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Abstract: The Object Model defined in the ODMG standard for object data management systems (ODMSs) provides 
referential integrity support for one-to-one, one-to-many, and many-to-many associations. It does not, how-
ever, provide support that enforces the multiplicities often specified for such associations in UML class dia-
grams, nor does it provide the same level of support for associations that is provided in relational systems 
via the SQL references clause. The Object Relationship Notation (ORN) is a declarative scheme that pro-
vides for the specification of enhanced association semantics. These semantics include multiplicities and are 
more powerful than those provided by the SQL references clause. This paper describes how ORN can be 
added to the ODMG Object Model and discusses algorithms that can be used to support ORN association 
semantics in an ODMG-compliant ODMS. The benefits of such support are improved productivity in devel-
oping object database systems and increased system reliability. 

1 INTRODUCTION 

An object data management system (ODMS) allows 
objects created and manipulated in an object-ori-
ented programming language to be made persistent 
and provides traditional database capabilities like 
concurrency control and recovery to manage access 
to these objects. An object database management 
system (ODBMS), one type of ODMS, stores the ob-
jects directly in an object database. An object-to-
database mapping (ODM), another type of ODMS, 
stores the objects in another database system repre-
sentation, usually relational (Cattel et al., 2000).  

The de facto standard for ODMSs is ODMG 3.0 
(Cattel et al., 2000), which was defined by the Ob-
ject Data Management Group (ODMG) consisting of 
representatives from most of the major ODMS ven-
dors. This standard defines an Object Model to be 
supported by ODMG-compliant ODMSs. The model 
defines the kinds of object semantics that can be 
specified to an ODMS. These semantics deal with 
how objects can be named and identified and the 
properties and behavior of objects. They also deal 
with how objects can relate to one another, which is 
the focus of this paper.  

In addition to supporting generalization-
specialization relationships, the Object Model sup-

ports one-to-one, one-to-many, and many-to-many 
binary relationships between object types. These are 
the non-inheritance, or structural, types of relation-
ships, which are termed associations in the Unified 
Modeling Language (UML) (OMG, 2005), . For ex-
ample, a one-to-many association between carpools 
and employees can be defined in the Object Model. 
A carpool object is defined so that it can reference 
many employee objects, and an employee object is 
defined so that it can reference at most one carpool.  

The Object Model prescribes that the ODMS 
automatically enforce referential integrity for all de-
fined associations. This means that if an object is de-
leted, all references to that object that maintain asso-
ciations involving that object must also be deleted. 
This ensures that there are no such references in the 
database that lead to nonexistent objects.  

What has just been described is the extent of 
support for associations in the Object Model. What 
is lacking is some additional, easily implementable 
support for associations that could significantly im-
prove the productivity of developing object database 
systems and the reliability of those systems.  

For example, the Object Model, like the rela-
tional model, does not support the specification of 
precise multiplicities. Such association constraints 
are almost always present in the diagrams used to 
model databases—the traditional Entity-Relationship 
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Diagram (ERD) (Chen, 1976), where multiplicities 
are termed cardinality constraints, and the UML 
class diagram (OMG, 2005). For example, the mul-
tiplicity for the Employee class in the carpool–
employee association may be given as 2..* in a class 
diagram, meaning that a carpool must be related to 
two or more employees. Such association semantics, 
documented during conceptual database design, are 
sometimes lost during logical database design unless 
supported by the logical data model, e.g., the Object 
Model. If not supported, to survive, they must be 
resurrected by the programmer during implementa-
tion and for object databases translated into cardinal-
ity checks on collections and into exception handling 
code within relevant create and update methods.  

The Object Model also does not support associa-
tion semantics that are equivalent to those supported 
in standard relational systems via the references…on 
delete clause of the create table statement in SQL 
(ANSI, 2003). Such semantics would, for instance, 
allow one to declare an association between objects 
such that if an object is deleted, all related objects 
would be automatically deleted by the ODMS, i.e., 
an on delete cascade. For example, if an organiza-
tion in a company were deleted, all subordinate or-
ganizations would be implicitly deleted. Such an as-
sociation semantic is required for an ODMS to pro-
vide support for composite objects.  

