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Abstract: The evaluation of Xpath expressions can be handled as a tree embedding problem. In this paper, we propose 
two strategies on this issue. One is ordered-tree embedding based and the other is unordered-tree embedding 
based. For the ordered-tree embedding, our algorithm needs only O(|T|⋅|P|) time and O(|T|⋅|P|) space, where 
|T| and |P| stands for the numbers of the nodes in the target tree T and the pattern tree P, respectively. For the 
unordered-tree embedding, we give an algorithm that needs O(|T|⋅|P|⋅22k) time, where k is the largest out-
degree of any node in P. 

1 INTRODUCTION 

In XML (World Wide Web Consortium, 1998) 
(World Wide Web Consortium, 1998b), data is 
represented as a tree; associated with each node of 
the tree is an element type from a finite alphabet ∑. 
The children of a node are ordered from left to right, 
and represent the content (i.e., list of subelements) of 
that element. XML queries such as XPath (w3.org, 
http), XQuery (Robie et al., 1998), XML-QL 
(Deutsch et al., 1989) (Florescu et al., 1999) and 
Quilt (Chamberlinet al., 2000) use tree patterns to 
extract relevant portions from the input database. A 
tree pattern query (or called a query tree) that we 
consider in this paper, denoted by TPQ from now 
on, is defined as follows. The nodes of a tree are 
labeled by element types from ∑ ∪ {*}, where * is a 
wild card, matching any element type. The type for a 
node v is denoted τ(v). There are two kinds of edges: 
child edges (c-edges) and descendant edges (d-
edges). A c-edges from node v to node u is denoted 
by v → u in the text, and represented by a single arc; 
u is called a c-child of v. A d-edge is denoted v ⇒ u 
in the text, and represented by a double arc; u is 
called a d-child of v. 
In any DAG (directed acyclic graph), a node u is 
said to be a descendant of a node v if there exists a 
path (sequence of edges) from v to u. In the case of a 
TPQ, this path could consist of any sequence of c-
edges and/or d-edges. 
An embedding of a TPQ P into an XML document T 
is a mapping f: P → T, from the nodes of P to the 
nodes of T, which satisfies the following conditions 
(Ramanan 2002): 

 1.  Preserve node type: For each v ∈ P, v and f(v) 
are of the same type. 

 2.  Preserve c/d-child relationships: If v → u in P, 
then f(u) is a child of f(v) in T; if v ⇒ u in P, 
then f(u) is a descendant of f(v) in T. 

Any document T, in which P can be embedded, is 
said to contain P and considered to be an answer.  
To handle all the possible XPath queries, we allow a 
node u in a TPQ P to be associated with a set of 
predicates. We distinguish among three different 
kinds of predicates: current node related predicates 
(called current-predicates), child node related 
predicates (called c-predicates), and descendant 
related predicates (called d-predicates). A current-
predicate p is just a built-in predicate applied to the 
current node; i.e., a node v in T, which matches u, 
must satisfy this predicate associated with u. A c-
predicate is a built-in predicate applied to the 
children of the current node. That is, for each node v 
in T, which matches u, each of its children (or one of 
its children) must satisfy this predicate. Similarly, a 
d-predicate must be satisfied by all the descendants 
of the node (or one of its descendants), which 
matches u. Without loss of generality, we assume 
that associated with u is a conjunctive-disjunctive 
normal form: (p11 ∨ ... ∨ ) ∧ ... ∧ (p

11ip k1 ∨ ... 

∨ ), where each p
kkip ij is a predicate. 

For example, the following XPath query:  
chapter[section[//paragraph[text() contains 
‘informatics’]/following-sibling::*][position() = 
3]]/*[self::section or self::chapter-notes]  

can be represented by a tree shown in Fig. 1. 
In the query tree shown in Fig. 1, each node is 
labeled with a type or *, and may or may not be 
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associated with a conjunctive-disjunctive normal 
form of predicates, which are used to describe the 
conditions that the node (and/or its children) has to 
satisfy, or the relationships of the node with some 
other nodes: 

 
Figure 1: A sample TPQ. 

