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Abstract: The aim of the work presented is the control of timed event graph in order to meet tight temporal 
constraints. The temporal constraint represents the maximal duration of a chemical or thermal treatment, for 
instance. We formulate the problem in terms of control of linear Max-Plus models. A method for the 
synthesis of a control law ensuring the meeting of constraints is first described for a single input single 
constraint. Then, the single input multi constraint problem is tackled and finally, the method is extended to 
the multi inputs, multi constraints problem. The proposed method is illustrated on an example.  

1 INTRODUCTION 

We consider in the sequel a class of deterministic 
controlled processes subject to strict time 
constraints. Such time critical systems are frequent 
in the industry, for instance in the case of a thermal 
or chemical treatment, in the car industry for the 
rubber parts, in the semiconductor industry and also 
in the food industry. Of course the question is to 
validate some temporal conditions (see for instance 
(Berthomieu and al., 1991), (Ghezzi and al., 1991), 
(Bonhomme and al., 2001), (Cofer and Garg, 1995)). 
In the present contribution, we formulate this 
problem in terms of a control problem, assuming 
that some inputs of the process can be controlled (it 
is generally the case). We propose a method to solve 
the inverse problem, synthesizing a control law so 
that the temporal constraint is validated. We use the 
formalism of timed event graph, and their algebraic 
models which are linear over dioids (Baccelli and 
al., 1992). 

The timed event graph behavior is modeled with 
Max-Plus equations, and the temporal constraints 
meeting problem is represented with inequalities, 
also in the so-called Max-Plus algebra. The control 
approach that we propose is quite different from that 
considered within the so-called supervisory control 

framework ((Holloway and al., 1997), (Moody and 
al., 1996)). Here the time is explicitly taken into 
account. Timed event graphs and dioids formalism 
has been used by ((Lahaye et al., 2004), (Atto et al., 
2006)) to treat slightly different timed constraint 
problems. In (Lahaye et al., 2004), the question is 
formulated as a model matching problem and the 
temporal constraint appeared as an additional 
requirement. (Atto et al., 2006) are interested to 
particular temporal constraints and they suppose that 
the places subjected to these constraints are initial 
marking null. Our work also differs from the 
existing literature on the control of (timed) discrete 
event systems, since the control laws we consider 
may involve some delays.  

In the present paper, we propose a method for the 
synthesis of control law that permits to meet a given 
set of time constraints. The resulting control law 
itself is finally defined a Max-Plus linear difference 
equation, involving a finite number of delays. Such 
an equation corresponds to feedback that is also a 
timed event graph. A first approach of control for 
timed event graph under strict temporal constraints 
was presented in (Amari and al., 2005). This 
approach has been developed in the Min-Plus 
algebra, under the hypothesis that all temporizations 
of the considered graph are integers. In this present 
contribution, this condition is not required, we 
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consider a timed event graph with temporizations 
that may be real numbers.  

The paper is organized as follows. In Section 2, 
some backgrounds are recalled, featuring some 
notations concerning the Max-Plus semiring, the 
timed event graphs and their Max-Plus linear 
models, the concept of a state equation. The 
problem, of finding a causal control verifying 
critical time constraints, is formulated in Section 3. 
We propose in Section 4 a procedure for the control 
synthesis, considering first the case of a single input 
system with a single temporal constraint. Two 
conditions are proposed, which are sufficient for 
ensuring the existence of a solution. A simpler 
condition, which is satisfied in many practical cases, 
and is simpler to check, is also provided. Then we 
extend the method to the case of many different 
constraints. The multivariable case is examined in 
Section 5 and Section 6 is devoted to illustrative 
example. Finally Section 7 is devoted to the 
conclusion. 

