
ASSOCIATIVE PROGRAMMING AND MODELING:
ABSTRACTIONS OVER COLLABORATION

Bent Bruun Kristensen
Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Denmark

Keywords: Collaboration, abstraction, modeling and programming, association, concurrent and interleaved execution,
activity, role.

Abstract: Associations as abstractions over collaborations are motivated and explored. Associations are seen as first
class concepts at both modeling and programming levels. Associations are seen as concepts/phenomena and
possess properties. Various notations for collaboration in object-oriented programming and modeling are
discussed and compared to associations. Concurrent and interleaved execution of objects is described in
relation to associations.

1 INTRODUCTION

Description of collaboration between some
participants is less supported by existing notations
and diagrams. In collaboration the participants
engage in the collaboration through specific roles
and the actual interaction sequence between the
participants follow some rules. Existing notation and
diagrams are mainly based on object-centric
modeling and programming exemplified by objects,
object references and remote method invocation.
Examples of non object-centric notations and
diagrams include the relation (May et al, 2001). This
relation is an example of an abstraction over
structural aspects only—interaction aspects are not
covered by relations. Associations are seen as an
abstraction over both structural and interaction
aspects of collaboration. The association supports
description at both abstract modeling and concrete
programming levels. At the abstract level
associations are seen as concepts and phenomena
characterized by their properties. At the
programming level properties of associations are
expressed through language mechanisms.

Associations are inspired from a conceptual

model for understanding ambient systems (May et
al, 2001). Such systems have a more dynamic
situation with respect to collaboration among the
entities in the system. In this model we imagine
tangible objects existing in habitats and
collaborating with other tangible objects—and
tangible objects enter and leave habitats. As part of

this dynamic picture tangible objects engage in
collaboration with other tangible objects—simple or
complex collaborations. The notion of associations
is a means of capturing planned or spontaneous
collaborations between tangible objects—to
conceptually understand and prescribe collaboration
as abstractions over collaboration. The illustration of
an ambient system included as example in this
article—“the conference organizing problem”—only
includes aspects of collaboration but excludes
aspects of user awareness and support through
knowledge of time and place, augmentation of
reality by additional views, and availability and
interaction with software agents and physical robots
(Kristensen, 2003).

Our approach is inspired by the evolution from

traditional systems (often information systems)
towards ambient systems including pervasive
(Burkhardt et al, 2001) and ubiquitous (Weiser,
1991) systems. Ambient systems illustrate the
change from development of systems towards an
understanding where systems are grown through
evolution. Associations are a move from object-
centric technology towards non-centric technology.
For associations we distinguish between an abstract,
informal and conceptual modeling level and a
concrete, formal and executable programming level.

54
Bruun Kristensen B. (2006).
ASSOCIATIVE PROGRAMMING AND MODELING: ABSTRACTIONS OVER COLLABORATION.
In Proceedings of the First International Conference on Software and Data Technologies, pages 54-62
DOI: 10.5220/0001308600540062
Copyright c© SciTePress

2 OBJECT-ORIENTATION

References support the relations between objects in
object-oriented programming languages. In Figure 1
we illustrate the usual notions of class, object,
reference and method invocation. Class C has
method mc. Object Oc is an object of C. Class D has
method md and a reference Rc qualified by C. Object
Od is an object of D and reference Rc has the value
Oc. Method md of Od can invoke method mc of Oc by
Rc.mc(…).

mc

C

md

Rc

mc

Oc

Od

D

Rc.mc()

Figure 1: Class, object, reference and method invocation.

m1

C1

m1

Oc1

k2

C2

k2

Oc2

r2

k3

C3

k3

Oc3
r3

n1

n1

Figure 2: Illustration of object-oriented collaboration.