u0 - τ(u0) = chapter. It matches any node v in T if it is 
associated with type ‘chapter’. 
u1 - τ(u1) = section; and associated with a current 
predicate position() = 3. It matches any node v in T 
if it is a third child of its parent and associated with 
type ‘section’. 
u2 - τ(u2) = *; and associated with a disjunction of 
current-predicates: τ(u2) = section or τ(u2) = chapter-
notes. It matches a node v in T if it is associated with 
type ‘section’ or ‘chapter-notes’. 
u3 - τ(u3) = paragraph; associated with a c-predicate: 
text() contains ‘informatics’. It matches a node v in 
T if it is associated with type ‘paragraph’ and has a 
text child that contains word ‘informatics’. 
u4 - τ(u4) = *; associated with a current-predicate: 
following-sibling(v3), which indicates that if u4 
match a node in T, that node must directly follows 
any node that matches u3, i.e., any node with type 
‘paragraph’ and having a text child node that 
contains word ‘informatics’. 
Accordingly, the embedding f of a TPQ P into a 
document T is modified as follows. 

1. For each v ∈ P, v and f(v) are of the same type; 
and f(v) satisfies all the current-predicates 
associated with v. 

 2. If v → u in P, then f(u) is a child of f(v) in T; 
and f(u) satisfies all the c-predicates associated 
with v. If v ⇒ u in P, then f(u) is a descendant of 
f(v) in T; and f(u) satisfies all the d-predicates 
associated with v. 

In this paper, we mainly discuss how such a tree 
embedding can be efficiently checked. 
The rest of the paper is organized as follows. In 
Section 2, we review some related work. In Section 
3, we discuss a new strategy for evaluating XPath 
queries by handling them as ordered tree embedding 
problems. In Section 4, another strategy is proposed 

based on unordered tree embedding. Finally, a short 
conclusion is set forth in Section 5.  

2 RELATED WORK 

Recently, much research has been conducted on the 
evaluation of such XML queries (Gottlob et al., 
2005) (Gottlob et al., 2005) (Wang et al., 2003) 
(Wang et al., 2005) (Zhang et al., 2001). Here, we 
just mention some of them, which are very closely 
related to the work to be discussed. The first one is 
based on Inversion on elements and words (Zhang et 
al., 2001), which needs O(nm) time in the worst case 
where n and m are the number of the nodes in T and 
P, respectively. The second is based on Inversion on 
paths and words (w3.org, http), which improves the 
first one by introducing indexes on paths. The time 
complexity of this method is still exponential and 
needs O((n⋅h)k) time in the worst case, where h is the 
average height of a document tree and k is the 
number of joins conducted. The main idea of the 
third method is to transform a tree embedding into a 
string matching problem (Knuth, 1969) (Ramanan 
2002). The time complexity is O(n⋅m⋅h). This 
polynomial time complexity is achieved by 
imposing an ordering on the siblings in a query tree. 
That is, the method assumes that the order of 
siblings is significant. If the query tree is ordered 
differently from the documents, a tree embedding 
may not be found even though it exists. In this case, 
the query tree should be reordered and evaluated 
once again. Another problem of (Wang et al., 2003) 
is that the results may be incorrect. That is, a 
document tree that does not contain the query tree 
may be designated as one of the answers due the 
ambiguity caused by identical sibling nodes. This 
problem is removed by the so-called forward prefix 
checking discussed in (Wang et al., 2005). Doing so, 
however, the theoretical time complexity is 
dramatically degraded to O(n2⋅m⋅h). The last one is 
to represent an XPath query as a parse tree and 
evaluate such a parse tree bottom-up or top-down 
(Gottlob et al., 2005). In (Gottlob et al., 2005), it is 
claimed that the bottom-up strategy needs only 
O(n5⋅m2) time and O(n4⋅m2) space, so does its top-
down algorithm. But in another paper (Gottlob et al., 
2005) of the same authors, the same problem is 
claimed to be NP-complete. It seems to be 
controversial. In fact, the analysis made in (Gottlob 
et al., 2005) assumes that the query tree is ordered 
while by the analysis conducted in (Gottlob et al., 
2005) the query tree is considered to be unordered, 
leading to different analysis results. 

τ(u3) = section or 
τ(u3) = chapter-notes
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‘informatics’ 
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In this paper, we first present an algorithm based on 
the ordered tree embedding. Its time complexity is 
bounded by O(n⋅m). Then, another strategy based on 
the unordered tree embedding is discussed, which 
needs O n⋅m⋅22k) time time, where k is the largest 
out-degree of any node in P. 