2 BACKGROUNDS 

2.1 Max-Plus Algebra 

A monoid is a set, say D , endowed with an internal 
law, noted ⊕ , which is associative and has a neutral 
element, denoted ε , , .a D a a aε ε∀ ∈ ⊕ = ⊕ =  A 
semiring is a commutative monoid endowed with a 
second internal law, denoted ⊗ , which is 
associative, distributive with respect to the first law 
⊕ , has a neutral element, denoted e , and admits ε  
as absorbing element: , .a D a aε ε ε∀ ∈ ⊗ = ⊗ =  
A dioid is a semiring with an idempotent addition: 

, .a D a a a∀ ∈ ⊕ =  The dioid is called commutative 
if the second law ⊗  is commutative. 
We shall consider in the sequel the so-called Max-
Plus algebra that is { } { }( ,max, )∪ −∞ ∪ +∞ + . The 

Max–Plus algebra, denoted max  is a commutative 
dioid, the law ⊕  is the operation max, having the 
neutral element ε = −∞  and the second law ⊗  is 
the usual addition, with neutral element 0e= . 
If n∈  and max, nv w∈ , we denote v w⊕  the 
vector with components max( , )i i i iv w v w⊕ =  for 

1i =  to n. If no confusion can arise, when ,p q∈ , 

max
p nA ×∈  and max

n qB ×∈  are given matrices, A B⊗  
(or just .A B ) will denote the matrix multiplication 

in max , defined by the following expression:    

1
( . ) ( ) max( ).

n

ij ik kj ik kjkk
A B A B A B

=
= ⊕ ⊗ = +  

The Kleene star of a square matrix max
n nM ×∈ , 

denoted M ∗  is defined by i

i
M M∗

∈
= ⊕ , where 0M  

equals the unit matrix, which entries equal e  on the 
diagonal, and ε  elsewhere. Let us recall that 

max
nv∈  then .x M v∗=   is the maximal solution of 

both the inequality, .x M x v≥ ⊕ , and the equality, 
.x M x v= ⊕ , (Baccelli and al., 1992). 

2.2 Timed Event Graphs, Linear 
Max-Plus Models  

An event graph is an ordinary Petri net where each 
place has exactly one upstream transition and one 
downstream transition. A timed event graph is 
obtained by associating delays to the places or to 
transitions of an event graph. In our case, the delays 
are associated to places. We note n the number of 
transitions having at least one upstream place, and 
m  stands for the number of source transitions, noted 
tu, having no upstream place. The unique place 
relying jt  to it  is denoted ijp , if any, the 

corresponding delay is denoted ijτ  and its marking 

is denoted ijm .   
A transition jt  is controllable, if there exist a path, 
denoted α , from transition tu  to transition jt . This 
path is a sequence of transitions and places, of the 
form 

1 1 1 2 2
( , , , , ,..., )uk k k k k jtu p t p t t . We denote mα  the 

sum of marking along the path α , 

kl
kl

kl klp p

m m mα α α∈
∈

= ⊗ = ∑ . 

 
To represent the dynamic of the timed event graph in 
Max-Plus algebra, we associate to each transition a 
firing time for the kth occurrence. We note ( )su k ,  
for source transitions stu  and ( )i kθ  for other 
transitions it . 

Example:   
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Figure 1: Example. 

The timed event graph for the Figure 1, leads to the 
following equation: 
 

3 31 1 31 32 2 32( ) max( ( ), ( )),k u k m u k mθ τ τ= + − + −  
 
which, in Max-Plus algebra appears to be linear: 
 

3 31 1 31 32 2 32( ) ( ) ( ).k u k m u k mθ τ τ= ⊗ − ⊕ ⊗ −         
 
In general, the dynamical behavior of a timed event 
graph can be expressed by means of a linear 
equation in Max-Plus algebra, as follow, 
 

0
( ) ( . ( ) . ( )),m mm
k A k m B u k mθ θ

≥
= ⊕ − ⊕ −               (1)             

 
where the components of the vector ( )kθ  are the 
firing times of the n transitions ti, the components of 
u(k) is the firing dates of the source transitions tu. 
The matrix mA  that belongs to dioid max

n n× , is a 
matrix which entry ,m ijA  equals to ijτ , the delay 
associated to place ijp , if this place exists and the 
associated delay is ijτ , and ε  else. Similarly, the 

entries of matrices max
n m

mB ×∈  correspond to the 
delays of the places following source transitions. 
Equation (1) is implicit in general. It is worth 
replacing it by the following explicit equation, 
 

