
M-FIRE: A METAPHOR-BASED FRAMEWORK FOR
INFORMATION REPRESENTATION AND EXPLORATION

Matteo Golfarelli, Andrea Proli and Stefano Rizzi
DEIS, University of Bologna

Via Risorgimento 2, Bologna, Italy

Keywords: Ontology, visualization, navigation, metaphor, RDF.

Abstract: An open problem in the construction of an environment for visualizing and navigating information in the
context of the Semantic Web is to guarantee a satisfactory compromise between expressivity and domain-
independence. In this paper we first introduce M-FIRE, a configurable framework for instantiating visual-
ization and navigation systems based on the adoption of custom metaphors: metaphors drive the process for
obtaining a visual representation of a given piece of information and define how queries are generated upon
user actions. Then, the paper describes in detail how presentation is achieved. The possible applications for
our framework range from semantic browsing to ontology-enabled Web site design.

1 INTRODUCTION

The Semantic Web vision is built upon the ability
of formally defining and processing the semantics of
knowledge. Knowledge definition languages of in-
creasing expressivity, allowing for increasingly so-
phisticated (and computationally complex) reasoning,
have been developed by the W3C organization: they
are structured as a layered tower of languages, where
each layer builds on the lower one as its semantic
extension (W3C, 2004). At the bottom of the tower
is RDF, which allows for the assertion of statements
about resources and their properties.

Since expressive languages like RDF Schema
(RDFS) and OWL are semantic extensions of RDF,
RDFS and OWL documents share the same syntax
and structure of RDF documents. Though the syn-
tax of RDF is designed to be human-readable, most
end-users are not familiar with it, and (most impor-
tant) neither they are with the semantics of abstract
concepts like ‘restriction’, ‘specialization’, ‘cardinal-
ity’, and so on: because of this, they should be pro-
vided with tools that (1) translate low-level statements
into easy-to-interpret visual renderings and (2) trans-
late user actions performed on those visual renderings
into low-level queries over the underlying knowledge
base.

An open problem in the field of visualization
and navigation of RDF documents is to guarantee

a satisfactory compromise between expressivity and
domain-independence. The former is meant as the
capability of delivering an intuitive representation of
knowledge and some tailored navigation primitives
to end-users working in a given application domain,
while the latter is aimed at accomplishing a high de-
gree of reusability. Most existing tools favor domain-
independence, and represent entities in a way that
is closer to the abstract form used to formally de-
fine them: in fact, they adopt visual items to rep-
resent things – such as classes, properties, special-
izations, and instantiation relationships – that are fa-
miliar to knowledge engineers (a narrow category of
end-users) but not to domain experts. Indeed, though
domain-specific formalisms have a lower degree of
reusability, they provide graphically richer constructs
allowing for a representation that is closer to how en-
tities appear in the application domain.

An approach to address this issue is to decouple the
mechanism for transforming RDF documents into an
expressive representation from the criteria that drive
the representation itself. In this paper, we present
M-FIRE, an original, configurable framework for eas-
ily instantiating visualization and navigation systems
for RDF-based knowledge, relying on the adoption
of custom metaphors. Metaphors drive the process
through which visual representations are obtained for
a given document, and define how queries are gen-
erated upon user actions. This allows users to per-

332 Golfarelli M., Proli A. and Rizzi S. (2006).
M-FIRE: A METAPHOR-BASED FRAMEWORK FOR INFORMATION REPRESENTATION AND EXPLORATION.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 332-340
DOI: 10.5220/0001241303320340
Copyright c© SciTePress

Figure 1: Overall functional architecture of M-FIRE.

form semantic browsing by relying on intuitive con-
cept representations and to interact in a simple man-
ner with complex knowledge.

The overall functional architecture of our frame-
work is sketched in Figure 1. First of all, we pos-
tulate the existence of a back-end module that, given
a query in a supported query language, returns a result
as an RDF document (from now on, the source doc-
ument). The metaphor selector component takes the
source document and returns the best suited metaphor
for its visualization (visualization metaphor, VM in
Figure 1) and navigation (navigation metaphor, NM
in Figure 1); many criteria could drive this choice, for
instance the vocabulary of the source document. The
chosen visualization metaphor is then given as input
to the visualizer module, which applies the directives
contained in the visualization metaphor to generate
a representation document for the source document;
the representation document describes the visualiza-
tion to be produced in an abstract form, independently
of any implementation detail. Then, a properly cho-
sen encoder translates the representation document
into a concrete form, called encoding (e.g., an HTML
document), which can be given as input to the end-
user’s visualization program (e.g., a Web browser).
The choice of the best suited encoder for a given rep-
resentation document is carried out by the encoder se-
lector and could depend, again, on different decision
criteria. The reason for this two-layer visualization
architecture (visualization followed by encoding) is
to obtain flexibility and independence with respect to
any visualization device, program, and language.

