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Abstract: A generalized method for adaptive control, synchronization of chaos and parameter identification in systems
governed by ordinary differential equations and delay-differential equations is developed. The method is
based on the Lagrangian approach to fluid dynamics. The synchronization error, defined as a norm of the
difference between the state variables of two similar and coupled systems, is treated as a scalar fluid property
advected by a fluid particle in the vector field of the controlled response system. As this error property is
minimized, the two coupled systems synchronize and the time variable parameters of the driving system are
identified. The method is applicable to the field of secure communications when the variable parameters of the
driver system carry encrypted messages. The synchronization method is demonstrated on two Lorenz systems
with variable parameters. We then apply the method to the synchronization of hyperchaos in two modified
Lorenz systems with a time delay in one the state variables.

1 INTRODUCTION

In this paper we develop a generalized method for
controlling chaos in dynamical systems and for syn-
chronizing two coupled chaotic or hyperchaotic sys-
tems. The systems are described by ordinary dif-
ferential equations with initial conditions or delay-
differential equations with initial functions. The in-
dependent parameters appearing in the equations can
be constant or variable. The synchronization error ,
defined as a norm of the difference between the state
variables of the two chaotic systems, is viewed as
a fluid property advected by a marker particle mov-
ing along a trajectory in the vector field of the re-
sponse system. The controlled parameters of the re-
sponse system are varied continuously such as to min-
imize the synchronization error while the two chaotic
systems evolve in time. For the initial value prob-
lem, we derive a system of differential equations gov-
erning the evolution of the controlled parameters re-
quired for synchronization. For the case of the ini-
tial function problem, we derive a system of delay-
differential equations governing the controlled param-
eters for synchronizing the response system. In both
cases, the fluid dynamical approach mentioned above

is used to develop the equations for the controlled pa-
rameters.

The method is demonstrated by studying sev-
eral examples of chaotic and hyperchaotic systems.
The synchronization method is demonstrated on two
Lorenz systems with variable parameters. We then
apply the method to the synchronization of hyper-
chaos in two modified Lorenz systems with a time
delay in one the state variables.

The possibility of synchronizing two chaotic phys-
ical systems has attracted considerable attention in re-
cent years (Boccaletti, Farini and Arecchi, 1997). A
major motivation is the potential of applying the syn-
chronization methods to the field of secure communi-
cations by chaotic masking or scrambling of messages
(Goedgebuer, Larger and Porte, 1998), (Yang, 2004).
Other important applications are in the field of nonsta-
tionary time series analysis and system identification
(Parlitz, 1996), (Crispin, 2002). So far, most of the
attention has been directed towards the study of sta-
tionary chaotic systems, that is systems with constant
parameters. To date, the possibility of using systems
with nonstationary parameters for secure communi-
cations has received less attention, although such sys-
tems are good candidates for secure communications,
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especially when the nonstationary parameters rather
than the state variables are used to hide the secret mes-
sages (Crispin, 1998).

Several methods for the control of chaos in dynam-
ical systems have been proposed in recent years (Boc-
caletti et al., 2000). The conjecture of chaos control
by means of perturbations of an accessible parameter
is based on an inherent property of chaotic systems,
namely, their sensitivity to small perturbations in the
parameters (Parlitz, Junge and Kocarev, 1996), (Carr
and Schwartz, 1994), (Ott and Spano, 1995).

Model reference adaptive control methods have
been suggested for chaos suppression and synchro-
nization (Aguirre and Billings, 1994). For example,
a model reference method for the adaptive control
of chaos in dynamical systems with periodic forcing
has been proposed by (Crispin and Ferrari, 1996).
Adaptive control and synchronization of chaos in
discrete time systems has been studied by (Crispin,
1997). Another method for controlling chaos in dy-
namical systems is by introducing parametric forc-
ing and adaptive control, see for example (Crispin,
2000). A more recent method based on an analogy
from fluid dynamics has been described by (Crispin,
2002). Other applications include parameter esti-
mation (Parlitz, Junge and Kocarev, 1996), synchro-
nization of chaotic systems with variable parameters
(Crispin, 1998) and the control of chaos in fluids
(Crispin, 1999).

