
Blind Source Separation Based on a Single Observation 

Damjan Zazula, Aleš Holobar 

University of Maribor, Faculty of EE and CS 
Smetanova 17, 2000 Maribor, Slovenia 

Abstract. This paper deals with a novel approach to the compound signal 
decomposition. It takes advantage of blind source separation using the 
algorithm for convolution kernel compensation (CKC). We derive a version 
which cope with compound signals, mixtures of several source contributions, 
even if only a single observation is available. Our novel approach detects and 
separates the triggering instants of all source symbols which contribute to the 
processed observation. The obtained decomposition is very robust and accurate. 
We experimented with synthetic signals having characteristics similar to the 
electrocardiographic (ECG) signals. Also at signal-to-noise ratios (SNRs) as 
low as 0 dB, the obtained average true positive statistics for the detected source-
symbol triggerings was 98±1%, average false positive statistics 2±1%, and false 
negative statistics 3±2%. 

1   Introduction 

Many natural and technological phenomena can be modelled as multiple-input 
multiple-output (MIMO) systems. Observing compound signals, for example, such as 
telecommunication, bioelectrical, seismic, speech or imaging data, successful 
approaches are sought to perform a thorough decomposition to the signals’ constituent 
components. These components observed, i.e. measured, at multiple system outputs 
carry simultaneous information on each system input excitation, which is said to come 
from a source, and on the response of the transmission path between a source and an 
observation point, i.e., a system channel [1, 2]. 
   On the other hand, any compound signal can be interpreted as a superimposition of 
signal components, which correspond to the individual source symbols generated by 
the MIMO input sources. These components, therefore, appear at time instants which 
coincide with the triggering (generating) instants of the sources. If the symbol 
alphabet is finite, so is the number of different observed signal components. By 
reformulating the model in such a way that it describes the observed signal 
components and their triggering instants, the characteristics of source symbols and the 
model transfer channels are not seen separately any more [1]. There are several 
benefits out of this assumption. The first of them brings unification to the 
interpretation of all compound signals, regardless their original sources. Secondly, 
decomposition of those signals can be focused on the component triggering instants, 
which greatly improves its accuracy, robustness, and reliability. So, the 
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decomposition result is a train of triggering pulses. And finally, the observed 
individual signal components may be extracted from the observations by different 
approaches, such as spike-triggering averaging [11]. 
   Typical observations of compound signals in practice are related to 
communications, bioelectrical signals, range imaging, etc. If the input source symbols 
can be considered spatially and temporally uncorrelated, a variety of blind source 
separation (BSS) techniques serve the decomposition purpose accordingly [3, 4, 5, 6, 
7, 8]. When the sources tend to become correlated, more reliable solutions may be 
expected using higher-order statistics (HOS) [9, 10], which are also very noise-
resistant. While the BSS methods cope with nonstationary signals, HOS approaches 
cannot. On the other hand, the number of observations must exceed the number of 
sources to warranty a reliable BSS operation, whereas for HOS there is no such 
limitation [10, 11]. 
   Recently, a novel BSS-based method has been proposed. It makes use of the 
Mahalanobius distance and angle calculation which, consequently, can lead to the 
entire model convolution kernel compensation (CKC). As a result, the system output 
observations are blindly deprived of the transfer channel influence and only the 
source-symbol triggering pulse trains are extracted [11, 12]. It has been shown that 
the source symbols correlated up to 10 % and the underdetermined cases with the 
number of observations being as low as a half of the number of source symbols do not 
hinder a proper CKC-based decomposition [12]. 
   This paper proposes a novel solution which combines the benefits of the CKC and 
HOS approaches. It can cope with an arbitrary underdetermined case in such a way 
that it generates additional observations out of the given ones. This generation must 
be based on nonlinear operations on the given observations–the linear ones wouldn’t 
increase the rank of the CKC decomposition matrix. To demonstrate the idea in an 
extreme situation, we are going to deal with only a single observation here, so the 
anticipated model will be reduced to a multiple-input single-output (MISO). Adequate 
data model and the CKC-based decomposition are presented in Section 2. Section 3 
introduces the idea of how to generate more observations out of a single one, while 
Section 4 explains this new concept with a short example. The influence of noise and 
correlated sources is discussed in the concluding Section 5. 

