerged: hierarchical (Gat, E., 1997), behavioral 
(Brooks R. et al, 1986) and hybrid, like ORCCAD 
(Borrely & al., 1998), CLARATy (Volpe, R. et al., 
2001), AURA (Arkin & Balch, 1997) and LAAS 
architectures (Alami, R. et al, 1998). Our  
architecture pattern follows an hybrid approach. It 
defines a generic organization by outlining the 
entities involved in the controller’s actions/reactions, 
by defining layers hierarchization properties and by 
matching entities and layers (Fig. 1).  
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The central abstraction in the architecture pattern 
is the Resource. A resource is a part of the robot’s 
intelligence that is responsible for the control of a 
given set of independently controllable physical 
elements. For instance, consider a mobile 
manipulator robot consisting of a mechanical arm 
(manipulator) and a vehicle. It is possible to abstract 
at least two resources: the ManipulatorResource which 
controls the mechanical arm and the MobileResource 
which controls the vehicle. Depending on 
developer’s choices or needs, a third resource can 
also be considered, coupling all the different 
physical elements of the robot, the Mobile-
ManipulatorResource (the robot is considered as a 
whole). The breaking down of the robot’s 
intelligence into resources mainly depends on three 
factors: the robot’s physical elements, the 
functionalities the robot must provide and the means 
developers have to implement those functionalities 
with this operative part. 

A resource (cf. Fig. 1) corresponds to a sub-
architecture decomposed into a set of hierarchically 
organized interacting entities. Presented from 
bottom to top, they are (regarding the 
ManipulatorResource): 

A set of Commands. A command is in charge of 
the periodical generation of command data to 
actuators, according to given higher-level 
instructions (often setup points) and sensor data; 
commands often encapsulate control laws. The 
actuators concerned belong to the set of physical 
elements controlled by this resource. An example of 
a command is the JointSpacePositionCommand (based 
on a joint space-position control law that is not 
sensible to singularities, i.e. singular positions linked 
to the lining up of some axis of the arm). 

A set of Perceptions. A perception is responsible 
for the periodical transformation of sensor data into, 
potentially, more abstract data. An example of a 
perception is the ArmConfigurationPerception that 
generates the data representing the configuration of 

the mechanical arm in the task space from joint 
space data (using the arm’s direct geometric model). 

A set of Event Generators. An event generator 
ensures the detection of predefined events 
(exteroceptive or proprioceptive phenomena) and 
their notification to higher-level entities. For 
example the SingularityGenerator is able to detect the 
singularity vicinity (using equations describing the 
singular configurations). 

A set of Actions. An action represents an activity 
that the resource can carry out. An action is in 
charge of commutations and reconfigurations of 
commands. An example of an action is the 
ManipulatorContactSearchAction, which uses a set of 
commands (commutation of control laws). 

A set of Modes. Each Mode describes one resource 
behavior and defines the set of orders the resource is 
able to perform. For example, the MobileResource has 
two modes: the MobileTeleoperationMode using which 
the human operator can directly control the vehicle 
(low-level teleoperation), and the MobileAutonomous-
Mode in which the resource is able to accomplish 
high-level orders (e.g. ‘go to position’). A mode is 
responsible for the breaking down of orders into a 
sequence of actions, as well as the scheduling and 
synchronization of these actions. 

A Resource Supervisor is the entity in charge of 
the modes commutation strategy, which depends on 
the current context of execution, the context being 
defined by the corresponding operative portion state, 
the environment state and the orders to be 
performed. A robot controller architecture consists 
of a set of resources (cf. Fig. 1) controlled by a 
global supervisor. The global supervisor of a robot 
controller is responsible for the management of 
resources according to orders sent by the operator, 
and events and data respectively produced by event 
generators and perceptions. Each resource of a 
robot controller interacts with Input/Output 
controllers. These I/O controllers are in charge of 
periodical sensor and actuator-data updating. 
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Commands, event generators and perceptions of 
resources interact with I/O controllers in order to 
obtain sensor or to set actuator values.  

