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Abstract: This paper describes a new way of implementing an intelligent web caching service, based on an analysis of
usage. Since the cache sizes in software are limited, and the search for new information is time-consuming,
it becomes interesting to automate the process of selecting the most relevant items for each user. We propose
a new model (FRAC+), based on a decentralized collaborative filtering algorithm (FRAC) and a behavior
modeling process. Our solution is particularly designed to address the issues of data sparsity, privacy and
scalability. We consider the situation where the set of users is relatively stable, whereas the set of items may
vary considerably from an execution to another. We furthermore assume that the number of users is much
more important than the number of items. We argue that a user-based approach seems to be more suitable
to address the aforementioned issues. We present a performance assessment of our technique called FRAC in
terms of computation time and prediction relevancy, the two most reliable performance criteria in the industrial
context we are involved in. This work has been implemented within the ASTRA satellite website broadcasting
service.

1 INTRODUCTION

With the development of information and communi-
cation technologies, the size of information systems
all over the world has exponentially increased. The
amount of data on the Web, for example, has crossed
the threshold of the 7500 terabytes in 2004. Conse-
quently, it becomes difficult for users to identify in-
teresting items in a reasonable time, even if they use
a powerful search engine. To cope with this prob-
lem, more and more companies choose to integrate a
recommender system in their products. The goal is
then to provide users with resources likely to interest
them, instead of waiting that they ask for them. These
processes of investigation may be provided by collab-
orative filtering techniques. They rely on the princi-
ple that users who liked the same documents have the
same topics of interests. Thus, it is possible to predict
pieces of data likely to live up users’ expectations by
taking advantage of experience of a similar popula-
tion.

Nevertheless, collaborative filtering algorithms are
still faced with numerous problems: mobility of user
profiles (Miller et al., 2004), security of the system,
trust, portability on different platforms, etc. In this

paper, we propose an optimization of the distributed
collaborative filtering model we have made explicit
in (Castagnos et al., 2005). It has been especially de-
signed to deal with problems of privacy, sparsity (cf.
infra, 3.1 Behavior modeling) and scalability (cf. in-
fra, 3.2 Clustering algorithm).

First, we would like to familiarize readers with col-
laborative filtering methods (cf. infra, section 2). Af-
terwards, we will present our model called FRAC+
which has been applied to satellite website broadcast-
ing. The fourth part is then dedicated to the evaluation
of our algorithm, both in terms of computation time
and relevancy of recommendations.

2 STATE OF THE ART

BREESE et al. (Breese et al., 1998) have identified,
among existing techniques, two major classes of al-
gorithms to solve this problem: memory-based and
model-based algorithms.

The memory-based algorithms maintain a database
containing votes of all users. A similarity score is de-
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termined between the active user and each of the other
members. Then, each prediction leads to a computa-
tion on all of this source of data. The influence of a
person is all the stronger when his/her degree of sim-
ilarity with the active user is high.

These memory-based techniques offer the advan-
tage to be very reactive, by integrating immediately
modifications of users profiles into the system. How-
ever, BREESE et al. (Breese et al., 1998) are unani-
mous in thinking that their scalability is problematic:
even if these methods work well with small-sized ex-
amples, it is difficult to change to situations character-
ized by a great number of documents or users. Time
and space complexities of algorithms are much too
important for large databases.

The model-based algorithms are an alternative to
the problem of combinatorial complexity. In this ap-
proach, collaborative filtering can be seen as the com-
putation of the expected value of a vote, according
active user preferences. These algorithms create de-
scriptive models correlating persons, resources and
associated votes using a learning process. Then, pre-
dictions are infered from these models.

According to PENNOCK et al. (Pennock et al.,
2000), model-based algorithms minimize the problem
of algorithmic time complexity. Furthermore, they
view in these models an added value beyond the sole
function of prediction. They highlight some corre-
lations in data, thus proposing an intuitive reasoning
for recommendations or simply making the hypothe-
ses more explicit. However, these methods are not re-
active enough and they react badly to insertion of new
contents in database. Moreover, they require a learn-
ing phase being both detrimental for the user1 and ex-
pensive in computation time for large databases.

Consequently, one of the main difficulties of col-
laborative filtering remains the scalability of systems.
(Sarwar et al., 2001) have paved the way by proposing
an alternative. They suggest to compute recommen-
dations by identifying items that are similar to other
items that the user has liked. They assume that the re-
lationships between items are relatively static. Never-
theless, we have chosen to investigate the case where
available items change periodically and radically af-
ter a while. The item-based algorithm doesn’t seem
relevant to handle this problem. Moreover, we also
consider the situation where the number of users is
far more important than the number of items. There-
fore, we have chosen to explore ways to decentral-
ize computations. The model proposed in this arti-
cle is an hybrid approach, combining the advantages
of memory-based and model-based methods to dis-

1The recommendations system won’t be able to provide
relevant documents as soon as it receives the first queries.

tribute the computations between the server and the
clients. We study this approach, because it is always
used for satellite broadcasting or for e-commerce ap-
plications at times.