Once rendering has been completed by the visu-
alization program, end-users are allowed to interact
with the produced visualization. Events generated
by user actions are captured by the event controller,

which creates an event description in the form of an
OWL document describing the occurred event (for in-
stance, a user’s double click on an icon representing a
soccer player). The event description is then given
as input to the navigator module together with the
chosen navigation metaphor. In the same way as the
visualization metaphor tells the visualizer which rep-
resentation must be produced for a given RDF doc-
ument, the navigation metaphor tells the navigator
which query must be formulated for a given event.
The resulting query is then forwarded to the back-end,
and the process is repeated.

In this paper we focus on presentation, meant as the
process through which an encoding is generated start-
ing from the source document returned by the back-
end. Such path is tracked in Figure 1 by means of
thick lines.

2 RELATED WORK

Several general-purpose tools currently exist, that
highlight the semantics of a few basic terms from the
RDF(S) or OWL vocabulary only (e.g., instances of
rdfs:subClassOf, instances of rdfs:Class, and so on)
and allow users to perform simple navigation actions,
mainly resulting in graph node expansion. This is a
reasonable limitation if we consider that those for-
malisms are intended to give a presentation for a wide
range of RDF-based documents, no matter what their
application domain is. However, they fail in offering
end-users intuitive representations of the described
objects and concepts, thus missing the main goal of
our approach. The front-ends of well-known ontol-
ogy management systems such as KAON (Volz et al.,
2003), Spectacle (Harmelen et al., 2001), Ontolin-

M-FIRE: A METAPHOR-BASED FRAMEWORK FOR INFORMATION REPRESENTATION AND EXPLORATION

333

gua (Farquhar et al., 1995), Ontosaurus (Swartout
et al., 1996), Ontorama (Furnas, 1986), and WebOnto
(Domingue et al., 1999) all fall into this category;
the same also applies to Protégé plug-ins for ontol-
ogy visualization and navigation, except for Jambal-
aya (Storey et al., 2001).

Jambalaya is a significant step toward the develop-
ment of a highly configurable tool, in that a visual-
ization for the semantics of a given piece of informa-
tion is generated according to user-specified parame-
ters. In Jambalaya, graphical containment is used, by
default, to encode the semantics of both sub-classing
and instantiation, but users are allowed to modify this
behavior by associating whatever property they prefer
to the graphical containment drawing primitive. Our
approach generalizes the one of Jambalaya one by al-
lowing any kind of semantic structure to be rendered
by any kind of graphical structure.

In the context of the W3C’s IsaViz visual environ-
ment for browsing and authoring RDF documents1, a
language called Graph Stylesheets (GSS) is defined
as a way to associate style to node-edge representa-
tions of RDF graphs and to offer alternative layouts
for some elements. Actually, with respect to our ap-
proach, GSS plays three roles at the same time: it re-
sembles representation metaphors because it allows to
associate graphical styles to some semantic patterns;
it can also be seen as a representation language, since
it defines a vocabulary of graphical styles interpreted
by a rendering engine; last, it can be classified as an
encoding language because it directly feeds a visual-
ization program (the IsaViz tool). Our approach aims
at disambiguating this multifold nature by introduc-
ing a clean separation of each aspect, and generalizes
GSS in that representations are not limited to graph-
based drawing primitives.

FRESNEL2 is a simple vocabulary for specify-
ing which parts of an RDF graph are displayed and
how they are styled using existing style languages
like CSS. There are analogies between M-FIRE and
FRESNEL, but also significant differences. First, the
representation paradigm of FRESNEL is centered on
resources, while the one of M-FIRE is centered on
statements: this means that in FRESNEL representa-
tions are generated for individuals, while in M-FIRE
representations are associated to (sets of) RDF triples.
The approach based on statements is more general,
because the representation of an existing resource X
can always be obtained as the representation of the
statement X rdf:type rdf:Resource, while representing
an arbitrary statement in the resource-based approach
requires reification. Moreover, M-FIRE allows the
same graphical drawing to be the representation of
more than one statement: for instance, a picture may

1http://www.w3.org/2001/11/IsaViz/
2http://www.w3.org/2005/04/fresnel-info/

represent both the fact that a person is a soccer player
and the fact that he plays in a particular soccer team.
Besides, in M-FIRE navigation metaphors are inde-
pendent from representation, while the two aspects
are not well separated in FRESNEL. Finally, FRES-
NEL comes with a built-in vocabulary for formatting
displayed information in a browser-independent way,
while M-FIRE, as a pure framework, does not com-
mit to any graphical vocabulary and relies on the ex-
istence of a proper encoder capable of translating the
produced representation into the chosen format.

3 VISUALIZATION

We now provide a simplified definition of an RDF
document which is useful for our purpose of detail-
ing how the framework works.