Organization of Resources and robot controller 
also follow a “hierarchical” approach. Each layer 
represents a “level of control and decision” in the 
controller activities. The upper layer incorporates 
entities embedding complex decision-making 
mechanisms like modes, supervisors and mission 
manager. The intermediate layer incorporates 
entities like control schemas (commands), observers 
modules (event generators, perceptions) and reflex 
adaptation activities (inside actions). The lower 
layer (I/O controllers) interfaces upper layers with 
sensors, actuators and communication peripherals. 

3 COMPONENT LANGUAGE 

The CoSARC language is devoted to the design and 
implementation of robot controller architectures. 
This language draws from existing software 
component technologies such as Fractal (Bruneton 
& al., 2002) and Architecture Description 
Languages such as Meta-H (Binns & al., 1996). It 
proposes a set of structures to describe the 
architecture in terms of a composition of cooperating 
software components.  

A software component is a reusable entity subject 
to “late composition”: the assembly of components 
is not defined at ‘component development time’ but 
at ‘architecture description time’. The main features 
of components in the CoSARC language are internal 
properties, ports, interfaces, and connections. A 
component encapsulates internal properties (such as 
operations and data) that define the component 
implementation. A component’s port is a point of 
connection with other components. A port is typed 
by an interface, which is a contract containing the 
declaration of a set of services. If a port is ‘required’ 
(resp. ‘provided’), the component uses (resp. offers) 
the services declared in the interface typing the port. 
All required ports must always be connected 
whereas it is unnecessary for provided ones. The 
component’s internal properties implement services 
and service calls, all being defined in the interfaces 
typing each port of a component. Connections are 
explicit architecture description entities, used to 
connect ports. A connection is used to connect 
‘required’ ports with ‘provided’ ones. When a 
connection is established, the compatibility of 
interfaces is checked, to ensure ports connection 
consistency. The advantage of the “late 
composition” is the improvement of the reusability 
of components (more independent from each other 
than objects), and of the modularity of architectures 
(possible change of components and connections).  

The CoSARC language defines four types of 
components (presented below). Each of them is used 
to deal separately with a specific preoccupation 
during controller architecture design. 

3.1 Representation Components 

This type of component is used to describe a robot’s 
“knowledge” as regards on its operative part, its 
mission and its environment. Representation 
components are used to satisfy the “real-world 
modeling” preoccupation, but their use can be 
extended to whatever developers consider as the 
knowledge of the robot. They can represent concrete 
entities, such as those relating to the robot’s physical 
elements (e.g. chassis and wheels of a vehicle) or 
elements of its environment. They can also represent 
abstract entities, such as events, sensor/actuator data, 
mission orders, control or perception computational 
models, etc. When a developer wants to represent 
the fact that a specific model is applied on a specific 
(operative) part of the robot, it just has to connect 
those two representation components: that 
corresponding to the computational model with that 
related to the operative part. For example, Fig. 2 
illustrates how to apply a control law to a vehicle.  

Representation components are ‘passive’ entities 
that only act when one of their provided services is 
called. They only interact according to a 
synchronous communication model. Internally, 
representation components consist of object-like 
attributes and operations. Operations implement the 
services declared in provided ports and they use 
services declared in interfaces of required ports. 
Representation components are incorporated and/or 
exchanged by components of other types, such as 
control components and connectors. Representation 
components can also be composed between 
themselves when they require services of each-other. 
Indeed, a representation component consists of a set 
of provided ports that allows other representation 
components to get the value of its “static” physical 
properties (wheel diameter, frame width, etc.) and/or 
to set/get the current value of its “dynamical” 
properties (velocity and orientation of wheels, etc.). 
Fig. 2 shows a simple example of composition. The 
representation component called VehiclePosition-
ControlLaw consists of: 

- a provided port, typed by the VehicleActuators-
ValueComputation, through which another component 
(a control one for instance) can ask for a 
computation of the actuator’s value to be applied. 

- and two required ports. The first one is typed by 
the VehiclePhysicalPropertiesConsultation interface, the 
second one by the VehicleDynamicProperties interface. 

These interfaces are necessary for the computation 
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as some parameters of the model depend on the 
vehicle on which the corresponding law is applied. 
The corresponding ports are provided by the 
representation component Vehicle. VehiclePosition-
ControlLaw and Vehicle are so composed by 
connecting the two required ports of the former with 
the two corresponding provided ports of the latter. 