3 A STRATEGY BASED ON 
ORDERED-TREE EMBEDDING 

In this section, we mainly discuss a strategy for the 
query evaluation based on ordered-tree embedding, 
by which the order between siblings is significant. 
The query evaluation based on unordered-tree 
embedding is discussed in the next section.  

In general, a tree pattern query P can be considered 
as a labeled tree if we extend the meaning of label 
matching by including the predicate checking. That 
is, to check whether a node v in a document T 
matches a node u in P, we not only compare their 
types, but also check whether all the predicates 
associated with u can be satisfied. Such an 
abstraction enables us to focus on the hard part of 
the problem.  

In the following, we first give the basic definitions over 
ordered- tree embedding in 2.1. Then, we propose an 
algorithm for solving this problem in 2.2. 

3.1 Basic Concepts 

Technically, it is convenient to consider a slight 
generalization of trees, namely forests. A forest is a 
finite ordered sequence of disjoint finite trees. A tree 
T consists of a specially designated node root(T) 
called the root of the tree, and a forest <T1, ..., Tk>, 
where k ≥ 0. The trees T1, ..., Tk are the subtrees of 
the root of T or the immediate subtrees of tree T, and 
k is the out-degree of the root of T. A tree with the 
root t and the subtrees T1, ..., Tk is denoted by <t; T1, 
..., Tk>. The roots of the trees T1, ..., Tk are the 
children of t and siblings of each other. Also, we call 
T1, ..., Tk the sibling trees of each other. In addition, 
T1, ..., Ti-1 are called the left sibling trees of Ti, and 
Ti-1 the direct left sibling tree of Ti. The root is an 
ancestor of all the nodes in its subtrees, and the 
nodes in the subtrees are descendants of the root. 
The set of descendants of a node v (excluding v) is 
denoted by desc(v). A leaf is a node with an empty 
set of descendants. The children of a node v is 
denoted by chidren(v). 
Sometimes we treat a tree T as the forest <T>. We 
also denote the set of nodes in a forest F by V(F). 

For example, if we speak of functions from a forest 
F to a forest G, we mean functions mapping V(F) 
onto V(G). The size of a forest F, denoted by |F|, is 
the number of the nodes in F. The restriction of a 
forest F to a node v with its descendants is called a 
subtree of F rooted at v, denoted by F[v]. 
Let F = <T1, ..., Tk> be a forest. The preorder of a 
forest F is the order of the nodes visited during a 
preorder traversal. A preorder traversal of a forest 
<T1, ..., Tk> is as follows. Traverse the trees T1, ..., Tk 
in ascending order of the indices in preorder. To 
traverse a tree in preorder, first visit the root and 
then traverse the forest of its subtrees in preorder. 
The postorder is defined similarly, except that in a 
postorder traversal the root is visited after traversing 
the forest of its subtrees in postorder. We denote the 
preorder and postorder numbers of a node v by 
pre(v) and post(v), respectively. 
Using preorder and postorder numbers, the 
ancestorship can be checked as follows. 
Lemma 1. Let v and u be nodes in a forest F. Then, 
v is an ancestor of u if and only if pre(v) < pre(u) 
and post(u) < post(v). 
Proof. See Exercise 2.3.2-2 in (Knuth, 1969). 
Similarly, we check the left-to-right ordering as 
follows. 
Lemma 2. Let v and u be nodes in a forest F. Then, 
v appears on the left side of u if and only if pre(v) < 
pre(u) and post(v) < post(u). 
Proof. The proof is trivial.  
Now we give the definition of ordered tree 
embeddings. In this definition, we simply use ‘label 
matching’ to refer to both type matching and 
predicate checking. 
Definition 1. Let P and T be rooted labeled trees. 
We define an ordered embedding (f, P, T) as an 
injective mapping f: V(P) → V(T) such that for all 
nodes v, u ∈ V(P), 
i)  label(v) = label(f(v)); (label preservation 

condition) 
ii)  if (v, u) is a c-edge, then f(v) is the parent of f(u); 

(child condition) 
iii) if (v, u) is a d-edge, then f(v) is an ancestor of  

f(u); (ancestor condition) 
iv) v is to the left of u iff f(v) is to the left of f(u). 