Many physical, physiological and biological sys-
tems display time delay in their dynamics. Nonlinear
dynamical systems with time delay can have periodic
orbits or very complex dynamics depending upon the
range of values of the time delay and the indepen-
dent parameters of the system. This complex be-
havior has attracted a lot of interest in the study of
time delayed systems from the mathematical point of
view (Kolmanovskii and Myshkis, 1992) as well as
from the physical and physiological points of view,
see for example (Losson, Mackey and Longtin, 1993),
(Mansour and Longtin, 1998). The use of time delay
in feedback control systems has also been proposed,
see for example (Hegger et al., 1998), (Goedgebuer,
Larger and Porte, 1998) and (Just et al., 1998). Con-
trol of chaos in systems with time delay has also been
studied in (Mansour and Longtin, 1998).

2 THE FLUID DYNAMICAL
APPROACH

Consider two similar dynamical systems described by
ordinary differential equations. We define two dy-
namical systems as similar if the right hand sides of
the equations are represented by the same function
f(x(t), p(t)), except that the independent parameters

p(t) or q(t) can be represented either by different
or the same functions of time. We first present the
method for the initial value problem and then we con-
sider the case when one of the state variables has a
time delay.

dx/dt = f(x(t),p(t)) (2.1)

dy/dt = f(y(t), q(t))

Here t is time, x ∈Rn are the state variables of
the driver and y ∈Rn are the state variables of
the response system. The parametersp(t) ∈Rk and
q(t) ∈Rk are independent time variable parameters
of the respective systems andf :Rnx Rk 7→Rn is
a nonlinear vector function of the state variables. It
is assumed that the initial values of the state variables
x(0) = x0 andy(0) =y0 for t = 0 are not neces-
sarily the same. Similarly the initial values of the pa-
rametersp(0) = p

0
and q(0) = q

0
of the driver

and response systems are different. Since chaotic sys-
tems are sensitive to initial conditions, the driver and
response systems will not synchronize, unless the re-
sponse system is controlled and forced to synchronize
with the driver system using some kind of coupling,
such as a transmitted scalar signal. For instance, a sin-
gle scalar signals(t), which is a function of the state
x(t), can be transmitted by the driver and used to en-
slave the response system (Tamasevicius and Cenys,
1997), (Peng, Ding and Yang, 1996).

s(t) = h(x(t)) (2.3)

As stated above, the purpose of this paper is to
propose a generalized method of control, stabiliza-
tion, synchronization and parameter identification of
chaotic systems in the more general case where the
parametersp(t) of the driver system vary as a func-
tion of time. In the context of secure communica-
tions, this means that it would be possible to encode a
message in one of the parameters of the driver system
rather then in a state variable, as has been proposed
so far. Once a variable parameter is identified by
the response system using the proposed generalized
method, the encoded message can be recovered. The
method allows more flexibility in masking informa-
tion in chaos. The message can be encoded in a state
variable or in a time variable parameter. The useful in-
formation can also be split into two messages, where
one message is modulated by a state variable and a
second message modulated by a parameter. Synchro-
nization of the state variables of an eavesdropping re-
sponse system with the state variables of the driver
will be difficult because of the sensitivity to small
variations in the parameters of the system, in addition
to the sensitivity to initial conditions and the diver-
gence of nearby trajectories in chaotic systems. Also,
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synchronization can be achieved even when the pa-
rametersp(t) andq(t) are initially substantially dif-
ferent. This is accomplished by controlling the re-
sponse systemy such that the parametersp(t) of the
driver systemx are eventually identified, that is,

lim
t→∞

|p(t) − q(t)| = 0 (2.4)

In order to achieve synchronization, the dynamics
of the response system parametersq(t) need to be
determined. In other words, the differential equations
governing the evolution of the response parameters
q(t) need to be derived for dynamical systems of the
form of Eqs.(2.1-2.2).

The proposed fluid dynamical approach is based on
the Lagrangian description of fluid motion. It fol-
lows the motion of a fluid particle as it moves in
the velocity vector fieldw(x,p) created by a fluid
flow (Lamb, 1995), (Milne-Thomson, 1968). Ac-
cording to this approach, the equations of motion of
two marker particles advected in the fluid flows de-
scribed by the vector fieldsw(x,p) = f(x,p) and
w(y, q) = f(y, q), are given by Eq.(2.1-2.2), where
the right hand sides are to be interpreted as the lo-
cal velocity vectorsw(x,p) andw(y, q) at any given
point x ∈Rn and y ∈Rn of the two flow fields, re-
spectively, i.e,

dx/dt = w(x,p) = f(x,p) (2.5)

dy/dt = w(y, q) = f(y, q)