In a typical object-oriented collaboration as
illustrated in Figure 2, method m1 of class C1
contains the following example—(this collaboration
example is also used in subsections 2.2 (Figure 3)
and 2.3 (Figure 4)):

x1 = r2.k2(…);
x2 = r2.k2(…);
y = n1(x1, x2);
r3.k3(y);

We observe the following characteristics of this
schematic example from object-oriented
programming:

• The reference is statically bound to the class
(and any object of the class) whereas the value
of the reference varies dynamically

• The reference is qualified by a class, which
determines which types of objects may be
referenced by the reference

• The reference is used for different purposes
(invocations of different methods from different
methods)

• The use of a reference for a given purpose is
separated from the reference and distributed
over several method bodies

2.1 Object-Oriented Delegation

The characteristics of collaboration through object-
oriented delegation include that collaboration is
explicitly described and implemented in a method in
Figure 3 as a1 of A1. Collaboration is initiated by
Oc1.m1(…) by invoking a1 of object oA1. This
approach includes some typical problems:
• Oc1 and n1 are not necessarily known to oA1 for

the invocation n1(x1, x2) (“self” problem)
• A1 may be parameterized by references r2 and

r3 and with some reverse reference for r

a1

A1

a1

oA1

k2

C2

k2

Oc2

r2

k3

C3

k3

Oc3
r3

C1

Oc1

n1

n1
m1

m1

r

Figure 3: Illustration of object-oriented delegation.

2.2 Control Object/Method

The characteristics of collaboration through a
control method/object include that collaboration is
explicitly described and implemented in a
method/object (objectification of collaboration but
here only exemplified by methodification as a1 of A1
in Figure 4). Collaboration is initiated by Oc1.m1(…)
by invoking a1 of object oA1. This solution includes
the following problems:

ASSOCIATIVE PROGRAMMING AND MODELING: ABSTRACTIONS OVER COLLABORATION

55

• The effect through y on Oc1 must be a side-
effect through invocation of r1.n1

• A1 may be parameterized by references r1, r2
and r3

a1

A1

a1

Oa1

k2

C2

k2

Oc2

r2

k3

C3

k3

Oc3

r3

C1

Oc1

n1

n1 r1

m1

Figure 4: Illustration of object-oriented control method.

3 ASSOCIATIONS

Associations represent an alternative to object-
centric modeling and programming. Our
associations support not only structural relationship,
but also collaboration between objects. An
association is described as an abstraction, it may be
instantiated, and it has identity. Dynamic changing
associations are supported—descriptions may be
added to executing systems and objects of these may
associate participating objects of the executing
system.

m2
m2

C2
Oc2

m1

C1

m

Oc1

 m2

C2

m2

Oc2
Ax

n1 n2

m1’

C1’

m1’

Oc1’

 m2

C2

m2

Oc2
Ay

l1 l2

m2

C2

m2

Oc2

1

2

3

4

Figure 5: Snapshots of associations.

Figure 5 illustrates dynamic creation and
deletion of objects of associations through four
snapshots. In (2) an object Ax with roles with
properties n1 and n2 is created. Object Oc2 of class
C2 function as one participant in the association. In
snapshot (1) no associations exist for Oc2. In (2) Oc2

is associated by means of Ax with object Oc1 of class
C1. In (3) the association Ax no longer exists. In (4)
Oc2 is associated by means of an object Ay with roles
with properties l1 and l2 with object Oc1’ of class
C1’.

In UML models the main concepts are captured
through class diagrams supplied with
relation/association classes as fundamental model
structures. In addition these models include
sequence and collaboration diagrams, where the
interaction of objects is modeled in terms of method
invocations. This description is separated from
classes and associations, and neither sequence nor
collaboration diagrams are conceptualized as
abstractions over collaboration. Our notion of
association is an abstraction over interaction and
collaboration and the actual method invocations
between objects are modeled as integrated elements
of the association. In addition roles played by
participating objects in an association are also
modeled as extensions of the objects to participate in
the association. Traditionally abstractions over
certain aspects of an object—as for example the
collaboration of the object with other objects or the
objects’ role towards other objects—are
objectifications of such aspects. In this sense our
notion of association is an integrated objectification
of collaboration aspects and role aspects.