Definition 1 (RDF document) A statement is a
triple 〈subj , pred , obj 〉 where the subject subj is
a resource identified by a URI (Berners-Lee et al.,
1998), the predicate pred is a property identified by
a URI too, and the object obj is either a resource or
literal (e.g. a string). An RDF document d is a set of
statements, and its vocabulary, denoted by Voc(d), is
the union of the set of the URIs and literals appearing
as the subject, object, or predicate of its statements.

Visualization is the process of obtaining a represen-
tation document in which certain graphical drawings
are associated to certain (kinds of) statements belong-
ing to the source document, according to the direc-
tives contained in a visualization metaphor. In other
words, disjoint subsets of the source document ds are
defined such that statements in the same subset are
represented by instantiating the same type of repre-
sentation. The problem of classifying statements in
ds raises expressiveness and tractability issues con-
cerning the complexity of queries which can be for-
mulated to select them.

In order to provide a very general solution, visual-
ization in M-FIRE is conceived as a two-step process.
Although statement selection is performed through
conjunctive queries over RDF triples by relying on a
structural pattern matching engine without any rea-
soning capability (see Subsection 3.2), we allow for
a sort of preprocessing step, called enrichment and
described in Subsection 3.1, during which the source
document is augmented with new concept definitions
of arbitrary complexity; reasoning w.r.t. such concept
definitions allows to infer useful classifications for ex-
isting resources in ds, which are then exploited to for-
mulate expressive statement selections.

Thus, the visualizer module shown in Figure 1 ac-
tually consists of two separate modules: the enricher,
which augments the source document with new clas-
sifications and concept definitions for obtaining an en-

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

334

riched document, and the representer, carrying out the
association of particular visual items and graphical
styles to certain kinds of statements in the enriched
document, in order to produce the representation doc-
ument (an RDF document describing the drawing that
must be presented to the end-user). Both the new
concept definitions and the styling instructions come
from the metaphor: indeed, parallel to the above
separation, visualization metaphors are divided into
two components, namely the enrichment metaphor,
which drives the transformation of the source docu-
ment into the enriched document, and the representa-
tion metaphor, which drives the production of a rep-
resentation document for the enriched document. The
vocabulary of the representation document is called
the representation vocabulary and is not bound to any
predefined set of URIs (this will be further discussed
in Section 4).

3.1 Enrichment

An enrichment metaphor em is a pair 〈oem , rem〉,
where oem is an OWL document containing concept
definitions and rem is a compatible reasoner provid-
ing classification services. Ontology oem can only
contain concept definitions of the form A = C, where
A is a concept name and C is a complex concept de-
fined through concept constructors provided by the
language that rem supports.3 The enricher merges
oem to the source document and lets rem add new
classifications to produce the enriched document de.

Example 1 Let ds be the source document in Figure
2(a), and let oem be the OWL ontology in Figure 2(b).
If rem is an OWL-DL reasoner, then the enriched doc-
ument de will include both statements in (ds ∪ oem)
and 〈soccer:ply01 rdf:type soccer:Goalscorer〉. �

As previously discussed, visualization is split into
two phases because the query language used to se-
lect those statements for which a certain representa-
tion must be drawn might have limited expressive-
ness. Our implementation of the representer mod-
ule is based on SPARQL4; as a plain RDF query lan-
guage, SPARQL does not support any kind of non-
trivial reasoning. Should SPARQL interpreters have
a built-in support for reasoning with (suppose) OWL-
DL vocabulary, enrichment could be unnecessary, as
implicit classification could be inferred by the rea-
soner.

Besides, moving the reasoning step out of the rep-
resentation process into the enrichment phase en-
ables the support of new languages (or new reason-
ers) by simply defining different metaphors. Thus,

3This limitation is necessary to enable query unfolding
during navigation, which is out of the scope of this paper.

4http://www.w3.org/TR/rdf-sparql-query/

a crisp separation between enrichment and represen-
tation gives metaphor designers a better control over
the kind of inferences and classifications that are per-
formed, also increasing the flexibility and the modu-
larity of the design.

3.2 Representation

Representation is the process of associating proper
graphical structures to certain semantic structures,
and is carried out by the representer. More precisely,
the representer produces a representation document
for the enriched document de, where sets of resources
in the former represent single statements in the lat-
ter, by interpreting the directives contained into the
representation metaphor. A representation metaphor
is a pair rm = 〈R,F 〉, where R is a set of repre-
sentation rules, and F is a set of fusion rules. In or-
der to provide a formal account for the semantics of
representation and fusion rules, we need some auxil-
iary definitions that recall the usage of graph patterns
and templates in SPARQL. Due to space limitations,
however, we present the syntax for expressing rules
through illustrative examples instead of providing the
rigorous grammar definition.