In fluid dynamics, the vector fields
w(x,p),w(y, q) ∈Rn and the state variables
x,y ∈Rn have a dimensionn ≤ 3. Here the analogy
is extended to vector fields of higher dimensions.
Consider the time variation of a scalar property
J(x,y) of the flow along a trajectory of the response
system as it evolves in the state spacey ∈Rn. The
rate of change of this scalar property is due to two
contributions: a local contribution due to its time
variation, plus a contribution which is due to the rate
of change of the property as it is advected along the
trajectory in the state space. The total rate of change
is then given by the substantial derivativeDJ/Dt
of the scalar propertyJ , which is the derivative
following the flow:

DJ/Dt = ∂J/∂t + f(y(t), q)∇J (2.6)

∇ = (∂/∂y1, ∂/∂y2, ..., ∂/∂yn)t

Here the product f(y, q)∇J is a scalar or dot
product. Consider a scalar propertyJ based on the
Euclidean distance between the state vectorsx and
y :

J =
1

2
|y−x|2 =

1

2

n∑

i=1

(yi−xi)
2 =

1

2

n∑

i=1

e2
i (2.7)

whereei = yi − xi are components of the error
vector functione = y − x . Using Eq.(2.7), the local
component of the derivative ofJ with respect to time
is given by:

∂J/∂t =
n∑

i=1

ei dei/dt (2.8)

whereas the components of the gradient∇J are
given by

∂J/∂yi = yi − xi = ei (2.9)

Using Eqs.(2.5), (2.6), (2.8) and (2.9), the substan-
tial derivative ofJ is written as:

DJ/Dt =

n∑

i=1

ei[dei/dt + fi(y(t), q)] (2.10)

and sincee = y − x and

de/dt = dy/dt − dx/dt = f(y, q) − f(x,p)

Eq.(2.10) reduces to:

DJ/Dt =
n∑

i=1

ei[2fi(y(t), q)−fi(x(t),p)] (2.11)

Eq.(2.11) defines the rate of change of the positive
scalar propertyJ in terms of the state variablesx and
y of the driver and response systems, the independent
driver parametersp and the controllable parameters
q of the response system. The question now is how
should the control vectorq be varied such as to con-
tinuously minimizeJ? As the driver and response
systems evolve, the substantial derivative should be
continuously decreased in order to achieve control
and synchronization, as can be seen from Eq.(2.11),
where perfect synchronization is reached whene =
y − x = 0, and from Eq.(2.7),J reaches the mini-
mum J = 0. A possible control law is to vary the
control vectorq such as to decrease the substantial
derivativeDJ/Dt, that is, to continuously change the
control q in a direction opposite to the gradient of
DJ/Dt with respect to the controlq:

dq/dt = −G
′

∇q(DJ/Dt) =

= −G
′

∇q{

n∑

i=1

ei[2fi(y(t), q) − fi(x(t),p)]}

(2.12)

CONTROLLING THE LORENZ SYSTEM WITH DELAY

5



where

∇q = (∂/∂q1, ∂/∂q2, ..., ∂/∂qk)t

and G
′

is a kxk matrix of control gains. Since
fi(x,p) does not depend on the controlq ,it follows
that

∇qfi(x(t),p) = 0

,
and Eq.(2.12) becomes:

dq/dt = −G∇q [

n∑

i=1

eifi(y(t), q)] (2.13)

whereG = 2G
′

.

3 SYNCHRONIZING THE
LORENZ SYSTEM

We now apply the method to a dynamical system
without delay, the chaotic Lorenz system. Consider
the case of synchronization between two Lorenz sys-
tems with variable parameters, where the driver sys-
tem is given by:

dx1/dt = σ(x2 − x1)

dx2/dt = p1(t)x1 − p2(t)x2 − p3(t)x1x3 (3.1)

dx3/dt = x1x2 − bx3

and the transmitted coupling signal for synchro-
nization is chosen as the single variable:

s(t) = h(x(t)) = x2(t) (3.2)

The response system is defined by the following
Lorenz system with variable parameters. It is driven
by the transmitted signals(t) = x2(t).

dy1/dt = σ(s(t) − y1)

dy2/dt = q1(t)y1 − q2(t)y2 − q3(t)y1y3 (3.3)

dy3/dt = y1s(t) − by3

The next step is to derive a system of differen-
tial equations governing the evolution of the con-
trolled parametersq1(t), q2(t) and q3(t). As the
response system evolves and synchronizes with the
driver system, the parametersq1(t), q2(t) and q3(t)
will follow the original parametersp1(t), p2(t) and

p3(t) of the driver system. According to Eq.(2.13) of
the previous section, the first step is to develop the
term

∑3
i=1 eifi(y, q) for the response system (3.3).