The association is seen as an abstraction during
conceptual modelling (Madsen et al, 1993). In
conceptual modeling different forms of abstraction
in terms of concepts and phenomena are illustrated
in (Kristensen, 2003): Classification (and
exemplification) where a concept classifies a
number of phenomena (which themselves exemplify
the concept). Specialization (and generalization)
where a more general concept generalizes a more
specific concept (which itself specializes the general
concept). Aggregation (and decomposition) where a
whole concept describes the aggregated
phenomenon of several part concepts (which
themselves can be decomposed from the whole
concept).

3.1 Example: paper_review

As an illustrating example, we examine the
association of reviewing papers a conference—
referred to as a paper_review. This association
requires a certain degree of collaboration between
those who are involved in it. For instance, an
author will submit a paper for review, while the
chairman will submit papers to reviewers who must
report back. A directive describes how the
association should be carried out. With the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

56

paper_review, the directive might be carried out in
distinct portions:
1. prepare_paper_review

author_submits_paper_to_chairman
chairman_submits_papers_to_reviewers
reviewers_submit_reports_to_chairman

2. paper_selection
3. chairman_informs_authors

The association paper_review is only one type

of review that can take place. For example, a
periodical_review is the review of a submitted
article that takes place for a periodical; it is
somewhat similar but involves an editor rather than
a chairman and its selection process is different.
Both paper_review and periodical_review are
specialized types of review. The directive that
specifies how paper_review should be carried out
may also be seen as a specialization of a more
general review directive:
1. prepare_review
2. carry_out_review
3. complete_review

These portions correspond to (1), (2) and (3)

above (which are more specialized). The
participants of these associations may also be
similarly classified. For instance, all review
associations involve a coordinator and an author.
Thus, in a paper_review, we can refine a
coordinator to be a chairman—in a
periodical_review, we can refine a coordinator
to become an editor.

These different types of review associations may
have similar methods. For example, producing a
status_report (produce a listing of the current
status of the ongoing reviewing process) is
something that each review association must do—a
paper_review will produce a specialized type of
status_report, as will a periodical_review.
Finally, such associations are constituted from
smaller sets of associations. For example, within the
paper_review association, there is a
paper_selection association to choose acceptable
papers.

3.2 Execution

In addition to action directives, associations include
roles to be played by participants in the
collaboration. Roles are abstractions in associations.
Roles may specify additional methods or may extend
existing methods of an object (Kristensen, 2003). In
Figure 6 R1, R2 and R3 are roles of association class
X. Ax illustrates an object of class X. Ax associates
objects Oc1, Oc2 and Oc3 (each playing a role R1, R2

and R3) of classes C1, C2 and C3 respectively. The
method k1 of R1 illustrates an additional method—
alternatively k1 may be described as an extension of
the existing method n1 of C1 (similar for methods k2
and k3).

n1

C1

m2

C2

m2

Oc2

X
R2 R1

k1 k2

Ax

k1 k2 n1

Oc1

m3

C3

m3

Oc3

k3

R3

k3

Figure 6: Illustration of association.

The directive of association X is executed by the
respective owners of the actions among the
participants of X. The notation R::k(…) means that
the object playing role R executes its method k(…).
Hence the collaboration is explicitly described
through the directive of X e.g.:

 x1 = R2::k2(…);
 x2 = R2::k2(…);
 y = R1::n1(x1, x2);
 R3::k3(y);

An association is a description of a central

abstract unit. The notation R::… is different from
remote denotation, because “…” is situated in the
context of R and interpreted in this context. The
execution of its contribution from a directive is done
by the participating object. In sequential execution,
description and execution of sequencing are in terms
of one execution thread only—a method in one
object invokes a method of another object and one
thread executes the entire invocation sequence. In
multi-sequential execution, sequencing is described
as several execution threads (one for each object)
but is executed by one thread only. The thread
switches (at language defined points) between the
executions of the objects—this interleaved execution
of the sequencing of objects means that only one
object is executed at a given time.