(sibling condition) 
As an example, we show an ordered tree embedding 
in Fig. 2. 
In Fig. 2(a), the tree on the left can be embedded in 
the tree on the right because a mapping as shown in 
Fig. 2(b) can be recognized, which satisfies all the 
conditions specified in Definition 1. In addition, Fig. 
2(b) shows a special kind of tree embeddings, which 
is very critic to the design of our algorithm and also 
quite useful to explain the main idea of our design. 
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Figure 2: An example of ordered tree embedding. 

Definition 2. Let P and T be trees. A root-
preserving embedding of P in T is an embedding f of 
P in T such that f(root(P)) = root(T). If there is a 
root-preserving embedding of P in T, we say that the 
root of T is an occurrence of P.  
For example, the tree embedding shown in Fig. 2(b) 
is a root preserving embedding. Obviously, 
restricting to root-preserving embedding does not 
lose generality. 
Finally, we use Lemma 2 to define an ordering of 
the nodes of a forest F given by v  v’ iff post(v) < 
post(v’) and pre(v) < pre(v’). Also, v  v’ iff v  v’ or v 
= v’. The left relatives, lr(v), of a node v ∈ V(F) is 
the set of nodes that are to the left of v (i.e., all those 
nodes that precede v both in preorder and postorder), 
and similarly the right relatives, rr(v), is the set of 
nodes that are to the right of v (i.e., all those nodes 
that follow v both in preorder and postorder). 
Throughout the rest of the paper, we refer to the 
labeled trees simply as trees since we do not discuss 
unlabeled trees at all. 

3.2 Algorithm Description 

The algorithm to be given is in fact a dynamic 
programming solution. During the process, two m 
× n (m = |P|, n = |T|) matrices are maintained and 
computed to discover tree embeddings. They are 
described as follows. 
1. The nodes in both P and T are numbered in 
postorder, and the nodes are then referred to by their 
postorder numbers. 
2. The first matrix is used to record subtree 
embeddings, in which each entry cij (i ∈ {1, ..., m}, j 
∈ {1, ..., n}) has value 0 or 1. If cij = 1, it indicates 
that there is a root preserving embedding of the 
subtree rooted at the node indexed by i (in P) in the 
subtree rooted at the node indexed by j (in T). 
Otherwise, cij = 0. This matrix is denoted by c(P, T). 

3. In the second matrix, each entry dij (i ∈ {1, ..., m}, 
j ∈ {0, ..., n - 1}) is defined as follows: 
      dij = min({x ∈ rr(j) | cix = 1} ∪ {α}), 
where α = n + 1. That is, dij contains the closest right 
relative x of node j such that T[x] contains P[i], or n 
+ 1, indicating that there exists no right relative x of 
node j such that P[i] can be root-preservingly 
embedded in T[x]. This matrix is denoted by d(P, T). 
In the above definitions of matrices, we should 
notice that the indexes of d(P, T) is slightly different 
from those of c(P, T). That is, for d(P, T), j ∈ {0, ..., 
n - 1} (instead of {1, ..., n}), and j = 0 is considered 
to be a virtual node left to any node in T. 
The matrix c(P, T) is established by running the 
following algorithm, called ordered-tree-embedding 
while d(P, T) is employed to facilitate the 
computation. Initially, cij = 0, and dij = 0 for all i and 
j. In addition, each node v in T is associated with a 
quadruple (α(v), β(v), χ(v), δ(v)), where α(v) is v’s 
preorder number, β(v) is v’s postorder number, χ(v) 
is v’s level number, and δ(v) = min(desc(v)). By the 
level number of v, we mean the number of ancestors 
of v, excluding v itself. For example, the root of T 
has the level number 0, its children have the level 
number 1, and so on. Obviously, for two nodes v1 
and v2, associated respectively with (α1, β1, χ1, δ1) 
and (α2, β2, χ2, δ2), if χ2 = χ1 + 1, α1 < α2 and β1 > 
β2, we have v2 ∈ children(v1). 
In the following algorithm, we assume that for T 
there exists a virtual node with postorder number 0, 
which is left to any node in T. 
Algorithm ordered-tree-embedding(T, P) 
Input: tree T (with nodes 0, 1, ..., n) and tree P (with nodes 
1, ..., m) 
Output: c(P, T), which shows the tree embedding. 
begin 
1. for u := 1, ..., m do 
2. { for v := 0, ..., n - 1 do {duv := n + 1;} 
3.   l := 0; 
4.   for v := 1, ..., n do 
5.   {if label(u) = label(v) then 
6.    let u1, ..., uk be the children of u; 
7.    j := δ(v) - 1; 
8.    i := 1; 
9.    while i ≤ k and j < v do 
10.  {j := ; jui