Using the right hand sides of (3.3), we have:

3∑

i=1

eifi(y, q) = (y1 − x1)[σ(s(t) − y1)]+

+(y2 − x2)[q1(t)y1 − q2(t)y2 − q3(t)y1y3]+

+(y3 − x3)(y1s(t) − by3) (3.4)

The gradient with respect to the parametersq is
given by:

∇q [

3∑

i=1

eifi(y, q)] =

= [(y2 − x2)y1 , −(y2 − x2)y2 , −(y2 − x2)y1y3]
T

(3.5)
The differential equations governing the evolution

of the controlled parametersq are given by:

dq1/dt = −G11(y2 − s(t))y1 + G12 (y2 − s(t))y2+

+G13 (y2 − s(t))y1y3

dq2/dt = −G21(y2 − s(t))y1 + G22 (y2 − s(t))y2+

+G23 (y2 − s(t))y1y3 (3.6)

dq3/dt = −G31(y2 − s(t))y1 + G32 (y2 − s(t))y2+

+G33 (y2 − s(t))y1y3

For example, consider the case where only one pa-
rameter, sayp1(t) is to be identified, whereas the
other two parametersp2(t) andp3(t) are known con-
stants. If the synchronized systems are used for se-
cure communication, the parameterp1(t) can be used
to carry a hidden message, which can be identified by
the response system. In this case, Equations (3.4-3.6)
reduce to:

3∑

i=1

eifi(y, q) = (y1 − x1)[σ(s(t) − y1)]+

+(y2 − x2)[q1(t)y1 − p2(t)y2 − p3(t)y1y3]+
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+(y3 − x3)(y1y2 − by3) (3.7)

∇q [

3∑

i=1

eifi(y, q)] = [(y2 − x2)y1 , 0 , 0]T (3.8)

dq1/dt = −G11(y2 − s(t))y1 (3.9)

dq2/dt = 0

dq3/dt = 0

We now show results of a computer simulation with
the following values of the parameters:

σ = 10 b = 8/3 (3.10a)

p1(t) = r0 + δr sinωt (3.10b)

δr = 2 ω = 2π/10 r0 = 28 (3.10c)

q2 = p2 = 1 q3 = p3 = 1 (3.10d)

together with the initial condition:

q1(0) = r0 = 28 (3.10e)

The results of this example are given in Figures
1-3. Fig.1 shows the chaotic state variables of the
driver system. The chaotic attractor is shown in Fig.2.
Similar results are obtained for the response system
as it synchronizes with the driver system. Fig.3 dis-
plays the synchronized state variablesy1 = x1,y2 =
x2 andy3 = x3, all three eventually converging to
straight lines as shown in the figure. The identi-
fied signalq1(t) − r converges to the driver signal
q1(t) − r = δr sinωt and is also shown in the figure.
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Figure 1: The chaotic state variables of the driver Lorenz
system with variable parameter.
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Figure 2: The chaotic attractor of the driver Lorenz system
with variable parameter. The response system has a similar
attractor.
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Figure 3: Synchronization between the driver and response
Lorenz systems with variable parameters and the parameter
q1(t) of the response system as it identifies the driver signal
p1(t).

4 SYNCHRONIZING LORENZ
SYSTEM WITH DELAY

In this section we apply the method to a hyperchaotic
dynamical system, the Lorenz system with a time de-
lay in one of the state variables. Consider the case
of synchronization between two Lorenz systems with
time delay. We treat the case where the state variable
x1(t − T ) is delayed by a time delayT . Here the
driver system is given by:

dx1/dt = σ(x2(t) − x1(t − T ))

dx2/dt = p1(t)x1(t − T ) − p2(t)x2(t)−

−p3(t)x1(t − T )x3(t)

dx3/dt = x1(t − T )x2(t) − bx3(t) (4.1)
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Suppose the transmitted signal for synchronization
is chosen as the single variable:

s(t) = h(x(t)) = x2(t) (4.2)

The response system is defined by the following
nonstationary and delayed Lorenz system, where the
transmitted scalar signals(t) = x2(t) is used to drive
the system.

dy1/dt = σ(s(t) − y1(t − T ))

dy2/dt = q1(t)y1(t − T ) − q2(t)y2(t)−

−q3(t)y1(t − T )y3(t)

dy3/dt = y1(t − T )s(t) − by3(t) (4.3)

The next step is to derive a system of differential
equations governing the evolution of the controlled
parametersq1(t), q2(t) and q3(t). As the response
system evolves and synchronizes with the driver sys-
tem, the parametersq1(t), q2(t) and q3(t) will follow
the original parametersp1(t), p2(t) andp3(t) of the
driver system. According to Eq.(2.13) of section 2,
the first step is to develop the term

∑3
i=1 eifi(y, q)

for the response system (4.3).

