
OPEN AND DYNAMIC SCHEMA EVOLUTION
IN CONTENT-INTENSIVE WEB APPLICATIONS

Sebastian Bossung, Hans-Werner Sehring, Patrick Hupe and Joachim W. Schmidt
Hamburg University of Technology

Hamburg, Germany

Keywords: Web information systems, module-based architecture, schema evolution, software generation, case study.

Abstract: Modern information systems development is a complex task for it must fulfill a large variety of application-
and architecture-oriented requirements. Furthermore, such requirements often are a moving target for the
developer, not only because the system has to stay open to a constantly changing application domain, but
also because new requirements are added during the extremely long lifetime of such information systems. To
make things worse, modern information systems are operated in a 24x7-modus which generates the pressure
of highly dynamic, almost online system evolution.
A main source of problems such development projects struggle with originates from the lack of a systematic
subdivision of large software systems into manageable modules. As a consequence developers are traditionally
involved in a complex patchwork of manual efforts to keep the various parts of the system in sync with each
other and with the system’s requirements.
In this paper we outline our approach to information system development which is based on a model for Con-
ceptual Content Management (CCM). Our CCM approach profits from the dynamic, model-driven generation
of smaller modules, which can be combined automatically into the full system. The generation process uses
a CCM model of the application domain(s) from which our compiler framework dynamically generates the
schema-dependent parts of the system. Due to the dynamic nature of this generation process, we are able to
provide adequate support for both schema evolution and personalization of such a system. We have success-
fully employed the CCM approach to the development of complex web information systems. We give a brief
account of CCM development and present an application example.

1 INTRODUCTION

Since a large number of heterogeneous requirements
have to be met by today’s information systems, such
systems tend to become very complex and hard to
manage. As a result software adaptations become
increasingly difficult to handle as the systems age.
However, change—specifically change in the appli-
cation’s schema space—is a fact that developers have
to live with. Unfortunately, each evolution of the
schema usually impacts almost all parts of the sys-
tem, resulting in time-consuming and error-prone ad-
justments.

This paper outlines a generative approach to sys-
tem development that helps to manage model evolu-
tion as well as system adaptation through three kinds
of contributions:

• Content schemata are raised to the more abstract
level of a conceptual model for the application.

• Systems are composed of carefully designed
smaller modules, which can be combined freely by
means of a uniform API.

• System modules are dynamically generated from
conceptual domain models enabling the system to
react quickly to schema evolution by recombining
modules without manual intervention.

In fact, the system can react to such changes au-
tomatically and almost in real-time, allowing users
to change the schema according to their needs (see
section 3 for more details on schema evolution).
Such schema changes—or schema personalisations—
would not be possible in a manually implemented sys-
tem. We call such systems Conceptual Content Man-
agement Systems (CCMSs) and the approach Con-
ceptual Content Management (CCM).

In the CCM approach entities are modelled in an
object-oriented way by so-called Assets which define
the (multimedia) content of the entity together with

109Bossung S., Sehring H., Hupe P. and W. Schmidt J. (2006).
OPEN AND DYNAMIC SCHEMA EVOLUTION IN CONTENT-INTENSIVE WEB APPLICATIONS.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 109-116
DOI: 10.5220/0001255501090116
Copyright c© SciTePress



its characterising attributes (primitive values and rela-
tionships) as well as its constraints. An Asset Defini-
tion Language (please refer to (Schmidt and Sehring,
2003) for details) is applied to define the conceptual
schema of the application domain. The conceptual
Asset schema is then used to generate modules from
which the application is composed. These modules
have a uniform interface and provide—amongst other
things—for a separation of concerns. As a conse-
quence, modules can be arranged freely enough to
enable the systems to support open and dynamic asset
schema evolution. Note that it is important that con-
tent remains accessible across schema changes, even
if these are just personal ones for an individual user.

Extensive practical experience with the CCM ap-
proach has proven quite successful, as we were able
to deliver running systems rather quickly. These sys-
tems can keep up with schema evolution, a necessary
demand despite an extensive and careful phase of ap-
plication analysis.

The remainder of this paper is organised as follows:
We first give a motivation for our work along with a
more detailed description of the problem space. This
is followed by a brief overview of schema evolution,
before we outline in section 4 how CCMSs are imple-
mented. We critically discuss the CCM approach and
future research directions in section 5 and conclude
with a summary in section 6.

