
OPTIMIZED CSS ENGINE

Alessandro Cogliati and Petri Vuorimaa
Telecommunications Software and Multimedia Laboratory , Helsinki University of Technology,

P.O. Box 5400, FI-02015 HUT, Finland

Keywords: CSS, XML, optimization, browser.

Abstract: Future Web applications will be based on XML platform. CSS is a tool used to create different XML
presentations’ layouts in the heterogeneous set of client devices, which often have limited resources. In this
paper, design and implementation of an optimized CSS engine are described. At first, the optimization
algorithm is explained, and then the implementation of the CSS engine and its integration within an XML
browser are described. Measurements taken with real Web XML documents styled with CSS style sheets
show performance improvements of the optimization.

1 INTRODUCTION

Many open standards and the focus on
communication among people and applications have
created an environment where Web services are
becoming the platform for building interoperable
distributed applications. Extensible Markup
Language (XML) (Yergeau, F. et al., 2004) is the
basic format for representing data on the Web
services platform. As consequence, application
development is moving towards browser-based
clients, eliminating the high costs of deploying
applications to different environments. (Wolter , R.,
2001)

In order to suit the needs of diverse applications,
World Wide Web Consortium (W3C) (Jacobs, I.,
2005) has been working on standard XML
vocabularies to define individual XML languages.
Some of these languages are meant only for
structuring data, conveying the semantic meaning of
documents; others are designed also to provide
presentations, describing visual content that
browsers can display. In addiction, W3C has been
developing Cascading Style Sheets (CSS) (Bos, B.
et al., 1998): a mechanism that allows authors to
modify the default visual properties of those target
XML languages, and where the target language is
pure XML, CSS allows to define these visual
characteristics from the ground up.(Didier,M., 2000)

CSS is used to add value to rendering layouts,
offering many advantages to Web application
developers. It reduces complexity of XML

documents, moving style attributes to CSS
documents, which are easy to utilize because of the
simple grammar syntax and semantic. Also, it gives
consistency to XML documents of same application,
since a unique CSS style sheet can be shared. But,
the most important features that make CSS one of
the most used Web design tool are mainly two:
I. It permits to create different layouts for different

devices such as PDAs, cell phones, and digital
television set-top boxes. And, it makes this
procedure robust, since style adaptation on devices
takes place on client side after all the content is
delivered, without needing extra protocols.

II. Interoperability with every kind of XML
languages such as XHTML (Pemberton, S. et al.,
2002), SVG (Ferraiolo, J., 2001), XForms
(Dubinko, M. at al., 2003), SMIL (Ayars, J. et al.,
2001), etc.

Programs supporting CSS have been developed
by several companies, as well as by many open
source projects. Some of them are applications
running in normal personal computer, but many of
them are used in the limited resources devices. It
becomes critical to develop CSS engines with
advanced functionalities but minimal memory
consumption.

The aim of this paper is to explain design and
implementation of an optimized CSS engine,
focusing on the optimization algorithm. The
engine’s architecture is based on an efficient method
to cache CSS style properties that apply to many
elements of same XML documents. Those properties

206 Cogliati A. and Vuorimaa P. (2006).
OPTIMIZED CSS ENGINE.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 206-213
DOI: 10.5220/0001242502060213
Copyright c© SciTePress

are organized in a lexicographic search tree that
helps their sharing.

This paper is organized as follows. In Section 2,
requirements are defined. In Section 3, two different
CSS engine designs are described, trying to explain
the differences between the optimized and the basic
version. In Section 4, an implementation in real
environment is described, and also the integration
within an XML user agent. In Section 5,
optimization results are reported, while in Section 6,
comparisons with related works are discussed.
Finally, in Section 7, conclusions are given.