2   Data Model 

Recapitulate briefly the reconstruction of source-symbol pulse trains using the CKC-
based decomposition [11, 12]. Consider the following data model: 
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where xi(n) stands for the i-th observation, cij(k) corresponds to the contribution of 
length L of the j-th source symbol in the i-th observation, and tj(n-k) denotes a 

sequence of triggering instants for this symbol, , with unit-

sample pulses placed at T

∑
∞

−∞=
−=

l
jj lTnnt ))(()( δ

j(l) lags, while vi(n) is considered i.i.d. white noise 
independent from the sources. 
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It has been shown [3] that Eq. (1) can be transformed into a multiplicative vector 
form as follows: 

1,,0);()()( −=+= Nnnnn eeee …vtCx  (2) 
where subscript e designates extended vectors and matrices, Ce contains the observed 
contributions of source symbols:  
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xe(n) stands for the vector of observations, and te(n) for the vector of triggering 
pulses, both at lag n:  
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Extended noise vector ve(n) is considered constructed in the same way. Me in Eqs. 
(5) means an extension factor. If it fulfils the following inequality 

)1( −+≥⋅ ee MLKMM , (6) 
then for K different source symbols of length L and M observations the matrix Ce is of 
full column rank. This condition warranties a successful elimination of contributions 
of Ce, as we are going to show in the next section. 

2.1   Convolution Kernel Compensation 

Recall Eq. (2). It has a typical MIMO structure. From this point of view, Ce is a 
convolution kernel convolving te(n) into the observations xe(n). Given xe, if we can 
get rid of Ce the triggering instants of unknown source symbols, te, would be 
obtained. We called this process “convolution kernel compensation (CKC)”. 

Observe the following expression: 
)()( 1 nn e

T
e e

xRx x
−  (7) 
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with  denoting sample correlation matrix of source triggering trains of pulses, 
and the expression σ

etR
2I represents the noise, ve, correlation matrix. 

For easier comprehension of derivation, continue with the noise-free case. By 
substituting (8) into (7), we see that convolution kernel is eliminated: 
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   The expression from (7) is known as Mahalanobius distance, which, as it is clear 
from Eq. (9), yields only the information on source triggering instants. Actually, its 
value depends on the number of sources active in given time instant n. This is why we 
call it activity index. 
   Suppose we deal with orthogonal sources and n0 indicates the time instant where 
one of them generates a symbol (its contribution appears in the observation). Then 
vector te(n0) is all zero except the element which belongs to the generated symbol, say 
the i-th, and equals 1. Besides, matrix  is diagonal, and so is . It is then 

straightforward that 
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where ri,I denotes the i-th diagonal element of , and t1−
etR e,i(n) stands for the train 

value at lag n for the i-th source symbol. Evidently, taking all possible n’s into 
account, Eq. (10) produces a sequence in ,0p  whose values equal the i-th source-
symbol triggering pulse train to a constant amplitude factor, ri,i. So, all repetitions of 
that symbol are detected. 
   The values of activity index indicate those lags ni where individual sources 
contribute their symbols. If we select such ni’s that cover all different source contribu-
tions, a thorough decomposition is done and all source-symbol triggering pulse trains, 
ti; i∈[1,K], are separated. 

Once the triggering instants of the signal components, i.e. the source-symbol pulse 
trains, are known, also the components themselves can be obtained–for example, by 
using the spike-triggered averaging throughout the given observations. 

3 An Upgrade of the CKC-based Decomposition Using a Single 
Observation 

Suppose the data model from Eq. (1) represents a MISO instead of a MIMO system–
so, only a single observation x1(n); n=0,…,N-1, is available. The necessary condition 
(6) for a thorough decomposition can, therefore, not be met. 
   Now, try to increase the number of observations artificially as follows. Assuming 
every observed sample x1(n) an independent random variable, new observations may 
be generated using higher-order moments of these variables. Also cross-moments may 
be applied by combining the variables at different observation lags. In the 
continuation, we will talk only the moments at a given lag, actually meaning the dot-
operations (according to MATLAB) with the given shift of the observation 
repetitions. This will give additional, artificial observations; however, it will also 
produce additional, artificial source symbols. For instance, taking the second-order, 
zero-lag moments, all the observation samples that comprise superimpositions of 
several source activities will generate new artificial sources whose activity is 
determined by pair-wise logical products of the superimposed source activities. Such 
artificially introduced source symbols will be called cross-symbols, sij(n), if i and j are 
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two intersecting, superimposed sources in the observation sample n, sij(n)=si(n)·sj(n-
dij), where dij is a time shift between the triggerings of sources i and j. 
   Any zero-lag higher-order moment can generate one additional (artificial) 
observation. How about the nonzero lags? Suppose source triggers with a minimum 
distance of Tmin between the adjacent symbols. Suppose also those source symbols 
contribute signal components whose length in observation equals L, L<Tmin. It is 
necessary, then, to limit the lags respected in higher-order moments to Λ=Tmin-L. This 
assumption is correct with all possible applications mentioned in Section 1. 