ASSOCIATIVE PROGRAMMING AND MODELING: ABSTRACTIONS OVER COLLABORATION

57

4 CONCURRENCY

In general objects execute concurrently.
Communication and synchronization constructs
describe the interplay between such active objects.
Objects have an individual action part—on
instantiation, an object will immediately execute its
action part and is inherently active. The description
of the action part may involve the activation of
methods in the object itself and (activation requests
of) methods for other objects. Because the objects
are active, the interaction between objects is usually
coordinated by means of various forms of ego-
centric language mechanisms for synchronization of
the execution of the life cycle of the object and
method requests of/from other objects. As an
example, when one object attempts a method request
of another object, then the first objects must wait
until the other object explicitly accepts this
invocation. When the invocation is accepted the
objects are synchronized and the invocation can take
place.

4.1 Interleaved Execution

In associations the collaboration (including
communication and synchronization between the
participating objects) is described in directives of
associations only. Active objects are executed in
parallel (and shared data resources are typically
active objects to ensure exclusive access). The
association directive itself supports various ways of
describing the sequencing of the collaboration
including sequential, repeated, parallel, interleaved,
any order executions etc. The individual action part
of an object only describes its individual life cycle,
i.e. no form for interaction with other objects is
included. The execution of the total life cycle of an
object described through several contributions in
directives (of current collaborations) is an
interleaved execution of its contributing parts and
also interleaved execution with its individual action
part. Interleaved execution for one such object of
several different parts means that (at language
defined points in the parts) execution will switch
between the parts.

Figure 7 illustrates the mechanisms introduced.
Object Ax is of association class X. Object Oc1 is a
participant of class C1 and R1 denotes the role played
by Oc1. The construct R1::k1(…) denotes a
contribution to the directive of Ax from role R1. The
object Oc1 executes its individual action part
(exemplified by “… n1(…) …”) interleaved with the
various contributions from role R1 of directive Ax

(and contributions from similar directives of
associations in which Oc1 currently plays roles).

Ax

k1
n1

Oc1

…
n1(…)
… …

R1::k1(…)
…

R1

Figure 7: Interleaved execution of active objects.

4.2 Example: paper_review

In the paper_review example, a reviewer may be
actively performing other actions than those in
connection with the paper_review such as
researching and teaching. A teaching association
between teacher, student and administration is
specialized into course_teaching and supervision.
Association course_teaching includes an iterative
sequence of remind_students actions from teacher
to students. Figure 8 illustrates how a person (with
own individual action part illustrated by “…
exercise(…) …”) participates in both
a_paper_review and a_course_teaching
associations. The contribution to the person in
a_paper_review includes submit_report. The
contribution from a_course_teaching includes
remind_student. An active person object executes
exercise, submit_report and remind_student
interleaved.

 submit_report

exercise

…
exercise(…)
…

…
reviewer::submit_report(…)
…

reviewer

a_course_teaching

teacher

remind_student

…
teacher::remind_student(…)
…

a_paper_review

Figure 8: Illustration of reviewer and teacher roles.

4.3 Specialization of Directive

Collaborations may have general directives prepared
for further specialization in directives of sub-
collaborations —for example the directive of the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

58

more general association teaching may include
possibilities for both course_teaching and
supervision. The general directive of teaching has
the form:
1. planning
2. …
3. inner: content
4. …
5. examination

This directive illustrates two types of

specialization of collaborations: In each of 1) and 5)
we illustrate virtual (part) collaborations. This means
that for example planning is a virtual abstraction
with some preliminary description (a directive
similar to the teaching directive) and may be
extended in specializations of teaching cf. virtual
classes (Madsen et al, 1993). In course_teaching
(as a specialization of teaching) planning may be
specialized to course_session_planning. In 3) we
illustrate an explicit inner construct (named as
inner: content). Several such inner constructions
may be specified in the directive (Kristensen, 1993),
(Kristensen et al, 1996). In course_teaching the
inner:content construct is specialized into a
sequence of lecturing activities (for concrete
courses lecturing is specified further with respect
to number and content). The specialized directive is
the original general directive with these two types of
specializations included. The execution of a
participating active object is still an interleaved
execution of its individual action part and its
contributions from all such specialized directives.
The directive of course_teaching, specialized from
the directive of teaching, includes of the sequence
course_session_planning, a sequence of
lecturing, and curriculum_examination of the
form:
1. course_session_planning
2. …
3. … lecturing …
4. …
5. curriculum_examination

5 PROGRAMMING

We introduce association classes and objects with
roles and directives in schematic programming
language form. We include the paper_review
example as an illustration. Finally we conclude by
defining interleaved execution schematically. In
general the notation … indicates various less
important or repeated parts left out of the
descriptions.