2 REQUIREMENTS

Based on the aim of this paper, the objectives are
mainly two with respective requirements. The first
one is:
I. Find an algorithm that optimizes CSS engine

processing.
The purpose is to abstract a general algorithm

that optimizes time and memory consumption, from
the most intuitive and simplest algorithm usually
used to process CSS style sheets documents. The
optimization algorithm should improve
performances especially in processing large XML
documents.

The second one is:
II. Implement the optimization algorithm as stand-

alone CSS engine. Without changing its structure,
such engine can be used by any user agent based
on any XML languages.

The CSS engine implementation should be
accessed through standard interface, and should
respect CSS behaviour rules. Both these
requirements are retrieved from CSS specifications,
developed by W3C. At the moment W3C CSS
Working Group is developing CSS Level 3, the third
generation of CSS specifications (Bos, B. et al.,
2005). Diverse aspects are considered: I. Grammar
definition for creating an efficient parser, II.
Interfaces definition for accessing stored data, III.
Behavior definition for processing, and IV. Style
attributes definition for layout rendering.
Considering the second objective, only points II and
III will be regarded as requirements at this moment,
whereas points I and IV will be briefly brought up in
the Section concerning integration of CSS engine
within a precise client program application.

In next two Sub-Sections, points II and III will
explained deeply for a better comprehension of the
rest of the paper.

2.1 CSS Interfaces

W3C provides standard interfaces’ specifications for
CSS engine implementations: DOM Level 2 CSS
(CSSOM) (Wilson, C. et al., 2000) and Simple API
for CSS (SAC) (Bos, B. et al., 2000). Those two
groups of interfaces complete one another, fulfilling
the different ways to access the data (as SAX and
DOM (Apparao, V. et al., 1998) for XML
applications).

The CSSOM interfaces are designed with the
goal of exposing CSS constructs to object model
consumers, giving the possibility to easily
manipulate the “cascade” of style sheets, their rules
and their respective properties. They also make the
interaction with other object model interfaces easier,
for example, DOM. (Wilson, C. et al., 2000)
Whereas SAC is a proposal for a standard API for
event-based CSS parsing, meant to allow
interoperability between the different CSS parsers.
(Bos, B. et al., 2000)

Figure 1: CSSOM interfaces structure.

Figure (1) shows the most common CSSOM

interfaces, organized as a logical structure. Other
important interfaces are the API for CSS selectors
and the API for CSS property’s values, both
provided by SAC.

2.2 CSS Behaviour

A CSS style sheet is a series of rules that describe
how XML elements are to be displayed by the client
applications.

CSS classifies several categories of rules. CSS
style rules are the core of CSS style sheets: they
directly define a style for the matched XML
elements. Other kinds of rules instead are needed to
add supplementary functionalities: for example,
CSS @import rule, used to import other CSS style
sheets, or Media Queries, used to create specific
presentations for different kinds of output devices.

OPTIMIZED CSS ENGINE

207

Task of a CSS engine is to determine, which
subset of CSS style rules applies to a XML element.
This process depends on two factors: Media Queries
and CSS style rules’ weight.

2.2.1 Media Queries

A Media Query is a mechanism to adapt a CSS style
to certain devices. It is used to determine a sub set of
CSS style sheets in the “cascade” and a sub set of
CSS style rules inside each CSS style sheets (
Glazman, D. et al., 2002). A Media Query consists
of a media type and one or more expressions
involving media features. For example:

@media screen and (color){

BODY {font-size: medium;
background: silver ;}
P#8 {font-size: 18pt; color: black;}

}
Expresses that those CSS style rules apply only

to devices with color screen, otherwise they are
ignored.