Definition 2 (RDF Document Pattern) A statement
pattern is a statement where variable names can ap-
pear instead of URIs and literals as the subject, the
object, and the predicate. The set of variable names
appearing in a statement pattern sp is denoted by
Var(sp). An RDF document pattern dp is a set
of statement patterns, and we define Var(dp) =⋃

spi∈dp Var(spi). Given an RDF document pattern
dp and an RDF document d, we say that d matches
dp iff there exists at least one d′ ⊆ d and a mapping
β : Var(dp) → Voc(d′) such that d′ is obtained from
dp by replacing each variable name v ∈ Var(dp)
with β(v). Mapping β is called a binding, and d′ is a
solution for dp in d.

Definition 3 (RDF Document Template) A state-
ment template is a statement pattern where new
names used as resource templates can appear in
place of URIs and variable names as the subject
and the object only. The set of resource tem-
plates appearing in a statement template st is
denoted by Tem(st). An RDF document template
dt is a set of statement templates, and we define
Tem(dt) =

⋃
sti∈dt Tem(st i). Given an RDF

document template dt , an RDF document d is said
to be an instance of dt iff there exists a mapping
τ : Tem(dt) → U , where U is the set of URIs
contained in Voc(d), such that d is obtained from dt
by replacing each resource template t ∈ Tem(dt)
with τ(t). Mapping τ is called the instantiation
function from dt to d.

M-FIRE: A METAPHOR-BASED FRAMEWORK FOR INFORMATION REPRESENTATION AND EXPLORATION

335

(a) (b)
soccer:ply01 rdf:type soccer:Player, soccer:ply01 soccer:hasName “Zlatan Ibrahimovic” soccer:Goalscorer rdf:type owl:Restriction
soccer:ply01 soccer:playsIn soccer:juve, soccer:juve soccer:hasNation soccer:cty07 soccer:Goalscorer owl:onProperty soccer:hasScored
soccer:ply01 soccer:hasNation soccer:cty15, soccer:cty15 soccer:hasFlag “Sweden.bmp” soccer:Goalscorer owl:minCardinality 1
soccer:cty07 soccer:hasFlag “Italy.bmp”, soccer:ply01 soccer:hasScored soccer:goal15A4

Figure 2: Sample source document from the soccer domain (a) and enrichment ontology for the same domain (b).

Intuitively, representation rules in R are used to
create one partial representation document for each
set of statements in de matching a particular docu-
ment pattern, while fusion rules in F properly merge
multiple such documents whenever a condition ex-
pressed over the sets of statements they represent is
satisfied.

Definition 4 (Representation Rule) A repre-
sentation rule is a pair r = 〈ss, rt〉, where ss
(statement selector) is a document pattern, and
rt (representation template) is an RDF document
template, with Var(rt) ⊆ Var(ss).
Example 2 With reference to the enriched document
from Example 1, representation rule PlayerInItaly in
Figure 3(a) defines the visualization of soccer players
who play in an Italian team, while rule Nationality in
Figure 3(b) defines a visualization for the nationality
of a person, a team or anything else. The first rule
generates, for each graph describing the fact that a
soccer player with a certain name plays in an Italian
team, an RDF document describing a blue box which
contains his name; the second one represents the fact
that a person (or a team) belongs to a nation which is
symbolized by a flag, and whose picture is stored in a
file, by generating a description where the picture of
the flag is placed next to the person’s representation.
�

Clauses FOR PATTERN and WITH in Figure 3 de-
note, respectively, the statement selector and the rep-
resentation template for a representation rule. Names
beginning with ‘?’ and ‘#’ are, respectively, variables
and resource templates.

The semantics of representation rules can be de-
scribed by illustrating how the representer exploits
them for generating partial representation documents.
Iteratively, a representation rule r is extracted from
R, and the set Zr of solutions for r .ss in the en-
riched document de is computed. For each solution
z ∈ Zr, there exists exactly one set of statements in
de that matches r .ss . The binding that corresponds
to z, say βz , is then used to transform the repre-
sentation template r .rt into a matching RDF doc-
ument template tz by replacing each variable name
v ∈ Var(r .rt) with βz(v) (with reference to Ex-
ample 2, statement 〈#b geom:hasText ?y〉 becomes
〈#b geom:hasText “Zlatan Ibrahimovic”〉). Thus, for
every solution z, we obtain an RDF document tem-
plate tz . An instance is then created for all such tz ,

where the images of the corresponding instantiation
functions are pairwise disjoint (thus producing, e.g.
geom:123 geom:hasText “Zlatan Ibrahimovic”).

The procedure is repeated until all of the represen-
tation rules in R have been processed.
Example 3 The partial representation document
shown in Figure 4(a) is generated by rule PlayerInItaly
in Figure 3(a), and the partial representation docu-
ment in Figure 4(b) is generated by rule Nationality in
Figure 3(b), when applied to the enriched document
obtained in Example 1. �

This way, for each representation rule r ∈ R, many
partial representation documents are instantiated (one
for each set of statements in de matching the state-
ment selector of r). Once all r ∈ R have been
processed, fusion rules come into play.
Definition 5 (Fusion Rule) A fusion rule is a triple
f = 〈S, fp, ft〉, where the fusion set S is a mul-
tiset containing representation rules in R, fp is an
RDF document pattern called the fusion pattern, and
ft is an RDF document template called the fusion
template. Variables in the fusion template must also
appear in the fusion pattern: formally, Var(ft) ⊆
Var(fp).