Remember we have only a single observation available, x1. Hence, all additional, 
artificial observations will be derived from it. Denote them by y and a set of indexes: 
the number of indexes is going to be equal to the order of moments applied, and the 
values of indexes are going to define the shifts among the combined observation 
repetitions. Make this more comprehensible by a short example; let 

[ ]65432101 ,,,,,,)( aaaaaaanx =  
be an observation which can be further designated as { } )()( 10 nxny = . 

Second-order moments at zero lag will be calculated as: 
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giving the first artificial observation whose sample values equal the squares of the 
values in x1. Further non-zero lags are possible, such as: 

{ } [ ]0,,,,,,)( 6554433221101,0 aaaaaaaaaaaany =  
with the second repetition of x1 shifted anticausally by one sample. Also y{0,-1}(n) is 
feasible, but because y{0,-1}(n)= y{0,1}(n) no new observation is obtained. 
   We have already mentioned that added artificial observations introduce new source 
symbols as well. Actually, they contribute new signal components which consist of 
non-linear combinations of the responses to the original source symbols. Whenever a 
superimposition of two or more source contributions appear in an observation sample, 
the artificial observations based on higher-order moments need also additional, 
artificial sources to be modelled by MIMO. Exemplify this statement by a concrete 
situation. Suppose we have two components, cij(n)=[a1,a2,a3] and cik(n)=[b1,b2,b3], 
superimposed in our observation, so that: 

x1(n)=[a1,a2,a3,0,a1,a2+b1,a3+b2,b3,0,b1,b2,b3] 
It is obvious that cij(n) appears alone first, then at location 4 it overlaps with cik(n-

1), while at location 9 cik(n) appears alone. Using the triggering train of pulses, t, a 
matrix form follows: 
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   Let us now construct the artificial observation with second-order moments at zero 
lag: 
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   The original observation and the added artificial one can be described by a unified 
matrix form: 
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   Both the convolution kernel C and the triggering pulse trains change by adding 
artificial observations. From Eq. (11), it is clear how new sources are artificially 
introduced and what is their role (see the two bottom rows in t). 
   Eq. (11) also explains the most important contribution of added artificial 
observations: the rank of convolution kernel C increases. When dealing with finite 
alphabet of source symbols, e.g. K, it can be shown that with adequate number of 
artificial observations the convolution kernel matrix C obtains full column rank. This 
leads to a signal decomposition which is Bayesian optimal, as defined in the 
preceding section [13]. 
   The only problem of this kind of approach is that the decomposed source-symbol 
triggering trains split among several artificial sources. Whenever there are 
superimpositions of source-symbol contributions within an observation, every type of 
superimposition is decomposed to its own triggering pulse train. Consequently, the 
triggerings which appear in those trains disappear from the trains of the sources 
whose symbol contributions overlap. 
   There are practical cases where this effect is not disturbing. This certainly is true for 
the observations with non-overlapping contributions, such as electrocardiograms 
(ECG) or, partially, images. We are going to elaborate our approach with non-
overlapping assumption in the next section. 

4   Simulation Results 

To exemplify the derivation from Section 3, we decided to simulate an artificial 
observation with characteristics similar to the ECG signals. We synthesised the 
following: 

1. four random generated source contributions with lengths L = 8, 10, 5 and 7 
samples, respectively;  

2. random appearance of these source contributions in the generated observation, 
so that their intermediate mean distances were 50, 1000, 500, and 3000 
samples, respectively, while actual appearances were Gaussian distributed 
around these values with standard deviation of 2 samples; 
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3. the generated observation with length of 10000 samples; 
4. artificial observations up to the power of p=3 and shift Λ=4 (according to the 

assumptions in Section 3). 
   Thus, the simulated observation contains four different source contributions. The 
one belonging to the first source is most frequent and could be understood as normal 
systoles. The other three could be interpreted as different abnormal heart beats, i.e. 
extrasystoles and possible pathological changes. 
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Fig. 1. The generated synthetic observation contaminated with 0 dB additive zero-mean 
Gaussian noise. Only a part of the generated signals is depicted. 

The total number of artificial observations was 20. We set the number of extended 
observations to Me=2 (Eq. (6)). Using our CKC approach [11, 12], we verified the 
accuracy of the decomposed triggering pulse trains for the four simulated sources. 
Simulations were performed in 10 Monte Carlo runs with different levels of additive 
Gaussian noise, so that the SNRs were 20, 15, 10, 5, and 0 dB. An example of the 
processed observation with 0 dB additive Gaussian noise is depicted in Fig. 1. Fig. 2 
illustrates the decomposition results in the form of the detected triggering pulse trains 
for the first source. Trains in black were decomposed at different SNRs, as indicated. 
The bottom train of Fig. 2 (in grey) is the original triggering pulse train for the first 
source. 
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Fig. 2. Reconstructed triggering pulse sequences of source 1 at different SNRs (black) and 
original simulated pulses (grey at the bottom). Only a part of the reconstructed pulse sequences 
is depicted. 