2 MOTIVATION

Web applications are typical representatives of sys-
tems which are built according to a layered architec-
ture. The domain model on which they are grounded
determines the peculiarities on each layer: on the data
layer one needs to be able to store all information re-
quired to enable all tasks of the application and pre-
sentation layers. Information includes content and
characterising attributes of domain entities as well as
management information.

On the presentation layer such information is rep-
resented based on the data, and user input is accepted
to navigate through the data, as well as to create, ma-
nipulate, or delete data.

The application layer mediates between data stor-
age and presentation tasks. In web-based systems it
typically performs only few computations, if any.

All layers of web applications are highly dependent
on a conceptual model describing the application do-
main. Furthermore, the layers are highly interrelated.
Despite the layering, changes applied to one layer of-
ten impact the whole system, making its lifecycle dif-
ficult to handle. Though some argue that web-based
systems do not really evolve, we aim to support dy-

namic schema evolution and personalisation, which
also raise the lifecycle issue. Our CCM approach
to evolving, personalisable systems (see section 4) is
based on the generation of all the layers from a rich
conceptual model.

In the following subsections we discuss the genera-
tion of the layers of a web-based information system.

In section 5.2 we report on a particular project
which raised additional requirements. The usage sce-
nario demanded for offline data input through rich
clients with later synchronisation with the main data
pool. A diverse publication process needed to guar-
antee data quality and the enforcement of domain-
specific data protection. The latter has two aspects:
on the one hand, the nature of the data requires means
to protect personal rights which might be infringed
by the uncontrolled publication of data. On the other
hand, contributing researchers demand for a con-
trolled publication of their intellectual property, es-
pecially carefully choosing the point in time at which
their data should become available to others.

2.1 Data Storage

To fulfil the requirement of providing fast access to
large amounts of content, well established databases
are used on the data layer. Still, the data model has
to be distinguished from the conceptual model which
lead to its creation. Usually, many commitments have
to be made to express a model in a data definition lan-
guage, depending on the paradigm a database is fol-
lowing. Nevertheless, input and output language of
a web-based system are the domain-specific language
meaningful to the users.

If the application domain is conceptually modelled
in a language that is more expressive than a data def-
inition language, the database schema can be fully
generated to match this conceptual model.

Support for personalisation calls for the ability to
perform schema evolution. Schema evolution is well
understood at the data level, see section 3. Therefore,
the generation of the data layer of a web application
does not lead to severe problems.

Another aspect associated with the data layer is the
formulation of application-level constraints. Though
these go hand in hand with the application layer and
thus are often implemented there, good reasons ex-
ist to handle them in the lowest possible layer (Date,
2000). Therefore, constraints formulated by users in a
conceptual model need to be translated to constraints
on the data model.

2.2 Web Presentation

Presentation is an indistinguishable part of web appli-
cations. The user interface needs to reflect the current
set of data with respect to the domain model.

WEBIST 2006 - INTERNET TECHNOLOGY

110



Web pages generated to represent information and
to interact with the user exhibit all the problems of
user interface design. Therefore, they require the con-
sideration of more than just the conceptual model,
namely issues of usability. Additional requirements
of generated web pages are localisation (language,
output format of dates, character encodings, etc.),
context dependencies (the role of the user viewing a
web page, etc.) and many more.

Still, our experiments have shown that due to
the well-understood, highly uniform presentation
paradigms of the web, and users who are accustomed
to these, most of a web application can be generated
automatically: tabular representations of data, form-
based input and manipulation of data, etc.

Generated templates for web pages appear to be ac-
ceptable, though not everything is most efficient (in
terms of the user experience). Therefore, the genera-
tion of web pages is directed by generation hints.

2.3 Application Logic

The application layer of web-based information sys-
tems usually comes down to a mapping between the
users’ conceptual perspective and the data model, ac-
companied by some checks performed on data input
and simple data transformations. Since checks can be
expressed as constraints on the data layer, the appli-
cation layer of a web-based information system ba-
sically plays the role of a controller according to the
model-view-controller pattern (Collins, 1995).