Object Relationship Notation (ORN) was devel-
oped to allow these kinds of semantics, and others 
often relevant to associations, to be better modeled 
and more easily implemented in a DBMS (Ehlmann 
et al., 1996, 2000, 2002). ORN is a declarative 
scheme for describing association semantics that is 
based on UML multiplicities. 

In this paper we give a brief overview of ORN 
and show how the ODMG Object Model can be ex-
tended to include ORN. We also discuss and illus-
trate algorithms that are available and can be used by 
an ODMG-compliant ODMS to implement the asso-
ciation semantics as specified by ORN. The exten-
sion is very straightforward, and the algorithms are 
relatively simple. The end-result is an enhanced Ob-
ject Model that supports more powerful association 
semantics—in fact, more powerful than those sup-
ported by relational systems without having to code 
complex constraints and triggers (Ehlmann and Ric-
cardi, 1996). By extending models with ORN and 
providing the required mappings between them—
UML class diagram to Object Model to ODMS im-
plementation—we facilitate a model-driven devel-
opment approach and gain its many advantages 
(Mellor et al., 2003).  

The specific benefits here are a significant im-
provement in the productivity of developing object 
database applications and an increase in their reli-
ability. Productivity is improved when translations 
from class diagram models into object models are 
more direct and when programmers do not have to 
develop code to implement association semantics. 
Currently, many developers working on many data-
base applications must implement, test, and maintain 
custom code for each type of association, often “re-
inventing the wheel.” Reliability is increased when 
the ODMS is responsible for enforcing association 
semantics. Currently, developers sometimes fail to 
enforce these semantics or inevitably introduce er-
rors into database applications when they do.  

The remainder of this paper is organized as fol-
lows: section 2 gives a brief overview of ORN and 
related work, section 3 shows how the ODMG Ob-
ject Model can be extended with the ORN syntax 
and describes ORN semantics in terms of this model, 
section 4 discusses and illustrates algorithms that 
can be used to implement ORN semantics in an 
ODMS that is based on the extended Object Model, 
and section 5 provides concluding remarks. A com-
plete set of ORN-implementing algorithms is avail-
able on the author’s website (Ehlmann, 2006). 

2 ORN AND RELATED WORK 

ORN describes association semantics at both the 
conceptual, i.e., data modeling, and logical, i.e., data 
definition, levels of database development, and can 
be compared to other declarative schemes. 

For data modeling, ORN has been integrated into 
ERDs and UML class diagrams (Ehlmann and Yu, 
2002). ORN extends a class diagram by allowing 
binding symbols to be given with multiplicity nota-
tions. The bindings indicate what should happen 
when links between related objects are destroyed, ei-
ther implicitly because of object deletions or explic-
itly. They indicate, for instance, what action the 
DBMS should take when destroying a link would 
violate the multiplicity at one end of an association. 
The binding symbols (or the lack of them) provide 
important semantics about the relative strength of 
linkage between related objects and define the scope 
of complex objects. For example, the association be-
tween a carpool, a complex object, and its riders can 
be specified in an ORN-extended class diagram to 
indicate that if the number of riders falls below two, 
either because an employee leaves the company (an 
employee object is deleted) or just leaves the carpool 
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(a link between an employee and a carpool is de-
stroyed), the carpool should be deleted. 

For database definition, ORN has been imple-
mented within the Object Database Definition Lan-
guage (ODDL). ODDL is a language used to define 
classes, attributes, and relationships to a prototype 
ODMS named Object Relater Plus (OR+) (Ehlmann 
and Riccardi, 1997). OR+ closely parallels ODMG 
and is built on top of Object Store (Progress Soft-
ware, 2006). The integration of ORN into ODDL al-
lows a direct translation of association semantics 
from an ORN-extended class diagram into the data-
base definition language and enables these semantics 
to be automatically maintained by the DBMS. Using 
ORN, the semantics for an association between em-
ployees and carpools as previously described can be 
both modeled and implemented by the notation 
|~X~<2..*-to-0..1>. No programming is needed.  