3 ARCHITECTURE (FRAC+)

The architecture of our information filtering system
is shown on figure 1. This model associates a user
modeling method based on the Chan formula (Chan,
1999) (cf. infra, 3.1 User modeling, p. 3) and a
new version of the hierarchical clustering algorithm,
also called RecTree (Chee et al., 2001) (cf. infra,
3.2 Clustering algorithm, p. 3). This new version –
called FRAC in the rest of this article – has the advan-
tage to be distributed and optimized in computation
time.

Figure 1: Architecture of the information filtering module.

We implemented our work in the context of satellite
website broadcasting. Our model has been integrated
in a product of ASTRA2 called Casablanca. The
satellite bouquet holds hundreds of websites which
are sent to about 120.000 persons using satellites.
Moreover, the users can send non-numerical votes (cf.
infra, 3.1 Behavior modeling, p. 3). These votes ap-
pear as a list of favorite websites.

In order to distribute the system, the server side
part is separated from the client side. The function of
user modeling determines numerical votes for items
according to user actions. Then, numerical votes are
sent to the server, like the non-numerical ones3. Thus,
the server uses the matrix of votes to build typical user

2http://www.ses-astra.com/
3The list of favorites are given explicitly by users, while

numerical votes are estimated in a transparent way. We con-
sequently use the non-numerical votes to determine the con-
tent of the bouquet.
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Interest(item) = 1 + 2 . IsFavorite(item) + Recent(item) + 2 . Frequency(item) . Duration(item) + PercentVisitedLinks(item))

With: Recent(item) =
date(last visit) − date(log beginning)

date(present) − date(log beginning)

And: Duration(item) = maxconsultations

� time spent on pagesofitem

size of the item

�
(1)

profiles. In this way, the server has no information
about the population, except anonymous votes. User
preferences are stored in the profile on clients. Thus,
the confidentiality criterion is duly fulfilled. At last,
the active user is identified on client to one of the typ-
ical users groups in a very short time, in order to do
predictions.

3.1 Behavior Modeling

In our context, we assume that users have the possi-
bility to define a list of favorites. However, we can’t
describe these non-numerical votes as boolean. We
can’t differentiate items in which the active user is not
interested (negative votes) from those he/she doesn’t
know or has omitted. This kind of votes is not suffi-
cient to do relevant predictions with collaborative fil-
tering methods.

For this reason, we have chosen to determine nu-
merical marks without any rating4 from users. An-
other advantage of this method is to deal with the
problem of sparsity by increasing the number of votes
in the matrix. To do so, we chose to develop the user
modeling function shown in equation 1 (Chan, 1999).
In our case, items correspond to websites, that is to
say sets of pages. Thus, the time spent on an item
is calculated as the cumulative times spent on each
of its pages for example. We modified coefficients in
the original Chan formula, in order to optimize the
results in accordance with log files of ASTRA.

This function undertakes to estimate marks that the
user is likely to give to different sites from implicit
criteria (such as time or frequency that user takes to
consult a page5). The system analyses log files of the
active user to retrieve useful data. But all pieces of in-
formation retrieved in these log files remain on client
side, in order to preserve privacy. Only numerical
votes which have been deduced from this process are
sent anonymously to the server. We call them ”user
profiles”. They are required for the use of FRAC clus-
tering algorithm.

4Ideally, the numerical votes should be submitted to
their approval for checking.

5These are pieces of information easily and legally sal-
vageable in Web browser of client.

3.2 Clustering Algorithm

Once the profiles of users have been sent to the server,
the system has to build virtual communities of in-
terests. In our model, this step is carried out by
an improved hierarchical clustering algorithm, called
FRAC. It attempts to split the set of users into cliques
by recursively calling the nearest neighbors method
(K-Means).

The original algorithm was purely centralized, such
as most of existing collaborative filtering methods.
One of our contributions consists in distributing this
process. In this section, we explain how to build typi-
cal user profiles on server side and how to identify the
active user to a group. This second step takes place on
client side. We optimized the identification phase so
that the response time is very short. Thus, the client
part provides real-time predictions. In a second time,
we improve the offline computation time by refining
the initial conditions of K-Means.

The FRAC algorithm is a model-based approach,
described as a clustering method. However, it is man-
aged as a memory-based approach because all the
pieces of information are required for similarity com-
putation. It allows, within the scope of our archi-
tecture, to limit the number of persons considered in
the prediction computations. Thus, the results will be
potentially more relevant, since observations will be
based on a group closer to the active user. A way to
popularize this process amounts to considering that
the active user asks for the opinion of a group of per-
sons having similar tastes to his/hers6.