3.2 Control Components 

A Control Component describes a part of the control 
activities of a robot controller. It can represent 
several entities of the controller, as we decompose 
the controller into a set of interconnected entities (all 
being components), like for example: Commands, 
Actions, Perception, Event Generators, Modes, etc. 
A control component incorporates and manages a set 
of representation components which define the 
knowledge it uses to determine the contextual state 
and to make its decisions. Control components are 
‘active’ entities. They can have one or more 
(potentially parallel) activities, and they can send 
messages to other control components (the 
communication being further detailed). Internal 
properties of a control component are attributes, 
operations and an asynchronous behavior. 
Representation components are incorporated as 
attributes (representing the knowledge used by the 
component) and as formal parameters of its 
operations. Each operation of a control component 
represents a context change during its execution. 
The asynchronous behavior of the control 
component is described by an Object Petri Net 
(OPN) (Sibertin-Blanc, 1985), that models its 
‘control logic’ (i.e. the event-based control-flow). 
Tokens inside the OPN refer to representation 
components used by the control component. The 
OPN structure describes the logical and temporal 
way the operations of a control component are 
managed (synchronizations, parallelism, concurrent 
access to its attributes, etc.). Operations of the 
control component are executed when firing OPN 
transitions. This OPN based behavior also describes 
the exchanges (message reception and emission) 
performed by the control component, as well as the 
way it synchronizes its internal activities according 
to these messages (i.e. the control component’s 
reaction according to the context evolution). 

Fig. 2  shows a simplified example of a control 
component behavior that corresponds to a command 
entity, named VehiclePositionCommand.  It has three 
attributes: its periodicity, the Vehicle being controlled 
and the applied VehiclePositionControlLaw. The Vehicle 
and the VehiclePositionControlLaw are connected in the 
same way as described in the top right corner of 
Fig.2, meaning that the VehiclePositionCommand will 
compute the VehiclePositionControlLaw based on the 

parameters of the Vehicle, at a given periodicity. Such 
decomposition allows the adaptation of the 
MobilePositionCommand to the Vehicle and the 
VehiclePositionControlLaw used (i.e. the representation 
components it incorporates). It is thus possible to 
reuse this control component in different controller 
architectures (for similar vehicles). 

This control component’s provided port (cf. Fig. 2) 
is typed by the interface named VehiclePositionControl 
that declares services offered (to other control 
components) in order to be activated/deactivated/ 
configured. Its required ports are typed by one 
interface each: VehicleMotorsAccess which declares 
services used to fix the value of the vehicle’s motors 
and MobileWheelVelocityandOrientationAccess which 
declares services used to obtain the values of the 
orientation and velocity of the vehicle’s wheels. 
These two interfaces are provided by ports of one or 
more other control components. 

The (simplified) OPN representing the 
asynchronous behavior of VehiclePositionCommand 
shown in Fig. 2, describes the periodic control loop 
it performs. Grey and black Petri net places 
respectively represent reception and transmission of 
messages corresponding to service calls. For 
example, the grey place startExecution and the black 
place RequestVelAndOrient correspond to services 
respectively declared in the VehiclePositionControl and 
the VehicleWheelVelocityandOrientationAcces interfaces. 