2.2.2 CSS Style Rules’ Weight

A weight is calculated for each CSS style rule. When
several rules apply to the same XML element, the
one with the greatest weight takes precedence.
Basically, the weight is characterized by “cascading
order” and “specificity”. According to CSS
specifications, many CSS style sheets can affect a
XML document at the same time. Cascading is a
method that allows importing CSS style rules from
other CSS style sheets. Rules in imported style
sheets have lower weight than rules in the style sheet
from where they are imported. Imported style sheets
can themselves import and override other style
sheets, recursively.(Bos, B. et al., 1998)

Inside every CSS style sheet, CSS style rules’
weights are formulated by their specificities, which
are relied exclusivity on their CSS selectors. The
selectors are patterns matching rules that determine
which CSS style rules apply to elements in the XML
document. More specific selectors override more
general ones like in the example below:

LI {}
/* a=0 b=0 c=1 -> specificity = 1 */
UL OL LI.red {}
/* a=0 b=1 c=3 -> specificity = 13 */
LI.red.level {}
/* a=0 b=2 c=1 -> specificity = 21 */
#x34y {}
/* a=1 b=0 c=0 -> specificity = 100 */

Where “a” is the number of ID attributes in the
selector, “b” is the number of classes or other
attributes, and “c” is the number of element names.
In this simplified example, values set of “a”,”b”, and
”c” is {0…9}, but, usually, it is much bigger.

3 CSS ENGINE
ARCHITECTHURES

The CSS engine described below is a component
built to provide the processing of CSS files
embedded in Web documents written in any XML
language.

Two architectures are explained. The first can be
considered basic or more intuitive, because it simply
follows the W3C conformance directives. The
second is a development of the first one and is based
on an optimization algorithm.

There is no particular programming language
used in this Section. Most of the algorithms are
presented with flow charts and the structure of the
program is exemplified with general classes’ objects.

3.1 Basic Algorithm

Processing of CSS files is done in two phases. In the
first phase, CSS files are retrieved and parsed, and
the contained CSS style rules are ordered according
to their weight. In the second phase, CSS style
properties are combined and passed as set of
attributes to each element of XML document,
according to the matching policy.

3.1.1 Initialization

In this phase of initialization, the implemented CSS
engine orders style sheets and relative style rules so
that, in the second phase, combining all the
attributes will be easier.

As explained in Section 2.2, more than one CSS
style sheet can influence a document presentation
simultaneously. The CSS @import rule allows
authors or users to import style rules from other style
sheets. Since it is impossible to know whether a
style sheet imports other style sheets before parsing
it, it is useful to use a recursive solution in the
implementation.

As shown in figure (2), applications that use this
CSS package extrapolate and pass the CSS file’s
URI embedded in XML document. The CSS engine
retrieves and parses the respective CSS style sheet,
checks whether there are some @import rules and
eventually extracts from those the URI of the

WEBIST 2006 - INTERNET TECHNOLOGY

208

imported style sheet. It retrieves the individual style
sheet and parses it in the same way. This recursive
procedure continues until there are no style sheets to
be imported left.

Figure 2: Initialization phase of the basic algorithm.

CSS style sheets cascade can be seen as a tree.

Every element of the tree is an imported style sheet
and the root element is the style sheet linked in
XML document. Every right sub-tree overrides
every left sub-tree, and every root of a sub-tree
overrides its children. Consequently, this virtual tree
can be traversed using a Post-order traversal
technique. Thus, all the style sheets are stored in one
array following the origin overriding order: the style
sheet with less weight is the first element of the
array, the root is the last one. An instance of
CSSRuleList is the object of the module that orders
the rules of each style sheet according to their
specificities. Once the specificity for every selector
is calculated, the style rules are ordered using an
algorithm based on QuickSort, which has time
complexity O(nlog(n)).

Media Queries, if present, are evaluated either
before importing a CSS style sheet or before
ordering CSS style rules.

3.1.2 Style Retrieving

Style Retrieving is the phase, in which all the
stylistic properties, contained in CSS style rules that
apply to an XML element, are combined together
according to the CSS specifications. The set of the
resulting properties are then associated to the
matching element.

As shown in figure (3), the first step is to get the
XML element that has to be styled. An instance of
CSSStyleDeclaration interface implementation class
is the object used as container of CSS properties. A
new instance of it is created for each XML element.