0 00
( ) ( . . ( ) . . ( ))m mm
k A A k m A B u k mθ θ∗ ∗

>
= ⊕ − ⊕ − ,             (2)                               

 
where 0A∗  is the Kleene star of 0A , defined in the 
previous section. (See (Baccelli and al., 1992)). 
Analogously to the case of usual linear systems, the 
explicit equation 2 can be brought in state space 
form. In order to obtain a state space model, one first 
expands all the places with marking 1m >  into m  
places with marking equal to 1. Hence one adds 
( 1)m −  intermediate transitions. One has then the 

resulting extended state vector ( )x k , which belongs 

to max
N , with 'N n n= + and n’ is the number of 

added intermediate transitions.  
The dynamic behavior of the expanded timed event 
graph is then described by an equation of the form 

0 1
ˆ ˆ ˆ( ) . ( ) . ( 1) . ( )x k A x k A x k B u k= ⊕ − ⊕ ,  

which can be rewritten into the following explicit 
form, where 0 1

ˆ ˆ.A A A∗=  and 0
ˆ ˆ.B A B∗= , 

 
( ) . ( 1) . ( )x k A x k B u k= − ⊕ .                                 (3) 

 
All these formulations permit to point out that the 
behaviour of a controlled timed event graph is 
deterministic, depending on the input ( )u k  and on 
some initial conditions. This dependence can be 
explicated, and we shall make use of the following 
formulation: 
 

1
'

' 0
( ) . ( ) . . ( ')k

k
x k A x k A Bu k k

ϕ
ϕ ϕ

−

=

⎡ ⎤= − ⊕ ⊕ −⎢ ⎥⎣ ⎦
,                 (4) 

which holds true, for each integer 1ϕ ≥ . 
In the following, we shall assume that the input u(k) 
is actually a control, which can be arbitrarily 
assigned. For instance in a production process, the 
input corresponds to the authorization of performing 
a certain operation. Typically the beginning of a task 
performed by a robot, for instance, is subject to such 
a control input. 

3 PROBLEM OF TEMPORAL 
CONSTRAINTS 

Strict time constraints are frequent in flexible 
manufacturing system (Amari and al., 2004) and 
semiconductor manufacturing (Kim and al., 2003). 
One can for instance consider the example of a 
production process with a furnace for realizing a 
thermal treatment. The duration of any treatment in 
the furnace is fixed, or defined by a time interval. 
One wants to control the system to respect this 
constraint.  
The definition of a timed event graph already takes 
into account a delay on each place that corresponds 
to a minimal holding time. The maximal duration 
appears as an additional constraint that the system 
should meet. Rather than a verification problem, we 
formulate the question as a control problem. 
 

t3 

 
tu2 m32 

 
m31 

31τ

32τ

tu1 
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3.1 Temporal Constraint  

In general, the sojourn time of the tokens in place 
ijp  can be higher or equal to ijτ . In our case, one 

imposes a maximum sojourn time, noted max
ijτ . 

Hence 
ijp  is a place subject to a strict time 

constraint, an interval of time , max
ij ijτ τ⎡ ⎤⎣ ⎦  is 

associated to the place ijp . See Figure 2. 
  

 
 
 
 
 
 

Figure 2: Temporal constraint. 

This additional temporal constraint is expressed 
through the following inequality: 
 

max( ) . ( ),i ij j ijx k x k mτ≤ −                                 (5) 
 
where the product is over max . 

3.2 Causal Feedback  

We consider a process modelled by (3), subject to 
the additional constraint (5). We want to determine a 
control ( )u k  that satisfies the constraint (5) for 

0k > . We shall a priori research this control in the 
form of a well posed causal feedback of the form, 

( ) . ( 1)u k F x k= − , with 1k > . 
 