To this end, application logic can be generated from
a conceptual model and its constraints since it merely
makes generic use of the data layer that has been gen-
erated accordingly.

The mapping task of the application layer becomes
a bit more complex if there is more than one subsys-
tem on the data layer. More complex systems will use
more than one database, e.g. one for structured data
and another for multimedia content, or one for appli-
cation data and another for management data. Special
web applications like portals or brokers even use com-
plete third-party systems as their data sources.

In such cases, more than the knowledge of the re-
spective models is needed. When providing uniform
access to different subsystems, the protocols for their
use have to be considered. Since theses protocols usu-
ally differ to a large degree, some application-specific
wrapping code might have to be supplied. Such spe-
cialties are recognised by the architecture of the sys-
tems we generate (see section 4.3).

2.4 Complex User Interfaces

More complex user interfaces than those supplied by
web pages can be found outside the layers forming the

architecture of a web application. Especially, client
software with a rich user interface often supports tasks
performed by users in special roles which differ from
that of the occasional web user.

Examples are content editors of content manage-
ment systems, catalogue software, etc. In our case, an
offline client, which allows content entry even when
not connected to the internet, was needed.

Such clients are typically fat clients which contain
application logic of their own. Their application logic
provides support for specialised roles and exceeds the
behaviour of the application layer of a web-based in-
formation system.

Therefore, there is no uniform way of generating
application logic from the conceptual model alone. It
needs to be amended by a specification of the task
the client software must support. Still, parts can be
generated the same way as the layers of a web appli-
cation. The arbitrarily complex functionality of the
whole client software has to be defined by means of
programming which can be based of these parts.

A fat client might also contain a data store on its
own, as is the case for the client for offline data input.
Such a data store is again generated from the concep-
tual model, possibly adding a different set of manage-
ment data. At this point we had the chance to reuse
modules. Furthermore, employing a common concep-
tual model made it possible to distinguish between ap-
plication data and management data, thus clarifying
the synchronisation task between offline clients and
the web application.

3 SCHEMA EVOLUTION

As pointed out above, many applications live in a
world of constant change. This applies particularly
to the underlying schema, as it needs to be adapted
to ever changing requirements. Traditional informa-
tion systems employ the same schema for all users,
such that all data need to be lifted to the new schema.
Problems and possibilities of such actions are well un-
derstood on the database level, as witnessed by ex-
tensive literature on the subject, see e.g., (Roddick,
1992), (Lerner and Habermann, 1990). Severe prob-
lems arise when data need not only be lifted to the new
schema, but a backwards path is also required, com-
pare for example literature on updatable views (Kuno
and Rundensteiner, 1995; Abiteboul et al., 1998).

In the case of CCMSs, evolution of the general ap-
plication schema is one concern. Such evolution is
necessary—as in other types of systems—if the model
of the domain needs to be changed. Examples in-
clude modelling errors, where the domain was only
fully understood during the course of the project, and
extension of the scope of the system, when new data

OPEN AND DYNAMIC SCHEMA EVOLUTION IN CONTENT-INTENSIVE WEB APPLICATIONS

111



Figure 1: Six kinds of modules.

need to be recorded. In addition CCMSs acknowl-
edge that the user community might not agree on the
appropriate schema for the domain. Therefore, each
user (or group of users) is permitted to modify the
schema according to their personal opinion. We call
this (schema) personalisation. As many such person-
alisations might occur in parallel, the system gener-
ally has to cope with many coexistent schemata.

Note that an important difference between schema
evolution and personalisation lies in the fact that per-
sonalisation will always require a backward path for
the data. While users might wish to personalise their
schema, they still want to collaborate with fellow
users which involves the need to exchange data. How-
ever, these fellow users might work with different
schemata. In many cases of schema evolution one can
make do without such a backward path (e.g., disal-
lowing write access for users of the “legacy” schema
is often feasible).

Additionally, collaboration in the presence of
schema personalisation might also require schema
mapping (see, e.g., (Rahm and Bernstein, 2001)),
where data have to be converted between schemata
which were developed independently of each other.

4 REALIZATION

In this section we give details on our generative ap-
proach to system implementation.