3.3 Connectors 

Connections of control components are reified into 
components named connectors (that allow the 
assembly). Connectors contain the protocol 
according to which connected control components 
interact. It implements a protocol that potentially 
involves message exchanges, synchronizations and 
constraints. Once defined, connectors can be reused 
for different connections into the control 
architecture. This separation of the interaction aspect 
from the control one, appears to be very important in 
order to create generic protocols adapted to domain 
specific architectures. One good practical aspect of 
this separation is that it leads to distinguish 
interactions description with control activities 
description, whereas describing both aspects inside 
the same entity type would reduce the reusability. 
A connector has sub-components named roles for 
attributes. A role has attributes, operations and an 
asynchronous behavior corresponding to the 
behavior that a control component adopts when it 
plays this role in the protocol defined by the 
connector. When a control component plays a role, 
the asynchronous behavior defined by the role is 
attached to its own behavior. For each role it 
incorporates, a connector has one required, or one 
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provided, port (associated to the role). Each 
connector port is typed by an interface that defines 
the message exchange allowed between the 
connector and the control component to be 
connected. A role implements the message exchange 
between the port of the connected control 
component and its (own) associated port, as well as 
the message exchange with the other role(s) of the 
connector (i.e. exchanges inside the connector). An 
interface of a connector’s port (provided or required) 
must be compatible with the interface of the control 
component’s port to which it is connected (i.e. 
compatibility of the ports).  For example, the 
VehicleWheelsVelocityAndOrientation-Access interface is 
compatible with the role Requester provided by the 
connector Request/Reply-Connection (Fig. 2). This 
connector, named Request/ ReplyConnection, describes 
a simple interaction protocol between a Requester 
and a Replier (the two roles of the connector). It 
consists of two ports: one provided port typed by the 
Requester interface and one required port typed by 
the Replier interface. The control component 
assuming the Requester role, sends a request message 
to the control component assuming the Replier role, 
which then sends the reply message to the Requester. 
Constraints described in the OPN of roles ensure 
that only one request will be sent by the Requester 
until it receives a reply, and that the Replier will 
process only one request until it sends the reply to 
the Requester. This connector can be used to 
establish connections between different control 
components, if the interaction to be described 

corresponds to this protocol. To design our mobile 
robot architecture, we defined different types of 
connectors supporting protocols like EventNotification 
or DataPublishing. Connectors being also modeled by 
Petri nets, it allows the global Petri net of the 
controller to be built (i.e. the model resulting from 
the composition of all the asynchronous behaviors). 
Thanks to this property, developers can analyze 
inter-component synchronizations (checking of 
deadlock absence). 

3.4 Configurations 

Once the control architecture (or part of it) has been 
completely modeled, the result is a graph of the 
composition of control components. The last type of 
component, named Configuration, contains this 
graph. It allows developers to incorporate a software 
(sub)-architecture into a reusable entity. 
Configurations can be used to separate the 
description of Resources, or robot control 
architectures (for independent robot description in a 
multi-robot team project). At design phase, a 
configuration can be considered as a control 
component because it has ports that are connectable 
via connectors. Ports of a configuration export ports 
of control components that the configuration 
contains (dotted lines, Fig.3). At runtime, any 
connection to those ports is replaced  by  a  
connection to the initial port, i.e. to that of the 
concerned control component.  

Figure 2: representation components (dark grey), control component (white), and connectors (light grey). 
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Fig. 3 shows an example of a configuration: the 
MobileResource, corresponding to the sub-architecture 
controlling the vehicle part of a mobile robot. It 
incorporates the MobileSupervisor, the Mobile-
AutonomousMode, the MobileActionMoveTo-Position, 
which interacts with the Mobile-PositionCommand, and 
the MobileObstacleEvent-Generator. It exports the 
provided port of the MobileSupervisor and the required 
ports of VehiclePositionCommand and 
VehicleObstacleEvent-Generator. Since a configuration 
can contain others configurations, it allows 
developers to describe the controller architecture at 
different levels of granularity. When an architecture 
is built following the pattern provided by the 
CoSARC methodology, the ‘global’ configuration is 
the Robot Controller. In the given example, the 
MobileManipulatorController configuration incorporates 
as many configurations as resources, i.e. the 
ManipulatorResource and the MobileResource. 

The CoSARC language provides containers to 
describe the deployment of a configuration. They are 
OS processes that execute a set of components. As 
each container can represent a layer, they can be 
used to manage the hierarchization. 

4 CONCLUSION 

We have briefly presented the CoSARC 
methodology, which is devoted to improving 
modularity, reusability and the upgradeability of 
control architectures. It is specifically dedicated to 
the integration of different aspects concerning robot 
control (control laws, physical descriptions, action 
scheduling, etc.), and can be seen as a framework 
into which any standard can be used by developers 
to represent their data, messages, services, etc. 
Moreover, the CoSARC language has the added 
benefit of relying on a formal approach based on 
OPN formalism. This allows analysis to be 
performed at the design stage itself, as analysis 
cannot be ignored when designing the control of 

complex systems. Future papers will present the 
CoSARC language execution model. 
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