In Ehlmann and Riccardi (1996), the power of 
ORN in describing association semantics is com-
pared to that of other declarative notations proposed 
for various object models and to that of the refer-
ences clause of SQL. The comparison reveals that 
the most unique aspect of ORN, and what accounts 
for its ability to specify a larger variety of associa-
tion types, is that it provides for the enforcement of 
upper and lower bound multiplicities and allows de-
lete propagation to be based on these multiplicities. 
It also provides a declarative scheme at a conceptual 
level of abstraction that is independent of database 
type, object or relational. ORN can also be com-
pared to extensions to the ER model that others have 
suggested to specify or enforce association seman-
tics, or structural integrity constraints (Balaban and 
Shoval, 2002) (Bouzeghoub and Metais, 1991) 
(Lazarivic and Misic, 1991). These extensions, how-
ever, are more procedural in nature.  

3 ADDING ORN TO ODL 

3.1 Associations in ODL 

In the ODMG Object Definition Language (ODL), 
which defines the ODMG Object Model, an associa-
tion is defined by declaring a relationship traversal 
path for each end of the association. A traversal path 
provides a means for an object of one class to refer-
ence and access the related objects of a target class 
(which is the same class in a recursive relationship). 
Access to many target class objects requires the tra-
versal path declaration  to include an appropriate 
collection type,  usually a set or list,  that can contain 

 
Figure 1: Class diagram for employee–carpool association. 

 
Figure 2: ODL for employee–carpool association. 

references of target class type. Access to at most one 
target class object requires the declaration to include 
a reference of target class type. A traversal path dec-
laration must also include the name of its inverse tra-
versal path. For example, the one-to-many relation-
ship between carpools and employees, discussed ear-
lier and modeled by the class diagram in Fig. 1, 
would be declared in ODL as shown in Fig. 2. The 
2..* multiplicity given in the class diagram must be 
implemented by application code.  

3.2 Adding ORN Syntax 

Adding ORN to the Object Model is relatively 
straightforward. Essentially, ODL is extended to al-
low an <association> to be given for each declared 
relationship. The syntax for an <association>, which 
is the syntax for ORN, is given in Fig. 3, and the 
ORN-extended ODL syntax is given in Fig. 4. 

To illustrate the syntax and semantics of ORN in 
the context of the Object Model, a database contain-
ing the employee–carpool association as well as two 
other associations is modeled by the ORN-extended 
class diagram given in Fig. 5. In such a diagram, the 
ORN bindings for a class (or role) in an association 
are given as stereotype icons at the association end 
corresponding to that class (or role). When no bind-
ing symbols are given for an association end (or 
role), default bindings are assumed, the semantics of 
which will be defined later. 

The database modeled in Fig. 5 is implemented 
by the ORN-extended ODL given in Fig. 6.  

If an <association> is not given for a relationship 
in ODL (see Fig. 4), the default <association> is 
<0..1-to-0..1> for a one-to-one relationship, <0..1-to-
*>  for  a one-to-many,  and <*-to-*>  for  a  many-to- 
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Figure 3: ORN syntax diagrams. 

Figure 4: Updated BNF for a relationship in ODL. 

Figure 6: ODL for class diagram shown in Fig. 5. 

multiplicity given for a traversal path in an <asso-
ciation> implies “many,” then the type of that tra-
versal path must be a collection. 

 

The last issue to address in extending ODL is as-
sociation inheritance. In the Object Model, a rela-
tionship can be inherited by a class via the extends 
relationship. For example, the declaration class 
SalesPerson extends Employee { ... } would mean 
that the SalesPerson class inherits the attributes, re-
lationships, and behavior of the Employee class. 
Thus, the carpool traversal path as declared in the 
Employee class in Fig. 6 would be inherited by the 
SalesPerson class, allowing sales people to join car-
pools. When a relationship is inherited by a class, all 
of the semantics defined by its <association>, given 
or defaulted, are also inherited.  

Figure 5: ORN-extended UML class diagram. 

many. These defaults give relationships the same 
semantics as they have in the existing Object Model. 