5.1 Association Classes

Association classes Xj include roles Rj (with method
nj) and local associations Yj and a directive (with
various characteristic ingredients to be explained
later). Association object Axj is instantiated:

association Xj {
 role virtual Rj for Ci {
 method nj (…) …
 }
 …
 association virtual Yj {…}
 …
 directive {
 … Yj … inner:Ij … Rj::nj(…) …
 }
}

object Axj of Xj

Object Oci of class Ci enters role Rj of Axj. A

role is qualified by a class, Ci, meaning that only
objects of this class or its subclasses, CCi, may enter
that role. Also role Rj may invoke methods of Ci
and CCi. The action part of Ci illustrates various
characteristic ingredients: mi(…) is an invocation of
a Ci method, whereas the description inner:Ii is
replaced by its refined description denoted by {…} in
CCj:

class Ci {
 method mi {…}
 …
 action_part {… mi(…) … inner:Ii …}
}

object Oci of Ci

Oci enters Axj as Rj

class CCi extends Ci {… Ii:{…} …}

Associations Yj and roles Rj may be specified as

virtual in order to be specialized further in
specializations like XXj of the enclosing association
Xj (for roles also the classifying class Ci may be
specialized as e.g. CCi). The directive of XXj is the
directive of Xj where for each Ij the description
inner:Ij is replaced by its refined description
denoted by {…} in XXj:

association XXj {
 role Rjk for CCi {…} …
 association Yj {…} …
 directive {
 … Ij:{…} …

ASSOCIATIVE PROGRAMMING AND MODELING: ABSTRACTIONS OVER COLLABORATION

59

 }
}

5.2 Example: paper_review

The paper_review is presented in the language style
below. The ordinary concurrent object person
executes method exercise repeatedly in its action
part:

class person {
 method exercise {…} …
 action_part {… exercise(…) …}
}

Association paper_review is a sub-association

of review and specializes the directive by
prepare_review, carry_out_review and
complete_review. Also roles reviewer and
coordinator are specialized:

association review {
 role virtual reviewer for person {…}
 role virtual coordinator for person {
 method submit (…) …
 }
 role author {…}
 association virtual prepare_review {…}
 association virtual carry_out_review {…}
 association virtual complete_review {…}
 …
 directive {
 prepare_review
 carry_out_review
 complete_review
 }
}

association paper_review extends review {
 role reviewer {
 method submit_report {…} …
 }
 role chairman extends coordinator {…}
 association prepare_review {

 author::submit (paper, chairman)
 … chairman::submit (paper, reviewer) …
 reviewer::submit_report(…)
 }

 association paper_selection
 extends carry_out_review {…}

 association extends complete_review {
 … chairman::inform_author …
 }
 directive {…}
}

Association course_teaching is a specialized
association of teaching—and refines the directive
of teaching. Also the roles teacher, student and
administration may be specialized—for example
for teacher by adding method remind_student:

association teaching {
 association virtual planning {…}
 association virtual examination {…}
 role teacher for person {…}
 role student for person {…}
 role administration for organization {…}
 directive {
 planning
 …
 inner: content
 …
 examination
 }
}

association course_teaching extends teaching
{
 association course_session_planning

 extends planning {…}
 association curriculum_examination

 extends examination {…}
 association lecturing {
 … teacher::remind_student(…) …
 }
 role teacher {
 method remind_student {…}
 …
 }
 directive {
 content: {… lecturing …}
 }
}

Objects of course_review and paper_review

are instantiated. Object John then enters the
association objects a_course_teaching and
a_paper_review:

object a_course_teaching of course_teaching
object a_ paper_review of paper_review
object John of person

John enters a_course_teaching as teacher
John enters a_paper_review as reviewer

5.3 Interleaved Execution

Action parts of active objects are executed
concurrently with directives of associations, but each
action part and directive is executed sequentially:

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

60

class Ci {
 …
 action_part {… mi(…) …}
}

association Xj {
 role virtual Rj for Ci {…}
 …
 directive {… Rj::nj(…) …}
}

A given Oci of Ci is engaged as role Rj of Xj in

a collection of association objects Axj of Ax, where
1) the next individual action for Oci is mi(…)
2) for the collection of Ax’s the next action to be

executed for Axj with Oci in role Rj is
Rj::nj(…)

Interleaved execution of Oci means, that exactly
one out of mi and the collection of nj’s is selected
randomly and executed. For an object of a
specialized class engaging in specialized
associations the specialized action part and
specialized directives are used.

6 RELATED APPROACHES

Notions similar to associations are available in
object-oriented modeling whereas in object-oriented
programming associations are implemented by
means of references. Our associations support both
modeling and programming (Kristensen, 2003). We
include the association as a first class concept in our
modeling and programming notation. In classical
object-centric modeling and programming the
fundamental problem is that “no object is an island”
(Beck et al, 1989). In object-oriented systems an
object supports encapsulation; the object is self-
contained; focus is on structure instead of function
and focus is on methods instead of processes. These
characteristics are seen as appreciated properties of
object-oriented systems, but are also essential
problems because they emphasize an object-centric
point of view.

Relations from (Rumbaugh, 1987) are
introduced as non object-centric abstractions. In an
illustrative example a relation Employment with
property Salary is defined between classes Person
and Company. Objects of class Person play the role
of Employee and objects of class Company play the
role of Employer. The relation Employment captures
an abstraction, the properties of which we do not
place at neither Person nor Company—the relation is
between these and therefore in conflict with the
intentions of the object-centric approach.

6.1 Language/Notation

Various approaches to notation for non object-
centric modeling and programming include:
Relations (Rumbaugh, 1987) and the corresponding
associations in OMT (Rumbaugh et al, 1991) and
UML (Booch et al, 1998) are object-external
abstractions but these relations/associations only
cover structural aspects, not collaboration. Sequence
and collaboration diagrams in UML support the
description of object interaction by means of method
invocation, but not as abstractions and not integrated
with relations/associations of objects. Complex
associations (Kristensen, 1994) are object-external
abstractions and support only complex structural
relationships between complex, structured objects.
Subject-oriented programming (Harrison et al, 1993)
and subjective behavior (Kristensen 2001) support
different views on objects respectively from an
external and internal perspective, but not
relationships between objects. Activities (Kristensen
et al, 1996), (Kristensen, 1993) are abstractions over
collaborations of objects, but include no support of
roleification of objects participating in the
collaboration. Roles (Kristensen et al, 1996),
(Kristensen 1995) are abstractions over roleification
of objects for various relationships of objects, but no
explicit collaboration is included.

6.2 Collaboration Approaches

Design patterns (Gamma et al, 1994) capture
experience of object oriented design and
programming. In this approach language constructs
for collaborating objects are typically simulated by
patterns of objects including for example DECORATOR,
OBSERVER, and MEDIATOR. Activity-based computing
(ABC) (Bardram, 2005) supports mobility and
cooperation in human work activities. ABC is a
framework supporting a computing infrastructure to
describe how to keep track of collaborative
activities. The system offers a distributed, real time
joint repository for activities including states,
participants, communication and information. Model
Driven Architecture (Zhao, 2005) is supported by
the notion of roles (as a modeling paradigm) by
viewing object interactions from the dimensions
roles, responsibilities and collaborators. The
approach yields a semantically rich model, and also
a simple, elegant design that is flexible and
adaptable.