The representer uses fusion rules to link partial rep-
resentation documents, among those created by repre-
sentation rules in S, whose represented sets of state-
ments meet the join conditions expressed in the fusion
pattern fp. A helpful analogy can be set up with rela-
tional algebra, where a join operator merges several
tables (and the same table can be included multiple
times with different roles in the FROM clause) much
like a fusion rule merges the existing partial represen-
tation documents generated by a number of represen-
tation rules; the difference here is that applying fusion
rules leads to the creation of new sets of statements
linking the partial representation documents, whereas
a join operation in relational algebra produces a mere
concatenation of tuples, without new information be-
ing created. Representation rules in S thus corre-
spond to the joined tables, and the partial representa-
tion documents generated by them correspond to the
instances of those tables (tuples).

Fusion pattern fp (corresponding to the join predi-
cate in our analogy with relational algebra) can refer
variables used in the statement selectors of any repre-
sentation rule in S, thus allowing to express a cross-
representation condition, involving their represented

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

336

(a) (b)
REPRESENTATION RULE PlayerInItaly REPRESENTATION RULE Nationality
FOR PATTERN { ?x rdf:type soccer:Player . ?x soccer:playsIn ?y . FOR PATTERN { ?a misc:hasNation ?b . ?b misc:hasFlag ?c . }
?x misc:hasName ?z . } ?c misc:hasSourceFile ?d . }
WITH { #b rdf:type geom:Box . #b geom:hasColor “Blue” . #b geom:hasText ?z . } WITH { #i rdf:type geom:Img . #i geom:hasSrc ?d . #i geom:nextTo #p . }

Figure 3: Two sample representation rules for the soccer domain.

(a) (b)
geom:b1 rdf:type geom:Box geom:i1 rdf:type geom:Image
geom:b1 geom:hasColor “Blue” geom:i1 geom:hasSource “Sweden.bmp”
geom:b1 geom:hasText “Zlatan Ibrahimovic” geom:i1 geom:nextTo geom:p1

Figure 4: Partial representations generated by rules in Figure 3(a) and 3(b) when applied to Example 1.

statements, that must be satisfied in order to instanti-
ate ft ; similarly, fusion template ft can refer resource
templates used in the representation templates of any
representation rule in S, allowing to create a connec-
tion among the partial representation documents pre-
viously produced (see Example 4 below).

// ds is the document to represent, vm is the visualization metaphor
// This function returns the final representation document
RDFDocument visualizer(ds,vm) {

RDFDocument de = enricher(ds, vm.em);
RDFDocument r = representer(de, vm.rm);
return r;

}

// ds is the source document, em is the enrichment metaphor
// This function returns the enriched document
RDFDocument enricher(ds ,em) {

RDFDocument dmerge = merge(em.oem , ds)
RDFDocument de = em.rem .inferClassifications(dmerge);
return de;

}

// de is the enriched document, rm is the representation metaphor
// This function returns the final representation document
RDFDocument representer(de ,rm) {

Set A = ∅; // Stores semantic annotations
for each r ∈ rm.R { // Apply representation rules

Set Zr = match(de, r.ss); // Stores the matching solutions
for each z ∈ Zr { // A solution is a set of represented statements

Binding βz = z.getBinding();
RDFDocument repr = βz .bind(r.rt).instantiate();
// Associates a partial representation to the set of statements
// it represents, and to the rule it was generated by.
Annotation a = new Annotation(repr, z, r); A = A ∪ a;

}
}
for each f ∈ rm.F { // Apply fusion rules

for each 〈a1, . . . , a|f.S|〉 ∈ A|f.S| { // Assume ai .rule = f.Si

Set Zf = match(
�

i=1,...,|f.S| ai.solution, f.sp);
for each z ∈ Zr { // Instantiate the fusion template

Binding βz = z.getBinding();
RDFDocument repr = βz .bind(f .ft).instantiate();
Annotation a = new Annotation(repr, z, f); A = A ∪ a;

}
}

}
RDFDocument reprfinal = ∅;
for each a ∈ A { // Merge the created partial representations

reprfinal = merge(reprfinal , a.representation);
}
return reprfinal ;

}

Figure 5: The visualization algorithm.

Example 4 The following fusion rule establishes an
identity equivalence between the blue box generated

by representation rule PlayerInItaly and the graphical
placeholder generated by the #p resource template in
representation rule Nationality, whenever their repre-
sented set of statements describe, respectively, the fact
that a person is a soccer player in an Italian team, and
the fact that the same person belongs to a certain na-
tion. As a result, taking into account the semantics of
the owl:sameAs property, the two graphical objects
described by those resources are identified as one –
so, practically, they are merged.