In order to compute these groups of interests, the
server extracts data from the profiles of users and ag-
gregates the numerical votes in a global matrix. This
matrix constitutes the root of the tree. The set of
users is then divided into two sub-groups using the
K-means method. In our case, the number k equals
2, since our overall strategy is to recursively divide
the population into binary sub-sets. Once this first
subdivision has been completed, it is repeatedly ap-
plied to the new subgroups, and this until the selected
depth of the tree has been reached. This means, the

6The computer process is obviously transparent for
users.
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more one goes down in the structure of the tree, the
more the clusters become specific to a certain group
of similar users. Consequently, people belonging to a
leaf of the tree share the same opinion concerning the
assignment of a rating for a given item.

The K-Means algorithm is very sensitive to ini-
tial starting conditions and may converge more or less
quickly to different local minima7. The usual way to
proceed consists in choosing randomly k centers in
the users/items representation space. Numerous stud-
ies have been made to improve K-Means by refin-
ing the selection of these initial points (Bradley and
Fayyad, 1998). But it remains a difficult problem and
some of these approaches don’t obtain better results
than the method with a random initialization. In our
case, the problem is much simpler since we only have
two centers. Thus, we propose a new way to select
the starting points, shown on figure 2.

Figure 2: Initialization of 2-Means algorithm.

We work in a N-dimensional space, since the co-
ordinates correspond to the votes of users for the N
items. However, the example on the diagram 2 is in
dimension 2 for more legibility. We start from the
principle that the two most distant users are inevitably
in different clusters. Consequently, they constitute
the ideal candidates for the initial points. To iden-
tify them, we first search the most distant point from
the middle M of the users/items representation space.
This point is called A on figure 2. Then, we compute
the point B, which is the most distant from A. A and B
are subsequently the starting points of the 2-Means
algorithm. This initialization phase is in o(2n), where
n is the number of users. Afterwards, each user is po-
sitioned in the cluster of the nearest center.

Once groups of persons have been formed as pre-
viously mentioned, the position of the center is recal-
culated for each cluster (either by computing the iso-
barycenter, either by using the equation 2 according to
the precision we want) and this operation is repeated

7We want to minimize the distances between users of a
same group and maximize them between users of different
clusters.

rct+1,l =
1∑

Yct,u
|w(ct, u)| .

∑

Yct,u

(ru,l.|w(ct, u)|)

(2)
With: rct+1,l the value of ct+1 for item l;

ru,l the vote of the user u for the item l;
w(ct, u) the distance between ct and u;
Yct,u = {u|w(ct, u) �= 0};

from the beginning until we have obtained a stable
state (where the centers no longer move after recalcu-
lation of their position). Our initialization allows to
reach this state much more quickly.

The tree building complexity yields o(n.log2n).
The final center of each leaf of the FRAC tree cor-
responds to a profile of typical users. It means that
we consider these centers as virtual users synthesiz-
ing the preferences of each subset of users.

The profiles of typical users are then sent on client
side. Subsequently, the system compute distances be-
tween the active user and the typical users. We con-
sider that the active user belongs to the community
whose center is the closest to him/her. At last, we can
predict the interest of the active user for a resource rl

with the equation 3.

pua,rl
= max(rmin,min(rut,l + (rua

− rut
), rmax)

(3)
With: ua the active user;

ut the nearest typical user;
pua,rl

the prediction of ua for rl;

The clusterization can be performed so that cliques
hold about the same number of persons for a given
depth of the tree. In this way, we introduce novelty in
recommendations.

4 PERFORMANCE ANALYSIS

In this section, we compare our clustering al-
gorithm with Item-item (Sarwar et al., 2001),
RecTree (Chee et al., 2001) and the Correlation-
based Collaborative Filter CorrCF (Resnick et al.,
1994). We have implemented all these methods in
Java. We evaluate these techniques in terms of com-
putation time and relevancy of predictions.
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4.1 Computation Time

In order to compare the computation times of the
aforementioned algorithms, we have generated matri-
ces with different sizes. In this simulation, the votes
of each user follow a Gaussian distribution centered
on the middle of the representation space. We argue
that this situation increases the number of iterations
needed in the clustering algorithm, since the users are
close to each other. Moreover, there is only 1% of
missing data in the generated matrices. Consequently,
we almost work in worse case for the computation
time tests.

The results of these tests are shown in the table 1.
The announced times include the writing of results in
text files. The FRAC algorithm provides results in a
quite short time. It is thus possible to apply it to large
databases. For example, the system only needs about
6 or 7 minutes to compute typical behavior profiles
with 10.000 users and 100 items. In the same case, the
CorrCF algorithm requires several hours of compu-
tation (one of which is spent to compute the similarity
matrix). The response time of CorrCF increases be-
sides exponentially with the size of the database and
is not in accordance with industrial constraints.