ASSOCIATIVE PROGRAMMING AND MODELING: ABSTRACTIONS OVER COLLABORATION

61

7 CONCLUSION

Associative programming and modeling is
characterized by:
• Object-oriented programming contains object-

centric descriptions, and collaboration is
implicitly described only and distributed among
methods of participating objects. In object-
oriented methodologies alternatives exist
typically only for analysis and design, but not
for implementation

• Associations support associative modeling and
programming through abstractions over
collaboration. Associations support
objectification of integrated collaboration
aspects and role aspects. Classification,
specialization and aggregation are available

• In associations directives (sequencing rules for
interactions among the participating objects) are
central, partial descriptions related to the
participating objects. The objects execute their
own contributions to the collaboration in their
context. An active object participating in
various associations execute contributions from
the directives interleaved

Challenges include:
• Notation at the modeling and programming

levels for creation and deletion of associations
• Entry and exit of objects in associations
• Similarities between inheritance of directives

and inheritance anomaly (Matsuoka et al, 1993)

ACKNOWLEDGEMENTS

This research was supported in part by the A. P.
Møller and Chastine Mc-Kinney Møller Foundation.
We thank Palle Nowack, Steffen Jensen and Beata
Hargesheimer for collaboration and contributions.

REFERENCES

Bardram. J.E., 2005. Activity-Based Computing: Support
for Mobility and Collaboration in Ubiquitous
Computing. Personal and Ubiquitous Computing, 9(5).

Beck, K., Cunningham, W., 1989. A Laboratory For
Teaching Object-Oriented Thinking. Proceedings of
the Object-Oriented Systems, Languages and
Applications Conference.

Booch, G., Rumbaugh, J., Jacobson, I., 1998. The Unified
Modeling Language User Guide. Addison Wesley.

Burkhardt, J., Henn, H., Hepper, S., Schaeck, T.,
Rindtorff, K., 2001. Pervasive Computing:

Technology and Architecture of Mobile Internet
Applications. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley.

Harrison, W., Ossher, H., 1993. Subject-Oriented
Programming (A Critique of Pure Objects).
Proceedings of the Object-Oriented Programming
Systems, Languages and Applications Conference.

Kristensen, B.B., 1993. Transverse Activities:
Abstractions in Object-Oriented Programming.
Proceedings of International Symposium on Object
Technologies for Advanced Software.

Kristensen, B.B., 1994. Complex Associations:
Abstractions in Object-Oriented Modeling.
Proceedings of Conference on Object-Oriented
Programming Systems, Languages, and Applications.

Kristensen, B.B., 1995. Object-Oriented Modeling with
Roles. Proceedings of the 2nd International
Conference on Object-Oriented Information Systems.

Kristensen, B.B., May, D.C-M., 1996. Activities:
Abstractions for Collective Behavior. Proceedings of
the European Conference on Object-Oriented
Programming.

Kristensen, B.B., Østerbye, K., 1996. Roles: Conceptual
Abstraction Theory & Practical Language Issues.
Special Issue of Theory and Practice of Object
Systems on Subjectivity in Object-Oriented Systems.

Kristensen, B.B., 2001. Subjective Behavior. International
Journal of Computer Systems Science and
Engineering, Volume 16, Number 1.

Kristensen, B.B., 2003. Associations: Abstractions over
Collaboration. Proceedings of the 2003 IEEE
International Conference on Systems, Man &
Cybernetics.

Madsen, O.L., Møller-Pedersen, B., Nygaard, K., 1993.
Object Oriented Programming in the Beta
Programming Language. Addison Wesley.

Matsuoka, S., Yonezawa, A., 1993. Analysis of
Inheritance Anomaly in Object-Oriented Concurrent
Languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Object-Based
Concurrency. MIT Press.

May, D.C-M., B.B.Kristensen, B.B., P.Nowack, P., 2001.
TangO: Modeling In Style. Proceedings of the Second
International Conference on Generative Systems in the
Electronic Arts.

Rumbaugh, J., 1987. Relations as Semantic Constructs in
an Object-Oriented Language. Proceedings of the
Object-Oriented Systems, Languages and Applications
Conference.

Rumbaugh, J., Blaha, J.M., Premerlani, W., Eddy, F.,
Lorensen, 1991. Object-Oriented Modeling and
Design. Prentice Hall.

Weiser, M., 1991. The Computer for the 21st Century.
www.ubiq.com/hypertext/weiser/SciAmDraft3.html.

Zhao, L., 2005. Designing Application Domain Models
with Roles. Lecture Notes in Computer Science,
Volume 3599.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

62

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