FUSION RULE PlayerWithNationality
JOINS PlayerInItaly AS P, Nationality AS N
WHEN { P.?x mfire:sameAs N.?a . }
GENERATES { P.#b owl:sameAs N.#p . }

The above fusion rule specifies how to graphi-
cally link any two partial representations, gener-
ated by rules PlayerInItaly and Nationality, that rep-
resent two corresponding sets of statements where
the former describes a soccer player and the lat-
ter describes his nationality. The statement pattern
P.?x mfire:sameAs N.?x is intended to ensure that,
for two given partial representations obtained by the
above representation rules, the fusion template is in-
stantiated only if the resource that was bound to vari-
able ?x during the generation of the former actually is
the same resource that was bound to variable ?a dur-
ing the generation of the latter. Identifiers P.#b and
N.#p denote the resources that were generated, in the
corresponding partial representations, as instances of
resource templates #b and #p, respectively. �

In Example 4, clause JOINS denotes the fusion set
S, clause WHEN defines the fusion pattern fp, and
clause GENERATES defines the fusion template ft .
From a high-level perspective, the application of fu-
sion rules does not differ significantly from the appli-
cation of representation rules: iteratively, a rule f is
extraced from F and a corresponding set of |f.S|-ples
is computed, such that the elements of each tuple are
partial representation documents that were generated
by rules in f.S, and that match the join condition ex-

M-FIRE: A METAPHOR-BASED FRAMEWORK FOR INFORMATION REPRESENTATION AND EXPLORATION

337

pressed by f.fp. For every such tuple, the correspond-
ing set of solutions and related bindings is found, and
the RDF document template f.ft is eventually instan-
tiated.

Example 5 With reference to the partial representa-
tion documents obtained in Example 3, the applica-
tion of the fusion rule PlayerWithNationality in Exam-
ple 4 yields to the generation of the following partial
representation document, consisting of a single RDF
statement:

geom:b1 owl:sameAs geom:p1 �

Finally, after all fusion rules have been processed,
partial representation documents created by represen-
tation and fusion rules are all merged together in or-
der to obtain the final representation document. Fig-
ure 5 summarizes the overall visualization process by
means of an illustrative algorithm.

4 ENCODING

The encoding process is carried out by the encoder
module, that is entitled to translate the representation
document into a concrete form, i.e., a document that
can be parsed by a proper program to produce a visu-
alization.

In principle, many formats could be used to encode
a drawing described in the representation document.
Two colored circles connected by a dotted, directed
edge could be encoded as both a GraphML5 document
and an SVG6 document; a table containing names and
photos could be encoded as an SVG document as well
as an HTML document.

The choice of the proper encoding can be carried
out by considering many criteria, among which user
preferences. As users of the Web usually retrieve in-
formation by means of a Web browser parsing HTML
documents, an HTML encoder could be an option if
the drawings described by the representation docu-
ment can be rendered in HTML. Still, the main de-
cision criterion is, of course, the content of the rep-
resentation document: if the vocabulary contains in-
stances of a class named geom:DottedArrow (from a
fictive geom namespace) which designate edges con-
necting pairs of objects, it is preferable to drop HTML
and to target a visualization program which is able to
reproduce graph structures, thus choosing its corre-
sponding encoding format (for instance, GraphML).
The encoder selector module solves the aforemen-
tioned task: given a set of encoders, it extracts the

5http://graphml.graphdrawing.org/
6http://www.w3.org/Graphics/SVG/

most suited one according to user preferences, docu-
ment representation content, and so on.

Formally, an encoder can be defined as a triple
e = 〈p, f, V 〉, where p is a program translating the
input representation document into the final encod-
ing, f is the target encoding format, and V is the en-
coder vocabulary, i.e. the set of class URIs for which
the encoder is able to perform a translation into the
target format. Let E = {〈pi, fi, Vi〉}i=1,...,n be a
set of available encoders, and let dr be a given rep-
resentation document. Then, a valid decision crite-
rion would be to select the encoder for which the
value |Voc(r)∩Vi|/|Voc(r)| is maximum, to have the
broadest representation vocabulary coverage. Other
methods could assign different weights to the URIs in
the representation vocabulary, so that some drawing
primitives are considered more important than others.

A crucial issue involving the encoding process is
semantic annotation. Semantic annotation traces a
mapping between the graphical items that are used to
represent a given set of statements and the represented
statements themselves. Such mapping is first estab-
lished at a conceptual level by the representer (see the
pseudo-code in Figure 5), by linking each partial rep-
resentation document to the set of statements it rep-
resents. Annotations are then parsed by the encoder,
which has the responsibility of embedding them into
the encoding document. There, such information can
be exploited by the end-user’s visualization program
to integrate graphical drawings with their semantics.
Notably, an HTML encoder would be able to trans-
late representation documents into automatically an-
notated (pieces of) Web pages.