The first CSS properties copied inside it are the ones
inherited by the XML parent element’s style.

The second step is to sequentially traverse all the
ordered CSS style rules in the ordered cascade of
CSS style sheets to analyze, which of those rules
applies to the given element. This operation is done
using CSS SAC Selectors, comparing those
interfaces with the element name and its attributes.

All the style rules matched are combined
together respecting the overriding rules. This
procedure consists of taking the CSS properties
contained in each rule’s CSSStyleDeclaration and
checking, one by one, which property has to be
copied into the actual CSSStyleDeclaration, because
none is present yet, or the new property overrides
the existing one.

Figure 3: Style retrieving phase of the basic algorithm.

Successively, the engine computes the relative

property’s values that depend on XML parent
element style (e.g., “font-size: smaller”). The
relative values depending instead on layout values,
cannot be calculated at this stage (e.g., “background-
position: center”). Finally, the CSSStyleDeclaration
containing all CSS properties is returned as style to
the respective XML element.

3.2 Optimized Algorithm

The optimization is based on the fact that many
elements of XML documents often match the same
attributes of the embedded CSS style sheets. CSS
engine implementation may take advantage of this
circumstance to optimize time and memory
consumption.

The proposed algorithm is based on the data
structure shown in figure (4): the RuleTree. For each
XML element the recursive building process starts
always from the empty root node, which is created at
the beginning, and will be the same for all the

OPTIMIZED CSS ENGINE

209

periods, in which the algorithm is running. Every
time a new CSS rule is matched, two actions may
occur:
I. If one of the children of the actual node has a

reference to that matched rule, that child becomes
the actual node.

II. Otherwise, a new child node is created, and it
becomes the actual node.

Every new node of the tree has a reference to
CSS style rule matched by the element and a new
instance of the CSSStyleDeclaration implementation
class that will be called in the rest of the paper with
the name of CombinedDeclaration. In fact, in that
CSSStyleDeclaration are combined all the CSS
properties present in all the CSS rules matched from
that node up until the root. Eventually, if the node is
the last created for an XML element, a reference to
that element is saved.

Figure (4), with XML and CSS source below
show an example. As emphasized, XML element
“<p class=”c2” id=”warning”>” matches in order
CSS style rules with selectors “*”, “p”, “”p.c2” and
“p.c2#warning”. As also shown, CSS style rules
matched in same order from different elements are
shared: rule with selector “*” is common for all the
element of the given document, and rule with
selector “p” applies to all XML “<p>” elements, etc.

XML Document:
...
<html>
<body>
 <p class=”c1”>
 <p class=”c2”>
 <p class=”c2” id=”warning”>
 </p>
 </p>
 <p class=”c3”> </p>
 </p>
</body>
<html>

CSS Document:

* {font-size: 12pt;}
html {color: black;}
body {background-color: yellow;}
p {font-weigth: bold;}
p.c1 {margin: 2pt; font-weight: normal;}
p.c2 {font-size: 14 pt;}
p.c3 {border-style: solid;}
p.c2#warning {font-size:18pt;}
span {color: blue; border-width: 10pt;}

Figure 4: The resulting RuleTree.

3.2.1 Optimized Style Retrieving

The optimization takes place exclusively in the Style
Retrieving phase.

Figure (5) is the flow chart of the process, and
shows the differences from the unoptimized
algorithm of figure (3) (The rectangles with white
background represent processes that were used also
by the basic algorithm. The rectangles with colored
background represent steps that are added by the
optimizing algorithm).

Figure 5: Style retrieving phase of the optimized
algorithm.

The main difference is that there is no need to
create a new CSSStyleDeclaration object for each
XML element, but, in many cases, just share the
existing one. The idea is that if two XML elements
match the same CSS style rules (i.e., they arrive
from root to the same RuleTree node) and their
XML parent element’s style is the same (i.e. they
inherit the same CSS properties) then they will have

WEBIST 2006 - INTERNET TECHNOLOGY

210

the same CSS style (i.e., same
CSSStyleDeclaration).