d ,

11.     if (u, ui) is a d-edge then 
12.     {if j ∈ desc(v) then i := i + 1; 
13.      else /*(u, ui) is a c-edge.*/ 
14.      {if j ∈ children(v) and j is a c-child  
        then i := i + 1;} 
15.     }} 
16.   if j = k then 
17.   {cuv := 1; 
18.    while l ∈ lr(v) do {dul ; = v; l := l + 1;} 

b 
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19.  } 
20.} 
end 
To know how the above algorithm works, we should 
first notice that both T and P are postorder-
numbered. Therefore, the algorithm proceeds in a 
bottom-up way (see line 1 and 4). For any node u in 
P and any node v in T, if label(u) = label(v), the 
children of u will be checked one by one against 
some nodes in desc(v). The children of u is indexed 
by i (see line 6); and the nodes in desc(v) is indexed 
by j (see line 10). Assume that the nodes in desc(v), 
which are checked during the execution of the 
while-loop (see lines 9 - 15), are  j1, ...,  jh. Then, 
each jg (1 ≤ g ≤ h) satisfies the following conditions 
(see line 11): 
(i)   δ(v) - 1 < jg < v (i.e., jg ∈ desc(v)),  
(ii)  jg =  with j0 = δ(v) - 1. 
Therefore, for any ja and jb ∈ {j1, ..., jh}, they must 
be on different paths according to the definition of 
d(P, T). In addition, in the while-loop, if (u, ui) is a 
d-edge, the algorithm checks whether j ∈ desc(v) 
(see line 12). If it is the case, ui has a matching 
counterpart in desc(v) and i will be increased by 1. 
Thus, in a next step, the algorithm will check the 
direct right sibling of ui against a node that is one of 
the right reletives of j. If (u, ui) is a c-edge, we will 
check whether j ∈ children(v) (see line 14). In line 
16, we will check whether i = k. If it is the case, we 
have desc(v) contains all subtrees P[u1], ..., P[uk]) 
This indicates that we will have a root-preserving 
embedding of P[u] in T[v]. Therefore, cuv is set to 1 
(see line 17). Also, for any node l  that is one of the 
left relatives of v, dul is set to 1 (see line 18). It is 
because v must be the closest right relative of any of 
such nodes in T such that the subtree rooted at it (i.e,  
T[v]) root-preservingly contains P[u].  
Example 1. As an example, consider the trees 
shown in Fig. 3. The nodes in them are postorder 
numbered.  

 
Figure 3: Labeled trees and postorder numbering. 

When we apply the algorithm to these two trees, c(P, 
T) and d(P, T) will be created and changed in the 
way as illustrated in Fig. 4, in which each step 
corresponds to an execution of the outmost for-loop. 
 

 
Figure 4: A sample trace. 