4.1 Modules

CCMSs are composed of modules, which have a uni-
form interface and can thus be freely combined. We
have identified six kinds of modules, which are de-
picted in figure 1. The six kinds of modules are:
(1) server modules, which provide external services,
(2) client modules, which lift underlying systems
(e.g., databases) to the module API, (3) mediation
modules, which combine two modules—where the
two possibly have different roles, (4) hub modules,
which do so for many modules, but all modules have
the same role, (5) transformation modules, which
transform from a base to a target schema, and (6) dis-
tribution modules, which provide for cross-system
communication. Each module builds on several other

modules (base modules) and provides the uniform
module API (indicated by dark bars in figure 1) to its
super modules. See (Schmidt and Sehring, 2003) for
further details.

The module interface provides standard operations,
such as creation, modification and deletion of in-
stances, as well as their retrieval. Further details are
available in (Sehring and Schmidt, 2004).

Modules are combined into components using the
mediator architecture as proposed by (Wiederhold,
1992). Modules are stacked in layers, such that the
module configuration is a directed, acyclic graph.
Components provide a number of services to their
modules, including identifier resolution. The require-
ments of the application are implemented by combi-
nation of modules, see section 4.4 for some combina-
tion patterns.

4.2 Compiler Framework

In our approach, the diversity of modules is reflected
by generators. There are individual generators for
all variations of a module kind. Knowledge about
database management systems is for example im-
plemented in a generator that creates client modules
which are based on a relational database.

Writing generators is a complex task, mainly be-
cause setting up an infrastructure for them (Smarag-
dakis and Batory, 1996) is difficult. Therefore, our
model compiler for CCM is designed as a frame-
work with generators as extension points. In conjunc-
tion with a facility for code generation it constitutes
a domain-independent meta-programming infrastruc-
ture (Smaragdakis et al., 2004).

A complete CCMS is generated by an instance
of the compiler framework, using an appropriate set
of generators. The framework controls the overall
compilation process following the typical structure of
compilers consisting of frontend and backend compo-
nents, where generators form the backend.

The execution of generators is scheduled based on
their interdependencies, which are computed by the
framework based on an extended notion of symbol
tables. Theses symbol tables are also used for com-
munication between the generators. A client mod-
ule for access to a, for example, relational database
needs both the database schema, which is produced
by a separate generator, and the uniform module API,
which is created from the conceptual domain model
by a central API generator. Both schema and API def-
initions are provided by means of symbol tables.

4.3 Implementing Specialties

Most applications will have a few requirements which
cannot be realised by generators. This may for ex-
ample be the case when a new type of requirement

WEBIST 2006 - INTERNET TECHNOLOGY

112



(a) Filter (b) Schema evolution (c) Restricted access

Figure 2: Module patterns.

comes up for the first time. One could then imple-
ment this requirement on top of the generated system.
If the hand-written code has anything to do with the
schema, this renders personalisation impossible. A
better approach is to work on generators to include
the requirement and be able to reuse the generator in
future implementations. We have identified three op-
tions to realise new requirements in a CCMS:

1. Writing a new generator. This usually makes
sense if one is dealing with totally new require-
ments, e.g., a new technology is to be incorporated
into the CCMS. In unusual situations one might
choose to implement a custom generator just to en-
able personalisation for this particular application.
This can be worth the effort if heavy use of person-
alisation is expected.

2. Subclassing an existing generator. This is possi-
ble in special cases, most prominently if the new
requirement is an extension of requirements han-
dled by an existing generator. It does not seem to
be a good idea to implement orthogonal require-
ments this way as is this would require hook points
as proposed by (Aßmann, 2003) for components.

3. Achieving the desired effect through module
combination. Of course, not all of the required
modules will be available, but it might be possi-
ble to write small generators that create the miss-
ing modules. Using modules of the new kind, one
can then combine existing and new modules into a
system that meets all requirements. For an example
see the blocking module in section 5.2.

4.4 Module Patterns

During system development we have identified sev-
eral patterns of module combination. These help to
structure complex systems that can be built from a
high number of individual modules (see, e.g., fig-
ure 3). We present four of them in this section, the
first three are depicted in figure 2.

Filter: This pattern is a basic building block found
in most systems. Instances from a Base module are

filtered according to certain criteria and only those
passing the filter are visible to the User module. Fil-
ter criteria can be manifold (e.g., offering only recent
instances in news applications).