Remark 1: 
 
Let us note that a static control law 

( ) . ( )u k G x k=  could lead to implicit loops. For 
example, given a system with state equation 

( ) ( )x k u k=  ( ( ) . ( 1) . ( )x k A x k B u k= − ⊕ , with 
A ε=  and B e= ), the control law equation would 

be ( ) ( )u k x k= . On one hand, a badly posed 
feedback may appear using ( ) . ( )u k G x k= , and the 
other hand a feedback of the form ( ) . ( 1)u k F x k= −  
is always well posed, leading to the closed loop 

( ) ( . ). ( 1)x k A B F x k= ⊕ − . Furthermore, given a 
system ( ) . ( 1) . ( )x k A x k B u k= − ⊕ , one can always 
build a well posed feedback of the form 

( ) . ( )u k G x k= , with ( .( . ) . )F G B G A∗= . Therefore, it 
is not restrictive to suppose that the feedback is of 
the form ( ) . ( 1)u k F x k= − , with ( .( . ) . )F G B G A∗= . 

4 SINGLE CONTROL  

4.1 Single Constraint  

We have in this case a timed event graph modelled 
by the linear Max-Plus equation (3) and subject to a 
single temporal constraint (5). We propose a method 
for the synthesis of a control law solving the 
problem of temporal constraint, provided that the 
following additional hypothesis is satisfied.    
We suppose that the transition jt  is controllable, i.e. 
there exists a path α  from tu  to jt . One note mα  
the cumulated markings along this path. 
The jth component ( )jx k  satisfies (6): 
 
( . ) . ( ) ( )m

j jA B u k m x kα
α− ≤                                    (6) 

 
Inequality (6) translate the relation between tu and 

jt .    
According to equation (4), the ith component of the 
vector ( )x k  is given by the following explicit 
expression: 
 

1
'

1 ' 0
( ) ( ) . ( ) ( . ) . ( ')

N
k

i ir r i
r k

x k A x k A B u k k
ϕ

ϕ ϕ
−

= =

⎡ ⎤
⎢ ⎥= ⊕ − ⊕ ⊕ −
⎢ ⎥⎣ ⎦

  (7)     

 
for every integer 1ϕ≥ .  
Taking (7) into account, it appears that the constraint 
(5) is satisfied if the two following inequalities hold, 
 

max

1
( ) . ( ) . ( )

N

ir r ij j ij
r

A x k x k mϕ ϕ τ
=
⊕ − ≤ − ,                  (8) 

 
1

' max

' 0
( . ) . ( ') . ( )k

i ij j ij
k

A B u k k x k m
ϕ

τ
−

=
⊕ − ≤ − .                (9)                             

 
Further, taking (6) into account, we have 
 

max

1
( ) . ( ) .( . ) . ( )

ij

N
m

ir r j ij
r

A x k A B u k m mαϕ
αϕ τ

=
⊕ − ≤ − −   (10)                            

 
1

' max

' 0
( . ) . ( ') .( . ) . ( )

ij

mk
i j ij

k
A B u k k A B u k m mα

ϕ

ατ
−

=
⊕ − ≤ − −   (11) 

 

max,ij ijτ τ⎡ ⎤⎣ ⎦  ti tj 

mij 
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If inequalities (10) and (11) hold, then (8) and (9) 
are satisfied. Condition (10) holds true for all 
controls:  
 

max

1
( ) (( ) ( . ) ). ( 1)

ij

N
m

ir j r
r

u k A A B x kαϕ τ
=

≥ ⊕ − − − , 

  
with ( 1)ijm mαϕ= + + . If condition (12) holds for 

all ( )irAϕ ε≠ , therefore the former expression 
define suitable causal control laws u(k). 
 
 max( ) .( . )

ij

m
ir jA A Bαϕ τ≥ ,                                       (12) 

 
with 1r =  to N . Inequality (11) is satisfied if the 
inequalities (13) and (14) are respected.  
 