We note that Item-Item gets results much more
quickly than FRAC when there is a lot of users and
only few items. Nevertheless, the tendency may be
reversed when the number of items grows, even if the
number of users is still much more important (cf. ta-
ble 1 for 10.000 users and 1000 items). Moreover, the
corpus we used is not the most appropriate for our al-
gorithm, since the number of items is almost twice as
big as the number of users.

At last, we have tried to cluster huge populations
with the FRAC algorithm. The latter was able to sup-
ply results:

• in 6 hours and 42 minutes for 100.000 users and
100 items;

• in about 11 hours for 120.000 users and 150 items.

4.2 Recommendations Relevancy

In order to compute the prediction relevancy in our
system, we used the GroupLens database8. The lat-
ter is composed of 100.000 ratings of real users. Thus,
we considered a matrix of 943 users and 1682 items.
Moreover, each user has rated at least 20 items. The
database has been divided into a training set (includ-
ing 80% of all ratings) and a test set (20% of votes).
We compare our algorithm with the three others by
using the Mean Absolute Error (MAE).

8http://www.grouplens.org/

The results are shown in the figure 3. The FRAC
algorithm does predictions as good as the CorrCF
– which is memory-based – and not so far from the
Item-Item.

Figure 3: Comparison of prediction quality.

4.3 Discussion

This study highlights the fact that our algorithm gets
rather quickly results on server side, even when the
corpus is not very adequate. By way of comparison,
the offline part of RecTree (Chee et al., 2001) – that
is to say the clustering process – with 1.400 users and
100 items is done in about 1000 seconds. Our algo-
rithm does the same job in 11 seconds (cf. supra, ta-
ble 1) and is consequently almost hundred times faster
in this case.

Moreover, the online part of computations – that is
to say identification of user to a group – is in o(2p),
where p corresponds to depth of the tree. This part
of computations has been optimized in our model, in
comparison with the centralized RecTree algorithm
of Chee et al. The online part of Chee’s algorithm
was in o(b), where b was the number of users in each
partition. Users had consequently to wait for a few
seconds. In our version, the complexity of client part
only depends on the depth of the tree and the response
time is much faster.

Another advantage of our algorithm is the stability
of the model. Thanks to the new initialization phase,
the results are reproducible when we launch the clus-
tering process several times. Furthermore, the conver-
gence is assured, contrary to the original RecTree.

We have also noticed that the FRAC computation
time can still be important for large databases. How-
ever, although the tests showed the Item-Item al-
gorithm is suitable when there are few items, the re-
quired time has been considerably reduced in compar-
ison with RecTree or CorrCF. Moreover, we recall
that we consider the case where the set of items can
change radically. In this case, a reasonable number of
votes must be done on new items so that Item-Item

FRAC+: A DISTRIBUTED COLLABORATIVE FILTERING MODEL FOR CLIENT/SERVER ARCHITECTURES

439



Table 1: Computation times of different collaborative filtering algorithms.
Items 100 150 1000

Users FRAC CorrCF Item-Item FRAC CorrCF Item-Item FRAC CorrCF Item-Item
400 1”84 6”09 3”87 2”09 7”62 5”29 8”58 32”24 1’22”
800 7”03 19”98 7”23 7”34 25”67 10”53 30”17 1’52” 2’33”

1.400 11”21 1’00” 11”50 12”81 1’17” 18”10 49”47 6’04” 4’29”
10.000 6’50” 7h30’ 1’22” 9’12” - 2’05” 14’22” - 49’28”

can compute similarities. On the contrary, our algo-
rithm needs less votes and recomputations because
correlations are made between users.

Of course, the more the offline computations of our
algorithm take time, the more it can augur for slight
differences between the updated votes and the prefer-
ences really taken into account during the clustering
process. But these differences should be minimal be-
cause of the great number of users.

5 CONCLUSION AND
PERSPECTIVES

The novelty of our model relies on the fact that
we have mixed a distributed collaborative filtering
method with a behavior modeling technique. The
main advantage of this combination is to take into ac-
count in an overall way the strong constraints due to
an industrial context such as the privacy of users and
the sparsity of the matrix of votes. Moreover, thanks
to the new version of the clustering algorithm, we use
the matrix of votes to divide all the users into com-
munities. This new version has been especially de-
signed to treat a high quantity of information (Castag-
nos et al., 2005) and allows the scalability to real com-
mercial applications by dealing with time constraints.
We have implemented our architecture in a satellite
broadcasting software with about 120.000 users in or-
der to highlight the benefits of such a system.

We are now considering the possibilities to com-
bine our model with additional item-based filters in
order to sort items in increasing order of importance
for the active user on client side. In particular, we are
studying the added value of bayesian networks and
content-based filtering techniques in our architecture.
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