As shown in figure (5), first step is to create or
traverse the branch of RuleTree compound of CSS
style rules matched by the given XML element. This
is the point where the most important part of the
optimization happens. Action called “has sibling” in
the flow chart has two tasks:
I. Check whether the last RuleTree node visited,

has a reference to some other XML element that
has visited as well that node as last.

II. Check whether the parent’s style of that eventual
XML element is the same of the parent’s style of
the XML element that is actually retrieving style.

If the previous conditions are satisfied, the
CSSStyleDeclaration object of the “sibling” element
is returned as style without any other changes.
Otherwise, a new CSSStyleDeclaration instance is
created and last visited RuleTree node’s
CombinedDeclaration’s CSS properties are copied
into it. Those style attributes are then combined with
parent’s style and relative values are computed, in
the same way as in the non-optimized algorithm. In
the end, before returning the final version of the
CSSStyleDeclaration instance, in the last visited
RuleTree node is saved as a reference to this XML
element, so that in the future it can be taken in
account as possible “sibling” element.

3.2.2 Benefits

This algorithm allows three levels of optimization:
I. For XML elements that match in same order CSS

style rules already matched, there is not needed to
recombine all the CSS properties, but just traverse
the RuleTree and take the style of the last node
visited. Sometimes, when RuleTree is rather flat
and wider than deep, it is faster to combine few
rules than traverse it, though.

II. Sharing CSSStyleDeclaration object for XML
elements that match same CSS style rules and
inherits same attributes. Usually, large XML
documents have many elements of the same kind.

III. For those XML elements that share the same
CSSStyleDeclaration object, applications may
easily cache rendering objects (e.g., Fonts and
Color).

4 INTEGRATION WITHIN THE
X-SMILES USER AGENT

The CSS engine implemented following the
optimizing algorithm was integrated within a more
comprehensive client program application: X-Smiles

(Vuorimaa, P. et al., 2002). It is a Java based XML
browser intended for embedded devices. It is
composed of several modules: the XML parser and
the Browser Core are always used for every XML
document, whereas the rendering process is
committed to different modules for each XML
languages supported.

The integrated CSS module contains the CSS
parser and the CSS engine.

In order to parse CSS files, Steady State
Software's CSS Parser was used (Schweinsberg, D.,
2004). It was implemented as a package of Java
classes, that inputs Cascading Style Sheets source
text and outputs structured interfaces. New classes
were created and many extensions were made, in
order to support new CSS3 features. The parser was
created using Java Compiler Compiler (JavaCC)
(Javacc Project home, 2005) tool, so many
modifications were made to the JavaCC's grammar
file. JavaCC is a parser generator that generates
parsers in Java. This software program accepts a
syntax specification as input, in this case a grammar
file, and generates a parser for that syntax as output.
Since the content of files written in CSS language
are seen as a sequence of tokens, the input grammar
file is compound of productions of diverse
grammars: context-free grammar production to
describe the structure of the tokens and regular
expressions to define them. (LOOKAHEAD
MiniTutorial, 2005)

The generated parser contains the core
components of CSS language compiler, which
includes a lexical analyzer and a syntax analyzer.
The parser was implemented so that the data parsed
is available through the standard interfaces CSSOM
and SAC.

The parser was used as the core of the CSS
engine. It has the structure and uses the algorithm
explained in the previous Section, with the exception
that the general classes’ objects are substituted by a
real programming language like Java. The CSS
module communicates with the XML modules of the
browser through DOM and CSSOM interfaces.
Since DOM’s basic functionalities are the same for
every XML language, interaction with CSS module
occurs always in the same way, satisfying the
requirements identified in Section 2.