' max( . ) .( . )
ij

mk
i jA B A Bατ≤ ,                                    (13) 

 
( ') ( )iju k k u k m mα− ≤ − − ,                                (14) 

 
with ' 0k =  to 1ϕ− .  
Inequality (13) is a condition which depends on 
temporizations of the considered timed event graph. 
As the function ( )u k  is non decreasing, then 
inequality (14) is checked if and only if the 
following inequality is satisfied:   
for ' 0k =  to 1ϕ− , ' ijk m mα≤ + .  
This last inequality is true for ( 0).ijm mα = =  
The conditions (12), (13) and the hypothesis 
( 0)ijm mα = =  are sufficient to ensure the existence 
of feedbacks which guarantee the meeting of the 
temporal constraint. 
 

Theorem 1:   
 
The control laws defined by the inequality:  

max

1
( ) ( ). ( 1) ,

ij

N

ir j r
r

u k A B x kτ
=

⎡ ⎤≥ ⊕ − − −⎢ ⎥⎣ ⎦  

guarantee the meeting of the temporal constraint (5) 
if the hypothesis ( 0)ijm mα = =  holds and if 
conditions (12) and (13) are satisfied. 

 
Proof:  

 
Previously, we saw that the two inequalities (10) and 
(11) imply the temporal constraint (5). As specified 
in Theorem 1, the condition (12) is satisfied, and 
then feedback given as in the theorem ensures the 
respect of the condition (10). We have the 

hypothesis ( 0)ijm mα = =  and 1ϕ= , then the 
inequality (11) is written as follows: 

max. ( ) . . ( )
iji jB u k B u kτ≤  

This last inequality is equivalent to (13) which is 
checked by hypothesis.                                                                        

4.2 Multiple Constraints  

We consider now the case of a timed event graph, 
having one source transition which is a control, but 
Z  places are constrained, noted zp , for 1z =  to 
Z . For each constrained place zp , let zm , zτ  and 

max
zτ  respectively denote the initial marking, the 

minimal and maximal delays. Further, let zt  and 'zt  
respectively denote the input and output transitions 
of the place, ( )zx k  and ' ( )zx k  denote the 
corresponding firing dates, and 

z
mα  denote the 

cumulated marking along a path zα  going from the 
source transition tu  to zt . These added temporal 
constraints are expressed by the inequalities: 
 

max
' ( ) . ( )z z z zx k x k mτ≤ −                                       (15) 

 
for 1z =  to Z .  
We denote ( )zu k  the control law calculated as in the 
previous section to satisfy the zth temporal constraint. 
The following Theorem defines a causal feedback 
which ensures the respect of all Z temporal 
constraints. 
 

Theorem 2:   

The equation  
1

( ) ( ),
Z

z
z

u k u k
=

= ⊕   

with   max
'

1
( ) ( ). ( 1)

z

N

z z r z r
r

u k A B x kτ
=

= ⊕ − − − ,  

 
defines a causal control which ensures the meeting 
of all the temporal constraints (15), if the following 
conditions are satisfied:  for z=1 to Z, 
                   0

zzm mα= = ,   

                  max
' . ,

zz zB Bτ≤   

and            max
' . ,

zz r zA Bτ≥   for r=1 to N. 
 

Proof: 
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 The conditions quoted in this theorem are sufficient 
so that the feedback ( )zu k  satisfies the zth temporal 
constraint. The following inequality: 

1
( ) ( ),

Z

z z
z

u k u k
=
⊕ ≥  

is true for z=1 to Z.  
It is finally clear that 1( ) ( )Z

z zu k u k==⊕  validates all 
the Z temporal constraints.                                                                                              

5 MULTIVARIABLE CONTROL  

In this section, a considered timed event graph 
contains m source transitions, with 1m ≥ . Its 
dynamical behaviour is represented by a linear  
Max-Plus system (3). The control law is a vector of 
m components.  Firstly, we suppose that ijp  is the 
single place subjected to an additional temporal 
constraint (5). We calculate a vector max( ) mu k ∈ , 
with 1m ≥ , which is a control law that must satisfy 
the constraint (5). The components of ( )u k  are 
noted ( ),su k  for 1s =  to m . We note by 

s
mα , the 

cumulated markings along a path sα  from stu  to jt .  
We suppose that 0

s ijm mα = = , i.e. the initial 

marking of the place ijp  and along equal zero the 

path sα . 
This hypothesis is translated by the following 
inequality: 
 