And, of course, the semantics of all <associa-
tion>s defined in the ODL—defaulted, given, or in-
herited—must be maintained by the ODMS.  An <association> given for a relationship need 

only to be given for one of the traversal paths. If 
given for both traversal paths, the <association>s 
must be inverses of each other. For example, an 
<association>, if given for riders in Fig. 6, must be 
given as <0..1-to-2..*> |~X~.  

3.3 ORN Semantics in ODL Context 

The semantics of the <multiplicity>s in an <associa-
tion> are identical to those of the multiplicities de-
fined in UML (OMG, 2005). The semantics of the 
<binding>s are given in Table 1.  

When an <association> is given for a traversal 
path tp in class C, the multiplicity and binding given 
after the -to- apply to tp and to the target class, the 
multiplicity and binding given before the -to- apply 
to the inverse tp and to class C. For example, in Fig. 
6, the multiplicity 0..1 and default bindings apply to 
the traversal path carpool and the target class Car-
pool, and the multiplicity 2..* and binding |~X~ apply 
to the traversal path riders and class Employee. If the 

Previous papers have described ORN semantics 
conceptually in terms of ER and class diagrams, e.g. 
Ehlmann et al. (2002). The reader may review these 
papers for a more detailed discussion of ORN. Here, 
we focus more on describing ORN semantics in 
terms of the Object Model, or ODL. Thus, instead of 
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Table 1: ORN binding semantics for the Object Model. 

 

“association links” being conceptually “created” and 
“destroyed,” “relationship references” (or, alterna-
tively, “traversal path references”) are “formed” and 
“dropped.” Dropping a relationship or traversal path 
reference also means dropping the corresponding in-
verse reference (in the inverse traversal path). Also, 
bindings and multiplicities are now associated with 
traversal paths as well as with the related classes. 
This is convenient for identifying bindings and mul-
tiplicities in recursive relationships since the subject 
class and related class, now called the “target class,” 
are the same. Traverse path names can be equated to 
role names given in UML class diagrams. In Table 
1, traversal path names tpA and tpB are also role 
names in the class diagram for relationship R.  

As indicated in Table 1, association semantics 
are derived from multiplicity semantics and the se-
mantics of the given bindings. For example, in the 
|~X~<2..*-to-0..1> association between employees 
and carpools, the |~ symbol in the <binding> for the 
Employee class means (from Table 1): on delete of 
an Employee object, a carpool reference (see Fig. 6) 

can always be implicitly dropped, and the target 
Carpool object is implicitly deleted when dropping 
this reference violates the multiplicity 2..*. The X~ 
symbol means: a carpool reference can always be 
explicitly dropped, and the target Carpool object is 
implicitly deleted when dropping this reference vio-
lates the multiplicity 2..*. The multiplicity 2..* is vio-
lated when a reference to one of just two employees 
in a carpool, i.e., one of just two references in the set 
riders, is dropped. The default <binding> for the Car-
pool class means (again, from Table 1): on delete of 
a Carpool object, a reference in riders (see Fig. 6) 
can be implicitly dropped provided this does not vio-
late the multiplicity 0..1, and a reference in riders 
can be explicitly dropped provided this does not vio-
late the multiplicity 0..1. A 0..1 multiplicity is never 
violated by dropping a reference in riders (or a car-
pool reference for that matter). 

Below are more of the association semantics that 
are modeled in Fig. 5 and implemented in Fig. 6. 
They are described both conceptually and, within 
brackets, in terms of Object Model.  
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• If an employee [Employee object] is deleted, the 
link to the employee’s organization is implicitly 
destroyed [the object’s organization reference to 
its target Organization object is implicitly 
dropped] (default binding and * multiplicity). 

• If an organization [Organization object] is de-
leted, all descendant organizations [Organization 
objects recursively referenced via children] are 
implicitly deleted (' binding); however, an or-
ganization is not deleted if it has any employees 
[if workers references any Employee objects] 
(default binding and 1 multiplicity). 

• If a link between organizations is destroyed [if a 
children reference (or its inverse parent refer-
ence) is dropped], the child organization and all 
descendant organizations [Organization objects 
recursively referenced via children] are implicitly 
deleted (' binding); however, again, an organiza-
tion is not deleted if it has any employees (de-
fault binding and 1 multiplicity). 