5 IMPLEMENTATION

The architecture of our framework has been designed
in order to maximize flexibility, reusability and ex-
tensibility. As to the visualization process, the frame-
work provides an implementation for the enricher and
the representer modules, but only defines the inter-
face for the metaphor selector, the encoder and the en-
coder selector: visualization systems are instantiated
by plugging custom implementations of these compo-
nents into the framework.

We have built the presentation engine (see Fig-
ure 1) as a simple Java program taking as input an
RDF document and forwarding it to the metaphor se-
lector program. The metaphor selector returns the
most suited visualization metaphor for the source doc-
ument, which is then given as input to the visual-
izer together with the source document itself. In our
prototypical implementation, the metaphor selector
does nothing more than presenting the user a list of
metaphors, so the decision on which metaphor to ap-

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

338

soccer:t1113 rdf:type soccer:Team
soccer:t1113 misc:hasName “Juventus F.C.”
geo:it39 rdf:type geo:Nation
geo:it39 geo:hasFlag “italy.jpg”
geo:it44 rdf:type geo:Nation
geo:it44 geo:hasFlag “france.jpg”
soccer:00980 rdf:type soccer:Player
soccer:00980 misc:hasName ”Gianluigi Buffon”
soccer:00980 sports:hasRole “Goalkeeper”
soccer:00980 misc:hasPhoto “gianbuf.jpg”
soccer:00980 sports:playsIn soccer:t1113
soccer:00980 misc:hasNation geo:it39
soccer:82136 rdf:type soccer:Player
soccer:82136 misc:hasName ”Lilian Thuram”
soccer:82136 sports:hasRole “Defender”
soccer:82136 misc:hasPhoto “lilthur.jpg”
soccer:82136 sports:playsIn soccer:t1113
soccer:82136 misc:hasNation geo:fr44
soccer:14756 rdf:type soccer:Coach
soccer:14756 misc:hasName “Fabio Capello”
soccer:14756 sports:hasRole “Coach”

(a) (b) (c)

Figure 6: Rendering of the HTML encoding of two representation documents obtained by applying different visualization
metaphors to the same (RDFS) source document containing information about Juventus players, of which an excerpt is shown
in (c). In (a), soccer teams are the focus of interest and they are rendered as a list of players (in this case, only Juventus
appears); in (b), goalscorers are the relevant information to be highlighted and they are shown together with their score.

ply is actually delegated to the end-user (though, this
is neither a desirable nor a realistic behavior). The
visualizer is in turn coded as two independent Java
programs, implementing the routines listed in Figure
5.

Both the enricher and the representer rely on the
Jena7 library for generic processing of RDF docu-
ments; the enricher makes use of Pellet8 for support-
ing OWL(-DL and -Lite) reasoning, while the rep-
resenter module makes additional use of the ARQ9

SPARQL engine provided by Jena; representation
rules are executed by internally translating them into
SPARQL queries with a CONSTRUCT clause, which
are then parsed by the ARQ interpreter for instanti-
ating the representation templates and generating the
partial representation documents.

Since HTML is the standard format used for pre-
senting information across the World Wide Web, we
have chosen to implement an HTML encoder. Our
HTML encoder is a Java program based on Jena;
screenshots in Figure 6(a) and (b) depict the encoding
of two representation documents, obtained by apply-
ing two different visualization metaphors to the same
source document (partly) listed in Figure 6(c).

Since RDF documents can be conceptually under-
stood as graphs, and most tools render them as such,
we are currently working on the implementation of a
GraphML encoder too.

7http://jena.sourceforge.net/
8http://www.mindswap.org/2003/pellet/
9http://jena.sourceforge.net/ARQ/

6 CONCLUSIONS

In this paper we presented M-FIRE, an original ap-
proach to RDF-based knowledge visualization and
navigation where ad-hoc presentations of contents are
generated according to different metaphors. We be-
lieve that the strength of M-FIRE lies in its abil-
ity to deliver expressive, domain-specific presenta-
tions to end-users without affecting reusability, which
constitutes a significant advance over existing ap-
proaches. Navigation primitives are also expressed by
metaphors and complete the framework by providing
a unified approach to knowledge fruition.

As to the presentation process, we have shown that
the architectural design of our framework enjoys a
double degree of reusability and flexibility: during vi-
sualization, different metaphors could be applied to
the same source document (flexibility), and the same
metaphor could be applied to two different source
documents (reusability); during encoding, different
encoders could be used to translate the same represen-
tation document (flexibility), and the same encoder
could be used to translate two different representation
documents (reusability). Figures 6 and 7 provide an
illustrative example of this potential.

Regarding the creation of metaphors, defining rep-
resentation and fusion rules is perhaps as difficult
as writing a SPARQL query: transformations of
source documents into representation documents are
expressed by means of a declarative language which
recalls the CONSTRUCT form of SPARQL queries.
Nonetheless, the same visualization metaphor could
be defined by different sets of rules, and the quality of
design could have an impact on modularity, reusabil-
ity, readability, and extendibility of the metaphor.