 . ( ) ( ).js s jB u k x k≤                                                (16) 
 

Theorem 3:  
 
The meeting of the temporal constraint (5) is 
guaranteed if: 
(a)  There exits s  such that:  

max

1
( ) ( ). ( 1)

N

s ir js ij r
r

u k A B x kτ
=

⎡ ⎤≥ ⊕ − − −⎢ ⎥⎣ ⎦ , 

   and  ( )lu k ε= =−∞  for l s≠ , and  
(b) The both following sets of conditions are 
satisfied: 
     
    (i) max.ir ij jsA Bτ≥                   for r=1 to N  and .irA ε≠   

   (ii) max.is ij jsB Bτ≤                for s=1 to m. 
 

Proof.  
 

Applying (3), the ith component of  ( )x k  is 
 

1 1
( ) . ( 1) . ( )

N m

i ir r is sr s
x k A x k B u k

= =

⎡ ⎤ ⎡ ⎤= ⊕ − ⊕ ⊕⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.                      (17) 

 
Taking (17) into account, it appears that constraint 
(5) (with 0ijm = ) is satisfied if both following 
conditions hold, 
 

max

1
. ( 1) . ( )

N

ir r ij jr
A x k x kτ

=
⊕ − ≤  

and 
max

1
. ( ) . ( ).

m

is s ij js
B u k x kτ

=
⊕ ≤  

 
Futher, taking (16) into account, these conditions 
become  
 

max

1
. ( 1) . . ( )

N

ir r ij js sr
A x k B u kτ

=
⊕ − ≤  

and 
max

1
. ( ) . . ( ).

m

is s ij js ss
B u k B u kτ

=
⊕ ≤  

 
Conditions (i) and (ii) being verified, and the control 
law satisfying the inequality of the Theorem 3, one 
can check that the constraint (5) is satisfied.           
 

Corollary:  
 
 Let a timed event graph with m source transitions 
( 1m ≥ ) and Z additional temporal constraints (15). 
The causal control law which guarantees the respect 
of the Z constraints is defined by:  

1
( ) ( )z

Z
s

z
u k u k

=
= ⊕ , 

where ( )zsu k  is the control law, calculated by 
Theorem 3, to check the zth constraint.  
 

Proof:  
 
A control law ( )zsu k , validates the zth constraint, if 
conditions (i) and (ii) of Theorem 3 are satisfied. 

Thus, we have, for 1z = to Z, 
1

( ) ( )z z
Z

s s

z
u k u k

=
≤ ⊕ . 

According to Theorem 3, it is clear that the control 
law 1( ) ( )zsZ

zu k u k== ⊕  guarantees the respect of all 
Z  temporal constraints.                                                  
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6 EXAMPLE 

Consider the timed event graph of Figure 3. This 
graph contains two source transitions modelling 
respectively, control 1( )u k  and control 2 ( )u k , 
( 2)m = .  

 
 
 
 
 
 
 
 
 

Figure 3: Timed event graph. 

Two additional temporal constraints are added to 
this graph, and are expressed respectively by the 
following inequalities: 

2 1( ) 1. ( ),x k x k≤  

3 2( ) 1. ( ).x k x k≤  
The problem consists in calculating a control vector, 

1

2

( )
( ) ,

( )
u k

u k
u k
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

which satisfies these both constraints. 
By applying our approach, the previous graph has 
been transformed into the graph Figure 4, with 

max 1m = . To do so, place 12p  marked to 2 has been 
split into two places marked to 1 and the 
intermediate transition 5t  is added. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Extended equivalent graph. 