Schema Evolution: Many of our systems require
schema evolution or personalisation (section 3). In
figure 2(b) modules are combined such that users of
the top-most transformation module have uniform ac-
cess to instances according to their personal schema.
This is achieved by first transforming from public to
private schema, then combining instances (the me-
diation module also keeps track of personalised in-
stances), and finally projecting away provenance in-
formation that is necessary for personalisation.

Restricted Access: In this pattern, two pools of data
are kept in separate client modules: application Data
and Restriction Descriptions. They are combined
by a mediation module. Users of the Adaptation
module can pose queries also containing information
that is necessary for restriction enforcement (e.g., user
or group information). Based on this information, the
appropriate descriptions for restricted access as well
as application data are retrieved. The adaptation mod-
ule finally filters the retrieved application data accord-
ing to the provided restriction descriptions. Optimisa-
tions include not posing a query on application data, if
it can be determined from the restriction descriptions
that none of the retrieved instances will be accessi-
ble (e.g., if a user does not have read permissions for
instances of a certain class).

Fat/Thin Client: By placing modules on different
components, fat or thin clients can be modeled (not
shown in figure 2, see (Bossung et al., 2005)).

5 DISCUSSION

In this section we discuss some general benefits of
the CCM approach in the context of our application
projects. We also consider open issues and future re-
search directions.

OPEN AND DYNAMIC SCHEMA EVOLUTION IN CONTENT-INTENSIVE WEB APPLICATIONS

113



Figure 3: A system composed of modules. Some of the modules (e.g., the “Importer” or the “Publication Process Interface”)
are actually marcos which represent whole patterns of modules (see section 4.4).

5.1 General Benefits

The CCM approach of combining conceptual mod-
elling with system generation results in the following
specific benefits:

Schema evolution: The CCMS architecture sup-
ports schema evolution on a per-user or per-group ba-
sis. Traditional schema evolution is a special case
where the schema for the entire application evolves.

Separation of concerns: Each module addresses a
specific system functionality and can only use its di-
rect base modules. This way, the distribution of func-
tionality in the application as well as dependencies
between modules are made explicit. As a result it is
easy to subdivide the system along these interfaces to
insert new functionality (e.g., a module which encap-
sulates full-text search).

Reuse: There are two cases of reuse in CCMSs:
(1) Generated modules can be used in multiple places,
and (2) implementation knowledge is reused by gen-
erators. The first case is made feasible by the uni-
form module API which enables module combination
in a variety of ways. The second helps to avoid errors
which are frequently made when implementing mod-
ules manually. Generating modules instead of coding
them also means that they are implemented with the

expertise of the generator author which can usually be
assumed to be above average.

Development speed-up: Once the appropriate gen-
erators are written, implementing new systems or
reimplementing existing ones (to meet new require-
ments) is much quicker. In our experience develop-
ment of generators soon paid off. We do not have ex-
act figures but our estimate is that the implementation
of the generator is about 2 to 10 times as costly as a
manual implementation of the corresponding module
and, therefore, provides a positive return on invest-
ment after about half a dozen module generations.

5.2 Project Experience

The application described here is a complex, multi-
user application1, as depicted in figure 3. Its key pur-
poses are the storage of (scans of paper-) documents,
the collection of information about these documents
and their interrelationships. Documents are obtained
from archives, where direct internet access is usually
not provided. The application system, therefore, was
divided into two parts: a central system, which inte-
grates all content that has been entered through the

1See http://www.welib.de/gknsapp

WEBIST 2006 - INTERNET TECHNOLOGY

114



offline tool and uploaded into the central system. As
the uploads can be quite high in volume, the central
system imports them asynchronously.

The central system is subdivided into two parts: An
editorial system where uploads are double-checked
and a public system where quality-assured data is
made available to registered users.

The entire system is composed of modules, most of
which are generated; some are schema independent
and only a few are implemented manually. Data is
stored in client modules which are backed by either
a light-weight XML database in the offline tool or a
standard relational database.

Through the use of modules we were able to reuse
large parts of the system in several places. The client
module for the XML database is used in the content
entry tool as well as in the central system for import-
ing data from the filesystem; both modules are identi-
cal. Another module used in both parts of the system
is the full text search module GKNS IR. The central
system uses the client module ID Mappings to keep
track of imported data.