As already discussed, the rendering process is
done by separate modules. Anyway the browser
provides a layout for general XML language’s
documents, styled with CSS. The layout is based on
an own tree data structure, where the nodes are
called Views, and are created according to styled
DOM elements. Everything is painted in a container
within browser window.

OPTIMIZED CSS ENGINE

211

5 RESULTS

In this Section, the performance of the CSS module
is evaluated.

Time and memory consumption of X-Smiles to
process and display XHTML files with embedded
CSS file was measured. This procedure was repeated
several times, always with the same CSS file, but
each time with a XHTML file of different
dimensions: one, two, four, and eight times the
original source. The documents used are located at
http://www.csszengarden.com and the author is Petr
Stanciek. Four series of data were created trying to
separate CSS module’s performance from general
performance of the browser and to demonstrate
optimized versions’ improvements from basic
version.

The computer used for this test had a Pentium 4
processor with 2.80 GHz and 1.00 GB of RAM and
Windows XP operating system.

Time consumption

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8
document size

se
co

nd
s

1.X-Smiles
2.X-Smiles optimized
3.CSS module
4.CSS module optimized

Figure 6: Performances- Time consumption.

In figure (6), series “1.X-Smiles” and “2.X-

Smiles optimized” represents the time consumption
for all the processes of the browser. Both series
grow linearly, but with different angular coefficient.
With the biggest document tested, optimized version
is 26% faster. Series “3.CSS module” and “4.CSS
module optimized” represents the time consumed by
the browser only to parse and store the XHTML
documents with embedded CSS style sheet and add
style for each element of the DOM tree (using the
CSS module). Also, in this case the two series grow
linearly: the optimized version of CSS module takes
always less time, arriving to be 45% faster with the
biggest document tested.

In figure (7), the series concerning memory’s
utilization are reported. For every document, the
XML parser and the non-optimized DOM
implementation take the largest percentage of

memory, so this consumption is subtracted from
every series, trying to better illustrate the
improvements. The most remarkable aspect is that
“4.CSS module optimized” series does not grow, but
remain constant, independently of the XHTML
document’s dimensions rising. With the biggest
document tested, the optimized version of CSS
module uses 85% less memory.

Memory consumption

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

document size

K
b

1.X-Smiles
2.X-Smiles optimized
3.CSS module
4.CSS module optimized

Figure 7: Performances- Memory consumption.

6 RELATED WORK

Nowadays, many CSS engine implementations are
available. Since this paper is focused on an
optimization algorithm, comparisons are possible
only with those applications that publish their source
code.

Mozilla Web browser is an open-source software
project that supports many XML languages and CSS
as well. Its CSS engine uses the same data structure
used by the optimization algorithm explained: the
lexicographic search tree that helps the sharing of
the computed CSS styles objects (Baron , D., 2005).
Meanwhile the processing algorithm is dissimilar:
for each node of the search tree is not stored any
CombinedDeclaration computed from the root until
the actual node, but, at opposite, the CSS properties
are recalculated every time from the actual node to
the root.

Konqueror Web browser (Konqueror, 2005) is
based on a HTML rendering engine called KHTML.
It supports CSS specifications and its CSS engine is
based on a processing algorithm that is pretty similar
to the “basic algorithm” explained. It has other kinds
of optimizations (e.g., it parses only
CSSStyleDeclarations of the matched CSS style
rules) that are not in contrast with the “optimization
algorithm”, but they can be complementary.

Squiggle (The Apache Software Foundation,
2005) is the browser of the Batik project. It is meant

WEBIST 2006 - INTERNET TECHNOLOGY

212

for SVG documents style by CSS style sheets. As a
consequence, its CSS engine is specifically
optimized to be used within SVG applications (e.g.,
it gives priority of computation to those CSS
properties that are most used within SVG
documents). Anyway, also in this case, the
“optimization algorithm” could be added without
modifying the existing optimizations.