The state equation associated with this new timed 
event graph is: 
 

1 1 1
( ) . ( 1) . ( ),2 1 2 2 1

5 4 5 5 4
1

e e
e

x k x k u k

e e

ε ε ε ε ε
ε ε ε
ε ε
ε ε
ε ε ε ε

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜= − ⊕⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎟ ⎟⎜ ⎜

 

 
where the components of ( )x k  are the firing times  
of the transitions 1t , 2t , 3t , 4t  and 5t , and the vector 

( )u k  is the control law. We shall then apply 
Corollary to calculate a control ( )u k  which 
guarantees the meeting of both temporal constraints. 
This example, it is enough to find, for each temporal 
constraint, only one component of the vector ( )u k  
to guarantee the meeting of this constraint. 
Firstly, by applying of Theorem 3, we determine a 
component of the vector ( )u k , which satisfies the 
first constraint. We have max max

21 1ijτ τ= =  and the 
initial marking of the place 21p  is 21 0m = . It exist a 
path 1α  from transition 1tu  to transition 1t  and its 
initial marking is 

1
0mα = .  We can check that one 

has max max
21 11 1ij jsB Bτ τ+ = + = , and 

2 ( 1 1)ir rA A ε ε ε= = , hence the condition (i) of 
Theorem 3 holds. Similarly, we check that 

21 1isB B= = , so that the condition (ii) of Theorem 3 
holds too. Thus, the component of ( )u k  which 
guarantees the meeting of the first constraint is 

[ ]
5

1 2 3 51
( ) ( 1). ( 1) ( 1) ( 1)r rr

u k A x k x k x k
=

= ⊕ − − = − ⊕ − . 

Secondly, we determine also by Theorem 3 a 
component of the vector ( )u k , which satisfies the 
second constraint. In this case, we have, 

max max
32 1ijτ τ= = and the initial marking of the place 

32p  is 32 0m = . It exist a path 2α  from transition 

2tu  to transition 2t  and its initial marking is 

2
0mα = . We can check that one has 

max max
32 22 1ij jsB Bτ τ+ = + = , and 3 ( 2 1 2)ir rA A ε ε= = , 

hence the condition (i) of Theorem 3 holds. We 
check also that 32 1isB B= = , so that the condition (ii) 
of Theorem 3 holds too. Thus, the component of 

( )u k  which guarantees the respect of the second 
constraint is 

[ ]
5

2 31

3 4 5

( ) ( 1). ( 1)

1. ( 1) ( 1) 1. ( 1).
r rr

u k A x k

x k x k x k
=

= ⊕ − −

= − ⊕ − ⊕ −
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Finally, according to Corollary, the control law 
which guarantees the meeting of both temporal 
constraints is given by the following vector: 

3 5

3 4 5

( 1) ( 1)
( ) .

1. ( 1) ( 1) 1. ( 1)
x k x k

u k
x k x k x k
− ⊕ −⎛ ⎞

=⎜ ⎟− ⊕ − ⊕ −⎝ ⎠
 

After comparison between the terms of each 
component of the vector, the control law is 
simplified to: 

3

4

( 1)
( ) .

( 1)
x k

u k
x k

−⎛ ⎞
=⎜ ⎟−⎝ ⎠

 

 
This feedback can be interpreted by two places of 
control connected to the timed event graph to 
guarantee the respect of the temporal constraints. 
The controlled graph is given in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Controlled timed event graph. 

Remark 2: 
 

The same example was treated with the method 
developed in Min-Plus algebra (Amari and al., 
2005). It is worth noting that the synthesis of the 
Max-Plus control is easier than that in the Min-Plus 
algebra. In this case, there are not necessary 
compute of power for the matrix.    

7 CONCLUSION 

We have developed a method for control synthesis 
of timed event graphs subject to strict temporal 
constraints. A generalization for timed event graphs 
with multivariable control has been proposed in this 
paper. This method is illustrated on an example. The 
conditions (12) and (13) are shown here to be 
sufficient conditions, we are investigating actually 
the existence of necessary and sufficient conditions 
for the synthesis of control laws which ensure the 
meeting of the temporal constraints. We will 

continue the comparison of this method with those 
developed in (Lahaye et al., 2004) and (Atto and al., 
2006). We hope to apply this method for real 
systems, notably for the verification and validation 
of automated systems as well as telecommunication 
processes and real-time software.  
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