In step 1, we show the values in c(P, T) and d(P, T) 
after node 1 in P is checked against every node in T. 
Since node 1 in P matches node 2, 3 and 5 in T, c12, 
c13, and c15 are all set to 1. Furthermore, d10 is set to 
2 since the closest right relative of node 0 in T, 
which matches node 1 in P, is node 2 in T. The same 
analysis applies to d11. Since the closest right 
relative of node 2, 3, 4 in T, which matches node 1 
in P, is node 5 in T, d12, d13, and d14 are all set to 5. 
Finally, we notice that d14 is equal to 7, which 
indicates that there exists no right relative of node 5 
that matches node 1 in P. 
In step 2, the algorithm generates the matrix entries 
for node 2 in P, which is done in the same way as 
for node 1 in P. 
In step 3, node 3 in P will be checked against every 
node in T, but matches only node 6 in T. Since it is 
an internal node (in fact, it is the root of P), its 
children will be further checked. First, to check its 
first child, the algorithm will examine d10, which is 
equal to 2, showing that node 2 in T is the closest 
right relative of node 0 that matches node 1 in P. In 
a next step, the algorithm will check the second 
child of node 3 in P. To do this, d22 is checked. d22’s 
value is 5, showing that the closest relative of node 2 
in T, which matches node 2 in P, is node 5 in T. In 
addition, since the edge (3, 2) in P is a c-edge, the 
algorithm will check whether node 5 in T is a child 
of node 6. Since it is the case, we have a root-
preserving embedding of P[3] in T[6]. Finally, we 
notice that when the second child of node 3 in P is 
checked, the algorithm begins the checking from d22 
rather than d20. In this way, a lot of useless 
checkings is avoided. 
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Proposition 1. Algorithm ordered-tree-embedding( 
T, P) computes the values in c(P, T) and d(P, T) 
correctly. 
Proof. We prove the proposition by induction on the 
sum of the heights of T and P, h. Without loss of 
generality, assume that height(T) ≥ 1 and height(P) 
≥ 1.  
Basic step. When h = 2, the proposition trivially 
holds. 
Induction hypothesis. Assume that when h = l, the 
proposition holds. 
Consider T = <t; T1, ..., Tk> and P = <p; P1, ..., Pq> 
with height(T) + height(P) = l + 1. Obviously, we 
have height(Ti) + height(P) ≤ l and height(T) + 
height(Pj) ≤ l. Therefore, in terms of the induction 
hypothesis, the algorithm computes the values in 
c(P, Ti) and d(P, Ti), as well as the values in c(Pj, T) 
and d(Pj, T) correctly (i = 1, ..., k; j = 1, ..., q). 
Assume that V(P) = {1, ..., m} and V(T) = {1, ..., n}. 
Then, the values for cij (i = 1, ..., m - 1; j = 1, ..., n - 
1) and dij (i = 1, ..., m - 1; j = 0, ..., n - 2) are all 
correctly generated. Now we will check cin and di,n-1 
(i = 1, ..., m), as well as cmj (j = 1, ..., n) and dmj (j = 
0, ..., n - 1) to see whether they can be correctly 
produced. Let i1, ..., is be the children of i. If label(i) 
= label(n), for each if (1 ≤ f ≤ s), some ’s will be 

checked. Obviously, i
ji f

d

f < i and j < n. According to the 
induction hypothesis, all such ’s are correctly 

generated. Depending on whether (i, i
ji f

d

f) is a d-edge 
or c-edge, the algorithm will check whether j ∈ 
desc(n) or j ∈ children(n). In addition, any two 
nodes j1 and j2, which are checked against two 
different children of i, are not on the same path. 
Therefore, cin (i = 1, ..., m) is correctly created, so is 
di,n-1 (i = 1, ..., m). A similar analysis applies to cmj 
(j = 1, ..., n) and dmj (j = 0, ..., n - 1). 
Proposition 2. Algorithm ordered-tree-embedding 
(T, P) requires O(|T|⋅|P|) time and space. 
Proof. During the execution of the outermost for-
loop, l may increases from 0 to n. Therefore, the 
time spent on the execution of line 18 in the whole 
process is bounded by O(n). An execution of the 
while-loop from line 9 to 15 needs O(du) time, 
where du represents the outdegree of node u in P. So 
the total time is bounded by 

 O(n) + O( ) = O(n) + O( ) ∑∑
= =

m

u

n

v
ud

1 1
∑∑

= =

n

v

m

u
ud

1 1

 = O(n) + O( ) = O(n⋅m). ∑
=

n

v

m
1

Obviously, to maintain c(Q) and d(Q), we need 
O(n2) space. 

4 A STRATEGY BASED ON 
UNORDERED TREE 
EMBEDDING 

Now we turn to the unordered version of the 
problem, which appears to be essentially more 
difficult. A tree P is an unordered included tree of a 
tree T if the nodes of P can be injectively mapped 
onto the nodes of T preserving the labels and the 
ancestorship relation between nodes. Such a 
mapping is called an unordered embedding. We do 
not require the left-to-right order of the nodes to be 
preserved in an unordered embedding. But sibling 
nodes should not be mapped to those nodes that are 
on the same path. 
To facilitate the algorithm description, we will use 
some concepts from the hypergraph theory (Berge, 
1989). 
Definition 3. Let U = {u1, …, un} be a finite set of 
nodes. A hypergraph on U is a family H = {E1, …, 
El} of subsets of U such that 
(1)  Ei ≠ Φ    (i = 1, 2, …, l) 