A more detailed analysis of the obtained results versus different SNRs is given in 
Tables 1, 2, and 3. Table 1 describes percentages of correctly detected triggering 
instants for all four sources (true positive statistics). A triggering instant was 
considered correctly detected when the decomposition returned the exact position of 
an original source triggering. Tables 2 and 3 collect percentages of false positive and 
false negative statistics, respectively. 

Table 1. Percentage (mean ± standard deviation) of accurately recognized triggering pulses 
(true positive statistics) versus SNR. 

SNR 20 dB 15 dB 10 dB 5 dB 0 dB 
Source 1 1.00±0.00 0.98±0.02 0.98±0.02 0.99±0.01 0.98±0.01 
Source 2 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.01 
Source 3 0.99 ± 0.02 1.00± 0.00 0.99 ± 0.02 0.99 ± 0.02 1.00 ± 0.00 
Source 4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Table 2. Percentage (mean ± std) of misplaced pulses (false positive statistics) versus SNR. 

SNR 20 dB 15 dB 10 dB 5 dB 0 dB 
Source 1 0.00± 0.00 0.02 ± 0.02 0.02 ± 0.02 0.01± 0.01 0.02 ± 0.01 
Source 2 0.00± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 
Source 3 0.01± 0.02 0.00± 0.00 0.01 ± 0.02 0.01 ± 0.02 0.00 ± 0.00 
Source 4 0.00± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Table 3. Percentage (mean ± std) of missed pulses (false negative statistics) versus SNR. 

SNR 20 dB 15 dB 10 dB 5 dB 0 dB 
Source 1 0.01± 0.01 0.04 ± 0.01 0.04 ± 0.02 0.03 ± 0.01 0.04 ± 0.02 
Source 2 0.01 ± 0.01 0.04 ± 0.03 0.03 ± 0.03 0.03 ± 0.02 0.03 ± 0.01 
Source 3 0.01 ± 0.02 0.01 ± 0.02 0.02 ± 0.03 0.03 ± 0.04 0.02 ± 0.03 
Source 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

83



It is obvious that our method is very robust. The worst percentage of the recognised 
source triggering instants for the first source is 98%, for the second source 96%, for 
the third source 99%, and for the fourth source 100%. As we can see from the tables, 
even an extremely high noise with SNR=0 dB does not decrease the successful rate of 
the recognised triggering pulses, regardless the triggering frequency as well. 

5   Discussion and Conclusions 

We have derived an approach which makes a MIMO system decomposition possible 
based only on a single observation. It is applicable in the cases with orthogonal, or at 
least close-to-orthogonal, sources whose inter-triggering distance is lower bounded. 
As already mentioned, an obvious application is ECG signals. The systoles cannot 
overlap, and there is always an inter-systole gab which warranties that also the 
extended observations would not cause severe overlappings. Referring to the original 
MIMO decomposition from [11, 12], two important differences must be reported 
here: 
   1. Nonlinear procedures for generation of artificial observations influence additive 
noise which is presumed zero-mean and, thus, prone to elimination by averaging of 
the signal samples. Consequently, the observations obtained with the even powers 
contain additive noise which is not zero-mean any more. This effect decreases the 
algorithm’s robustness. 
   2. In the MIMO decomposition from [11, 12], it is enough to locate a firing of a 
single source, say n0, and xe(n0) can readily be used to extract the complete pulse train 
for the source symbol in question (Eq. (10)). The statement equally holds for all 
sources in the newly proposed approach described in this paper, so for the cross-
symbols as well. This means that the firing positions of a source symbol will not be 
detected when using xe(n0), if n0 is a time instant where this source symbol overlaps 
with any of other symbols. To detect a single source symbol’s triggering instants, it is 
important to find such n0 where this symbol appears alone. On the contrary, each point 
of a multiple source activity would be recognised as a firing of that artificial source 
which was generated by the overlapped multiple source symbols. 
   To cope with the two problems, special noise-reduction techniques must be 
implemented and additional post-processing stages are needed to fuse the detected 
pulse trains which belong to the same original source symbol. Both needs further 
investigation and explanation which goes beyond the scope of this paper. 
   Our simulation confirmed that even from a single observation and in very noisy 
environment a reliable separation of several sources is feasible using the CKC 
approach. Source-symbol triggering instants can be recognised in more then 98% of 
cases even when SNR goes as low as 0 dB. This is a very important conclusion for 
some practical implementations. Analysing ECG signals, for example, a low number 
of observations, if not only a single observation, is available. Nevertheless, the 
proposed approach improves significantly the chances of different types of abnormal 
heart beats to be recognised and separated from the normal systoles, while for all the 
beats their fiducial points can be determined with high precision. 
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