4 IMPLEMENTING ORN 

The implementation of ORN semantics in an 
ODMG-compliant ODMS is described by giving the 
algorithms required to create and delete objects and 
form and drop relationship references. These opera-
tions become complex object operations in the con-
text of ORN. This means they may no longer in-
volve just one object or relationship reference but 
may involve many objects, relationships, and rela-
tionship references in the scope of a complex object. 

In Ehlmann (2006), we give the algorithms for 
these operations by providing all related pseu-
docode, with commentary, for the ObjectFac-
tory::new() and Object::delete() methods, which are 
associated with an object, and the C::form_tp() and 
C::drop_tp() methods, which are associated with a 
declared traversal path tp in a user-declared class C. 
These methods are defined as part of the Object 
Model (see Chapter 2 of Cattel and Douglas(2000)). 

In this section, due to space constraints, we dis-
cuss these algorithms in general and illustrate them 
by giving the algorithm for just the Object::delete() 
method. The pseudocode shown in this section is 
about one quarter of that given in Ehlmann (2006). 

The algorithms have been developed by reverse 
engineering the code for implementing ORN within 
OR+. This is the same code executed when one uses 
the ORN Simulation, a web-based, prototype model-
ing tool (Ehlmann, 2000). Thus, the algorithms are 
well-tested but have a slightly different wrapping.  

Their implementation of ORN semantics is un-
ambiguous in the presence of association cycles as 
long as <association>s do not contain a |– binding 
for just one end of the association. By unambiguous, 
we mean that the results of a complex object opera-
tion are independent of the order in which traversal 
paths and the references in these paths are processed. 
This property of ORN is discussed in detail and 
proven in Ehlmann et al. (2002).  

As stated in the introduction, the algorithms are 
relatively simple; however, they depend on the 
ODMS implementation supporting a nested transac-
tion capability. Nested transactions are needed to 
implement the semantics of the ' (prime) binding and 
are desirable so that the system can check multiplic-
ity violations at the end of a complex object opera-
tion, undoing the operation upon any exception and 
thus making the complex object operation atomic. 
The Object Model defines a Transaction Model, 
which does not provide nested transactions. So, be-
fore giving the algorithms for the complex object 
operations in Ehlmann (2006), we extend the Trans-
action Model to support nested transactions, at least 
for the purpose of implementing the ODMS. We as-
sume such support for nested transactions and give 
algorithms for transaction methods, focusing on the 
actions required to support ORN semantics.  

All methods are assumed to execute in the con-
text of a opened database d, and methods new(), de-
lete(), form_tp ()A , and drop_tp ()A  are assumed to exe-
cute within the scope of a user-defined transaction. 

The pseudocode that expresses the algorithms is 
some mixture of ODL, C++, Java, and English. We 
have tried to stick as close as possible to the conven-
tions of ODL. Indention indicates control structure, 
with appropriate end’s often used to terminate com-
pound statements. The try...handle...end handle con-
trol structure for exception handling is similar to 
Java’s try {...} catch {...}. Methods for a class are in-
troduced with a header of the form Method <vari-
able>.<method name>( ... ), where the <variable> is 
used in the body of the method to refer to the object 
on which the method is invoked, i.e., the implicit pa-
rameter and this object in C++ and Java. A <method 
name> begins with an underscore if it is to be in-
voked only by the ODMS implementation.  

The algorithms are expressed using the variables 
defined in Table 1. 

Fig. 7 gives the delete() method and two methods 
that it uses, _try_delete() and _enforce_binding(). 
The given delete() replaces the primitive delete() 
method as currently defined in the Object Model. 

The remainder of this section briefly explains the 
pseudocode in Fig. 7. For a more detailed explana-
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tion and for the pseudocode of all methods invoked 
by the delete() algorithm, see Ehlmann (2006). 

 
Figure 7: Method delete() in interface Object. 

The algorithm for delete() uses these functions:  
Type(o) – the type, or class, of object o, which is the 

most specific type of o in any type hierarchy. 
LbM(tp) – the lower bound multiplicity for tp in the 

<association> for the relationship represented by 
traversal path tp. 