As pointed out in section 2.1, full generation of
client modules is usually possible and indeed all client
modules in this application are fully generated. As
pointed out in section 2, generation of user interfaces
is more difficult. The content entry tool contains a
few optimised workflows which were largely written
manually, albeit still personalisable. The personalis-
able web interface of the editorial system is simpler
and could therefore be generated to a large degree.

The client module which provides XML database
persistence was first implemented manually, because
an appropriate generator did not exist and quick deliv-
ery of the content entry tool was crucial to the project
schedule. Later, a generator for this module was writ-
ten to support schema evolution. The implementation
of the generator took about twice as long as the man-
ual implementation of the client module for a schema
of small complexity (ca. 20 classes).

The entire system uses all of the patterns discussed
in section 4.4. Not all are, however, shown in figure 3.
There is for example one special requirement in the
project that made the use of a filter module in both
the public and the editorial web interfaces necessary.
Since some application content is quite sensitive, pub-
lic access has to be restricted on a per-instance basis
for a configurable time span. We have, therefore, in-
serted a filter module, which implements this restric-
tion by essentially enriching each query with an ad-
ditional constraint, which in turn checks whether re-
strictions apply.

5.3 Open Issues

At the current state of development CCM still has a
number of open issues. These do not limit the power

of the approach in general, but cause practical prob-
lems in mainly two areas:

User interfaces: User interfaces contain numerous
special cases (such as custom layout, naming or er-
ror handling) which require some manual extension
of the generated skeleton.

Managing personalisation: While users should be
able to personalise the schema according to their
needs, they should also be able to work together col-
laboratively, as this is one of the key purposes of
information systems (Goldin and Thalheim, 2000).
However, when applying personalisation, users can
make schema changes which effectively cut them off
from other users. To be “cut off” means having
to modify each personalised data instance manually
when it needs to be shared with others. Cases of this
include eliding mandatory attributes or modifying at-
tributes with functions that do not have inverses.

5.4 Outlook

We will focus future work in three areas: Generat-
ing user interfaces, formalising personalisation, and
identifying further module patterns relevant to infor-
mation systems.

As pointed out, user interface developement often
deals with numerous special cases. We expect that
user interfaces due to their irregularity will always
require some manual work. We have identified four
possibilities to influence the generation of user inter-
faces:

• Changing the conceptual model of the domain;

• Configuring the generator (e.g, with a domain spe-
cific language for user interfaces);

• Passing parameters to the component of the gener-
ated system;

• Hand-coding parts of the user interface on top of
the generated code. However, the hand-coded parts
must be invariant to the schema, otherwise one
loses personalisation.

Our current generator for web applications combines
all four cases but its configuration language is still
weak. There exist modelling paradigms for rapid pro-
totyping of user interfaces (e.g., SiteLang proposed
in (Thalheim and Düsterhöft, 2001)) and for con-
structing navigational models such as (Valderas et al.,
2005). Combining such approaches with system gen-
eration will enable a high degree of customisation
while still fully supporting schema personalisation.

Furthermore, schema personalisation should not
prevent users from cooperating (i.e., exchanging their
content) with others. Thus, in personalisable systems
changes have to be tracked to warn users of situations
in which their schema personalisation steps discon-
nect them from their community. State-based typing

OPEN AND DYNAMIC SCHEMA EVOLUTION IN CONTENT-INTENSIVE WEB APPLICATIONS

115



of domain entities (e.g., (Strom and Yemini, 1986)
and (Bierhoff and Aldrich, 2005)) can help to build
models for personalisation.

In addition, it will be interesting to identify further
module patterns. As more applications are developed
using CCM, the understanding and support of com-
mon application issues will improve. We plan to build
a library of such patterns.

6 SUMMARY

In this paper we have presented our Conceptual Con-
tent Management approach to compose complex in-
formation systems from smaller, generated modules.
The generation is based on a CCM model used as
input to the compiler framework. CCM has a num-
ber of benefits: Due to the highly structured nature
of such systems and the possibility of dynamically
generating new modules, systems are able to substan-
tially support schema personalisation and evolution.
CCM facilitates reuse of code as modules are freely
combinable. Knowledge about system implementa-
tion is codified in the generators and can be reused
in different project instances and phases. Larger
real-world projects have shown that the proposed ap-
proach works well in practice. Even though problems
remain—mainly in generating user interfaces and in
integrating of manually written system code—system
generation has enabled us to deliver quickly complex
information systems in the context of changing and
evolving domain models.