7 CONCLUSIONS

In this paper, implementation of an optimized CSS
engine was discussed.

It can be used for every XML applications that
need to adapt the layout of their Web services
depending on different devices that often have
limited environments.

The focus was on an optimization algorithm that
reduces memory and time consumption to process
CSS documents. The idea for the optimization was
that usually in a XML document, many elements
match the same set of CSS style rules, so the final
set of CSS style properties can be cached and
shared, and not recalculated every time. This
algorithm is based on a search tree data structure of
matched CSS style rules. It was described both with
flow charts and general classes’ objects, in order to
emphasize the algorithm processes independently of
the implementation chosen.

This algorithm allows three levels of
optimization (cf. Section 3.2.2); two are intrinsic in
the CSS engine and in its structure and one
depending on the XML applications' layout engines.

Based on the optimizing algorithm, the CSS
engine was implemented in a real environment,
using Java as programming language. To evaluate
such optimization, a browser was used, that supports
many XML languages such as XHTML, SVG,
XForms and SMIL. In order to enable a
straightforward integration, the CSS parser exposes
the CSS data through standards interfaces (i.e.,
CSSOM and SAC).

Considering the innumerable factors that could
be taken in account, no minimum threshold of
performances requirements were defined. For the
tests we used common well formatted XML
documents styled with CSS style sheets found at site
“CSS Zen Garden”. The optimization results are
remarkable: measurements show that with largest
document used, the optimized CSS engine can be
45% faster and spare 85% of the memory.

REFERENCES

Apparao, V. et al., 1998. Document Object Model (DOM)
level 1 specification – version 1.0, W3C
Recommendation.

Ayars, J. et al., 2001.Synchronized Multimedia Integration
Language (SMIL 2.0), W3C Recommendation.

Baron , D., 2005. Mozilla Style System Documentation
available online at
http://www.mozilla.org/newlayout/doc/style-
system.html.

Bos, B. et al., 1998. Cascading Style Sheets, level 2 CSS2
Specification, W3C Recommendation.

Bos, B. et al., 2000. SAC: Simple API for CSS,” W3C
Note.

Bos, B. et al., 2005. CSS Level 3, available
http://www.w3.org/Style/CSS/current-work.

Didier, M., 2000. A Family Affair, O'Reilly XML.com.
Dubinko, M. at al., 2003. XForms 1.0, W3C

Recommendation.
Ferraiolo, J., 2001. Scalable Vector Graphics (SVG) 1.0

Specification, W3C Recommendation.
Glazman, D. et al., 2002. Media Queries, W3C Candidate

Recommendation.
Jacobs, I., 2005. About the World Wide Web Consortium

(W3C) available online at
http://www.w3.org/Consortium/, referred Jun. 2005

Javacc Project home, 2005, available at
https://javacc.dev.java.net/.

Konqueror, 2005. available at http://www.konqueror.org
LOOKAHEAD MiniTutorial, 2005, available at

https://javacc.dev.java.net/doc/lookahead.html.
Pemberton, S. et al., 2002. XHTML™ 1.0 The Extensible

HyperText Markup Language (Second Edition), W3C
Recommendation.

The Apache Software Foundation, 2005, Squiggle the
SVG browser, available at
http://xml.apache.org/batik/svgviewer.html

Schweinsberg, D., 2004. CSS Parser, available at
http://cssparser.sourceforge.net.

Vuorimaa, P. et al., 2002. A Java based XML browser for
consumer devices. In the 17th ACM Symposium on
Applied Computing, Madrid, Spain.

Wilson, C. et al., 2000. Document Object Model (DOM)
Level 2 Style Specification Version 1.0, W3C
Recommendation.

Wolter , R., 2001. XML Web Services Basics, Microsoft
Corporation.

Yergeau, F. et al., 2004. Extensible Markup Language
(XML) 1.0 (Third Edition) W3C Recommendation.

OPTIMIZED CSS ENGINE

213