ImpB(tp) – the implicit destructibility binding for tp 
(minus any | symbol) in the <association> for the 
relationship represented by traversal path tp. 

Inverse(tp) – the inverse traversal path of tp. 
Refs(o.tp) – the number of references in o.tp, which, 

if tp is a collection, is the cardinality of the col-
lection, i.e., o.tp.cardinality() and, if tp is a refer-
ence, is 0 if nil and 1 if not. 
The delete() method provides a nested transac-

tion that embeds the complex object operation, per-
mitting its effects on the database to be undone if an 
exception occurs. 

The _try_delete() method is an indirectly recur-
sive method that may result in the implicit deletion 
of many objects that are related directly or indirectly 
to the object upon which it is invoked, designated 
here as a. Its invocation on an object must be dy-
namically bound to the method on the class repre-
senting the object’s most specific type. This ensures 
that _try_delete() processes all traversal path in-
stances involving the object. 

The method first checks that object a has not al-
ready been marked for deletion by invoking the 
_deleted() method on the current transaction. If it 
has, _try_delete() simply exits. If not, it marks object 
a for deletion by invoking _mark_for_deletion().  

The outer for each loop traverses every traversal 
path tpA defined in (or inherited by) class A. For each 
such path in object a, the inner for each traverses all 
references in the traversal path. The purpose here is 
to attempt to implicitly drop each reference to a tar-
get object b (including the inverse reference to a) so 
that object a can be deleted. The code first drops 
each such reference by invoking the 
_primitive_drop_tpA method on a, which drops 
a.tpA’s reference to b and b.tpB’s reference to a. It 
then invokes the method _enforce_binding() on the 
target object b to enforce the implicit destructibility 
binding ImpB(tp )B  for the inverse traversal path tpB. 

The last step of _try_delete() actually deletes the 
object but only if none of the _enforce_binding() in-
vocations raise an exception. 

The _enforce_binding() method is assumed for 
simplicity to be defined in the interface Object. The 
method for one class in a relationship must be acces-
sible to the other class. The method enforces the de-
structibility binding semantics specified in Table 1. 
Here, b denotes the implicit parameter and tpB de-
notes the explicit parameter since _enforce_binding() 
is invoked on a target object to enforce the binding 
for the inverse traversal path in that target object. It 
is invoked after a reference to target object b and its 
inverse reference in the traversal path tpB have been 
dropped by the caller. The case statement executes 
the appropriate code for the given binding. The 
method _check_path_at_commit() is invoked to en-
sure that a lower bound constraint is rechecked at the 
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end of the complex object operation, i.e., within 
commit() of the current, nested transaction. 

5 CONCLUSION 

In this paper, we have proposed adding ORN to the 
ODMG Object Model and have referenced, illus-
trated, and discussed algorithms for implementing 
ORN semantics in an ODMS. The shortcomings of 
our proposal are that the Object Model is made 
slightly more complex and ODMS implementations 
must include a nested transaction capability. Despite 
these shortcomings and regardless of whether or not 
ORN is added to the ODMG standard, we believe 
that vendors should strongly consider including 
ORN as an extended feature to their ODMSs. We 
conclude by summarizing the reasons:  
• ORN is a simple notation that allows the data-

base developer to specify a variety of association 
semantics, which define the scopes of complex 
and composite objects. 

• The extended ODL would facilitate a straight-
forward mapping of association semantics from a 
conceptual database model, expressed as an 
ORN-extended UML class diagram, to the logi-
cal database model, expressed in the ODL. 

• The ODMS would provide the same support for 
associations that is provided by relational 
DBMSs via the SQL references clause plus sup-
port even more powerful association semantics. 

• If no <association> is given for a traversal path, 
the default <association> corresponds to current 
system capabilities. Thus, adding ORN is a pure 
extension requiring no changes to the underlying 
Object Model capabilities. 

• The implementation of this extension is rela-
tively simple as shown by the algorithms we 
have made available and their implementation in 
OR+. 

• The benefits are increased database development 
productivity and improved database integrity as 
much less code needs to be developed and main-
tained by database application developers. 
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