ACKNOWLEDGEMENTS

We would like to thank our colleagues of the art his-
tory departments in Berlin, Bonn, Hamburg, and Mu-
nich for providing us with many insights in the ap-
plication projects. Furthermore, we would like to
thank Deutsche Forschungs Gemeinschaft (DFG) for
its grant on the WEL-GKNS project.

REFERENCES

Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., and
Wiener, J. L. (1998). Incremental maintenance for ma-
terialized views over semistructured data. In Gupta,
A., Shmueli, O., and Widom, J., editors, VLDB’98,
pages 38–49. Morgan Kaufmann.

Aßmann, U. (2003). Invasive Software Composition.
Springer-Verlag.

Bierhoff, K. and Aldrich, J. (2005). Lightweight object
specification with typestates. In ACM SIGSOFT Sym-

posium on the Foundations of Software Engineering,
pages 217–226.

Bossung, S., Sehring, H.-W., and Schmidt, J. W. (2005).
Conceptual content management for enterprise web
services. In Perspectives in Conceptual Modeling: ER
2005 Workshops, volume 3770 of LCNS, pages 343–
353. Springer-Verlag.

Collins, D. (1995). Designing Object-Oriented User Inter-
faces. Benjamin/Cummings Publishing.

Date, C. (2000). What Not How – The Business Rules Ap-
proach to Application Development. Addison-Wesley.

Goldin, D. Q. and Thalheim, S. S. B. (2000). IS = DBS
+ Interaction: Towards Principles of Information Sys-
tem Design. In Proc. ER 2000, 19th Int. Conf., volume
1920 of LNCS, pages 140–153. Springer-Verlag.

Kuno, H. A. and Rundensteiner, E. A. (1995). Materialized
object-oriented views in multiview. In RIDE-DOM,
pages 78–85.

Lerner, B. S. and Habermann, A. N. (1990). Beyond
schema evolution to database reorganization. In OOP-
SLA/ECOOP ’90, pages 67–76, New York, NY, USA.
ACM Press.

Rahm, E. and Bernstein, P. A. (2001). A Survey of Ap-
proaches to Automatic Schema Mapping. The VLDB
Journal, 10:334–350.

Roddick, J. F. (1992). Schema evolution in database sys-
tems: an annotated bibliography. SIGMOD Rec.,
21(4):35–40.

Schmidt, J. W. and Sehring, H.-W. (2003). Conceptual Con-
tent Modeling and Management. In Proc. Perspectives
of System Informatics, volume 2890 of LNCS, pages
469–493. Springer-Verlag.

Sehring, H.-W. and Schmidt, J. W. (2004). Beyond
Databases: An Asset Language for Conceptual Con-
tent Management. In Proc. 8th East European Conf.
ADBIS 2004.

Smaragdakis, Y. and Batory, D. (1996). Scoping Constructs
for Program Generators. Technical Report CS-TR-96-
37, Austin, Texas, USA.

Smaragdakis, Y., Huang, S. S., and Zook, D. (2004). Pro-
gram generators and the tools to make them. In
PEPM ’04: Proceedings of the 2004 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-
based Program Manipulation, pages 92–100. ACM
Press.

Strom, R. E. and Yemini, S. (1986). Typestate: A program-
ming language concept for enhancing software relia-
bility. IEEE Trans. Softw. Eng., 12(1):157–171.

Thalheim, B. and Düsterhöft, A. (2001). Sitelang: Concep-
tual modeling of internet sites. In Proc ER01, volume
2224 of LNCS, pages 179–192. Springer Verlag.

Valderas, P., Fons, J., and Pelechano, V. (2005). Transform-
ing Web Requirements into Navigational Models: An
MDA Based Approach. In Proc. ER05, volume 3716
of LNCS, pages 320–336. Springer Verlag.

Wiederhold, G. (1992). Mediators in the Architecture of
Future Information Systems. IEEE Comp., 25:38–49.

WEBIST 2006 - INTERNET TECHNOLOGY

116