(2) = U.  ∪
l

i
iE

1=

A simple hypergraph (or Sperner family) is a 
hypergraph H = {E1, …, El} such that  
(3)  Ei ⊂ Ej ⇒ i = j. 
As for a graph H, the order of H, denoted by n(H), is 
the number of nodes. The number of edges will be 
denoted by m(H) and the rank(H) is defined to be 
r(H) = j

j
Emax .  It can be proved that m(H) ≤ 

 (Berge, 1989). 
⎣ ⎦⎜

⎜
⎝

⎛
⎟⎟
⎠

⎞
2/n

n

Let A ⊂  U be a subset. We call the family 
   HA = {Ei ∩ A | 1 ≤ i ≤ l, Ei ∩ A Ei ≠ Φ} 
the sub-hypergraph induced by A. 
Definition 4. Let H = {E1, …, El} be a hypergraph 
on U and H’ = {F1, …, Hl’} be another hypergraph 
on V. The product of H and H’, denoted as H × H’, 
is a hypergraph, whose nodes are the elements of the 
Cartesian product U × V, and whose edges are the 
sets Ei × Fj with 1 ≤ i ≤ l and 1 ≤ j ≤ l’. Obviously, 
n(H × H’) = n(H)n(H’) and m(H × H’) =m(H)m(H’). 
However, if U = V, we have n(H × H’) = n(H) and 

m(H × H’) ≤ . 
⎣ ⎦⎜

⎜
⎝

⎛
⎟⎟
⎠

⎞
2/n

n

As with the ordered tree embedding, we will 
maintain two matrices Q(P, T) and S(P, T) to control 
the computation. 
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 1.  In Q(P, T), an entry qij is 1 if the subtree rooted 
at j in T includes the subtree rooted at i in P. 
Otherwise, it is 0. 

 2.  In S(P, T), each entry sij is defined as follows. 
Let i1, i2, …, ik be the child nodes of i. sij is a 
hypergraph Hi = {E1, …, El}over {i1, i2, …, ik} 
such that T[j], the subtree rooted at j, includes 
each Eg (g = 1, …, l}, that is, for each Eg, the 
subtree rooted at j includes all the subtrees 
rooted at the nodes in Eg. But T[j] cannot 
include Ei  ∪ Ej  for any i, j ∈{1, …, l }. 

 
Algorithm unordered-embedding(T, P) 
Input: tree T (with nodes 1, ..., n) and tree P (with nodes 1, 
..., m) 
Output: Q(P, T), which shows the tree embedding. 
begin 
1. for v := 1, ..., n do 
2. {for u := 1, ..., m do 
3.   {if quv:= 0 then 
4.    {let v1, …, vh be the child nodes of v; 
5.     H := × … × ; 

1uvs
2uvs

huvs
6.     let u1, …, uk be the child nodes of u; 
7.     if {u1, …, uk} ∈ H then set quv to 1; 
8.     else suv := H; 
9.    } 
10.  } 
11.  let u1, …, ul be nodes covered by v; 
12.  for each ancestor v’ of v, := 1 for i = 1, …, l; 'vui

q
13.  construct hypergraph H = {{u1}, …, {ul}}; 
14.  for u := 1, ..., m do 
15.   {let A be the set of u’s child nodes; 
16.    suv:= HA; 
17.   } 
20. } 
End 
The execution of line 5 will dominate the running 
time of the algorithm. Let k be the largest out-degree 
of any node in P. Then, the size of each suv  is 

bounded by  ≤ 2
⎣ ⎦⎜

⎜
⎝

⎛
⎟⎟
⎠

⎞
2/k

k k. Especially, the size of 

any product hypergraph of the form suv × suv’  is 
bounded by 2k (and so is  suv × suv’  × suv’‘, …, and so 
on.) So the time complexity of the algorithm is on 
the order of O(|T|⋅|P|⋅22k). 

4 CONCLUSION 

In this paper, a new strategy for evaluating XPath 
queries is discussed. The main idea of the strategy is 
to handle an XPath query as tree embedding 
problem. Two strategies are proposed. One is or-
dered tree embedding based, and the other is 
unordered tree embedding based. For the ordered 

tree embedding problem, our algorithm needs only 
O(|T|⋅|P|) time and O(|T|⋅|P|) space, where |T| and |P| 
stands for the numbers of the nodes in the target tree 
T and the pattern tree P, respectively. For the 
unordered-tree embedding, we give an algorithm 
that needs O(|T|⋅|P|⋅22k) time, where k is the largest 
out-degree of any node in P.  
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