3X
i=1

eifi(y, q) = (y1(t−T )−x1)[σ(s(t)− y1(t−T ))]+

+(y2−x2)[q1(t)y1(t−T )−q2(t)y2−q3(t)y1(t−T )y3]+

+(y3 − x3)[y1(t − T )s(t) − by3] (4.4)

The gradient with respect to the parametersq is
given by:

∇q [

3∑

i=1

eifi(y, q)] =

= [(y2−x2)y1(t−T ) , −(y2−x2)y2 , −(y2−x2)y1(t−T )y3]
t

(4.5)

The differential equations governing the evolution
of the controlled parametersq are given by:

dq1/dt = −G11(y2−s(t))y1(t−T )+G12 (y2−s(t))y2+

+G13 (y2 − s(t))y1(t − T )y3

dq2/dt = −G21(y2−s(t))y1(t−T )+G22 (y2−s(t))y2+

+G23 (y2 − s(t))y1(t − T )y3

dq3/dt = −G31(y2−s(t))y1(t−T )+G32 (y2−s(t))y2+

+G33 (y2 − s(t))y1(t − T )y3 (4.6)

For example, consider the case where only one pa-
rameter, sayp1(t) is to be identified, whereas the
other two parametersp2(t) andp3(t) are known con-
stants. If the synchronized systems are used for secure
communication, the parameterp1(t) can carry a hid-
den message, which can be identified by the response
system. In this case, Equations (4.4-4.6) reduce to:

3∑

i=1

eifi(y, q) = (y1 − x1)[σ(s(t) − y1)]+

+(y2−x2)[q1(t)y1−p2y2−p3y1y3]+(y3−x3)(y1y2−by3)
(4.7)

∇q [

3∑

i=1

eifi(y, q)] = [(y2 − x2)y1(t − T ), 0 , 0]T

(4.8)

dq1/dt = −G11(y2 − s(t))y1(t − T ) (4.9)

dq2/dt = 0

dq3/dt = 0

Here we show results of a computer simulation
with the following values of the parameters:

σ = 10 b = 8/3 T = 0.1 G11 = 10 (4.10a)

p1(t) = r0 + δr sinωt (4.10b)

δr = 2 ω = 2π/10 r0 = 28 (4.10c)

q2 = p2 = 1 q3 = p3 = 1 (4.10d)

together with the initial condition:

q1(0) = r0 = 28 (4.10e)

The results of this example are given in Figures 4-
6. Fig.4 shows the hyperchaotic state variables of the
driver system. A comparison with Fig.1 above, it can
be seen that the state variables in Fig.4 display a more
complex type of chaos, because of the time delay.
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Comparing with the attractor of Fig. 2 above, it is ap-
parent that the hyperchaotic attractor shown in Fig.5
displays a more complex behavior. Similar results are
obtained for the response system as it synchronizes
with the driver system. Fig.6 displays the synchro-
nized state variablesy1 = x1,y2 = x2 andy3 = x3,
all three eventually converging to straight lines as
shown in the figure. The identified signalq1(t) − r
converges to the driver signalq1(t) − r = δr sinωt
and is also shown in the figure.
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Figure 4: The hyperchaotic state variables of the driver
Lorenz system with delay and variable parameter.
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Figure 5: The hyperchaotic attractor of the driver Lorenz
system with delay and variable parameter. The response
system has a similar attractor.
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Figure 6: Synchronization between the hyperchaotic driver
and response Lorenz systems with delay and variable pa-
rameters and the parameter q1(t) of the response system as
it identifies the driver signal p1(t).

5 CONCLUSIONS

A generalized method for adaptive control, synchro-
nization of chaos and parameter identification in sys-
tems governed by ordinary differential equations and
delay-differential equations has been presented. The
method is based on the Lagrangian approach to fluid
dynamics. The synchronization error is treated as a
scalar fluid property advected in the vector field of the
controlled response system. Upon minimizing this er-
ror, the two coupled systems synchronize and the time
variable parameters of the driving system are identi-
fied. The method was used to synchronize two Lorenz
systems with variable parameters. The method was
also applied to the synchronization of hyperchaos in
two modified Lorenz systems with a time delay in one
the state variables. Some implications of using the
method in the field of secure communications where
the transmitted information is masked by chaos or hy-
perchaos have been discussed.
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