M-FIRE: A METAPHOR-BASED FRAMEWORK FOR INFORMATION REPRESENTATION AND EXPLORATION

339

volley:t1790 rdf:type volley:Team
volley:t1790 misc:hasName “Sisley Treviso”
geo:it39 rdf:type geo:Nation
geo:it39 geo:hasFlag “italy.jpg”
volley:15189 rdf:type volley:Player
volley:15189 misc:hasName ”Valerio Vermiglio”
volley:15189 sports:hasRole “Dribbler”
volley:15189 misc:hasPhoto “valver.jpg”
volley:15189 sports:playsIn volley:t1790
volley:50040 misc:hasNation volley:it39
volley:50040 rdf:type volley:Player
volley:50040 misc:hasName ”Alberto Cisolla”
volley:50040 sports:hasRole “Smasher”
volley:50040 misc:hasPhoto “albcis.jpg”
volley:50040 sports:playsIn volley:t1790
volley:50040 misc:hasNation volley:it39
volley:44331 rdf:type volley:Coach
volley:44331 misc:hasName “Daniele Bagnoli”
volley:44331 sports:hasRole “Coach”
volley:44331 misc:hasPhoto “danbag.jpg”
volley:44331 sports:playsIn volley:t1790

(a) (b) (c)

Figure 7: Rendering of two encodings, obtained by applying different visualization metaphors to the same (RDFS) source
document (c) containing information about a volley team. In (a), the same visualization metaphor and encoder were used as
in Figure 6(a). In (b), the applied visualization metaphor produced a representation document describing a graph, which was
then processed by a GraphML encoder.

We plan to develop a visual tool aimed at assisting
metaphor designers in the definition of rules, as well
as in building coherent visualization metaphors.

M-FIRE is a very general environment, aimed at
supporting several different classes of applications.
Among those, ontology browsing is probably the
one which most promises to impact on the deploy-
ment of the Semantic Web. A key feature of on-
tology browsers is that of allowing users to switch
between multiple fruition paradigms, either transpar-
ently or intentionally; this is accomplished in M-
FIRE through metaphors and by plugging different
metaphor selectors, that perform either automatic or
manual selection of metaphors, into the framework.
In case of manual selection, a desirable feature is that
of proposing a list of valid metaphors, integrated with
legends and previewing functionalities.

Another interesting field of application for M-
FIRE, aimed at enhancing the potentiality of cur-
rent Web technologies, is the support to the develop-
ment of semantically annotated Web sites. In fact,
M-FIRE would allow a domain-dependent translation
of RDF documents into HTML encodings to be eas-
ily specified. We believe that this would push Web
site owners to publish their content by (1) directly
implementing knowledge bases on ontology-enabled
repositories and (2) translating them into HTML doc-
uments whose elements are semantically annotated
with the information they represent. Thus, for in-
stance, it would be possible to drag an image from
a Web browser and drop it into an ontology editor for
exploring the formal description of the resource that
image depicts. In general, semantic annotation will
allow RDF-aware presentation programs to be inte-
grated with other tools capable of handling the seman-

tics of the underlying information, thus forming a rich
environment for knowledge fruition and retrieval.

REFERENCES

Berners-Lee, T., Fielding, R., Irvine, U., and Masinter, L.
(1998). Uniform resource identifiers (URI): Generic
syntax. http://www.ietf.org/rfc/rfc2396.txt.

Domingue, J., Motta, E., and Garcia, O. (1999). Knowledge
Modelling in WebOnto and OCML: A User Guide.
Knowledge Media Institute, Milton Keynes, UK.

Farquhar, A., Fikes, R., Pratt, W., and Rice, J. (1995). Col-
laborative ontology construction for information inte-
gration.

Furnas, G. W. (1986). Generalized fisheye views. SIGCHI
Bull., 17(4):16–23.

Harmelen, F. V. et al. (2001). Ontology-based information
visualisation. In Proc. Workshop on Visualisation of
the Semantic Web, pages 546–554.

Storey, M. et al. (2001). Jambalaya: Interactive visualiza-
tion to enhance ontology authoring and knowledge ac-
quisition in Protégé. In Proc. Workshop on Interactive
Tools for Knowledge Capture, Victoria, Canada.

Swartout, B., Patil, R., Knight, K., and Russ, T. (1996).
Toward distributed use of large-scale ontologies. In
Proc. 10th Knowledge Acquisition Workshop, Banff,
Canada.

Volz, R., Oberle, D., Staab, S., and Motik, B. (2003).
KAON SERVER - a semantic web management sys-
tem. In Proc. WWW, Budapest, Hungary.

W3C (2004). Rdf semantics. http://www.w3.org/TR/rdf-
mt/.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

340

