
REACTIVE, DISTRIBUTED AND AUTONOMIC COMPUTING
ASPECTS OF AS-TRM

E. Vassev, H. Kuang, O. Ormandjieva, J. Paquet
Department of Computer Science and Software Engineering, Concordia University,

EV 3.165, 1455 de Maisonneuve West, Montreal, Quebec, H3G 1M8, Canada

Keywords: Autonomic Computing, Distributed Computing, Reactive Systems, Software Architecture.

Abstract: The main objective of this research is a rigorous investigation of an architectural approach for developing
and evolving reactive autonomic (self-managing) systems, and for continuous monitoring of their quality. In
this paper, we draw upon our research experience and the experience of other autonomic computing
researchers to discuss the main aspects of Autonomic Systems Timed Reactive Model (AS-TRM)
architecture and demonstrate its reactive, distributed and autonomic computing nature. To our knowledge,
ours is the first attempt to model reactive behavior in the autonomic systems.

1 INTRODUCTION

Autonomic computing is a new research area led by
IBM Corporation, which area concentrates on
making complex computing systems smarter and
easier to manage (Kephart, Chess, 2003, Horn, 2001,
Ganeck, Corbi, 2001). The main characteristic of
autonomic computing is self-management, i.e., self-
monitoring of its own use and quality in the face of
changing configurations and external conditions,
based on automatic problem-determination
algorithms. Many of autonomic systems concepts
imitate self-regulatory model of human autonomic
system; thus autonomic computer systems are
envisioned to combine the following seven
characteristics: self-configuring, self-healing, self-
optimizing self-protecting, self-defining,
contextually aware and anticipatory (Kephart, Chess,
2003, Horn, 2001). The first four characteristics
listed above are considered to be the core
characteristics of an autonomic computer system
(McCann, Huebscher, 2004).

However, according to our best knowledge,
autonomic computing technology has not been
applied to model and develop real-time reactive
systems, which systems have high demand for
autonomic computing technology to remove the
complexity of modeling and development. With
autonomic behavior, real-time reactive systems will

be more self-managed to themselves and more
adaptive to their environment.

Research Goals. The long-term research goals
for this project are: 1) modeling of distributed
autonomic reactive components along with their
relationships; 2) modeling of the qualitative
properties constraining systems’ behavior, such as
reliability. In order to achieve our research goals, we
need to: 1) develop an appropriate formal framework
for autonomic distributed real-time reactive systems
that leverages their modeling, development,
integration and maintenance, as well as for
continuous self-monitoring of their quality
formalism to support distributed autonomic
behavior, and 2) build corresponding architecture
along with communication mechanism to implement
distributed autonomic behavior. In this paper we
describe the architecture and the communication
mechanism for of Autonomic Systems Timed
Reactive Model (AS-TRM) by revealing its reactive,
distributed and autonomic computing nature.

Our Approach. We add reactiveness to the

autonomic components’ behavior thus allowing
them to communicate and synchronize with the
environment while fulfilling their tasks. The novelty
of our approach consists in combining the
advantages of both the formal representation of
reactive components in TROM formalism
(Achuthan, 1995), and the autonomy of components
in agent-oriented paradigm. Our objectives include

196
Vassev E., Kuang H., Ormandjieva O. and Paquet J. (2006).
REACTIVE, DISTRIBUTED AND AUTONOMIC COMPUTING ASPECTS OF AS-TRM.
In Proceedings of the First International Conference on Software and Data Technologies, pages 196-202
DOI: 10.5220/0001313601960202
Copyright c© SciTePress

an extension of TROM as an Autonomic System
Timed Reactive Model (AS-TRM) to include the
specification of distributed reactive components
along with their relationships, and the non-functional
properties constraining systems’ behavior.

Fig. 1 illustrates the concept of the Reactive
Autonomic System AS-TRM. To our knowledge,
ours is the first attempt to model reactiveness in
autonomic systems.

Contextualy
Aware

Self-
Configuring

Self-
Defining

Anticipatory

Real-
Time

Distributed
AS-T

RM

Reactive

Self-
Healing

Self-
Optimizing

Self-
Protecting

Reac
tive

 Auto
nom

ic

Syste
m

Figure 1: The characteristics of visionary Reactive
Autonomic System AS-TRM.

This paper is organized as follows: The AS-TRM
architecture fulfilling the requirements of both
autonomic and reactive behavior is introduced in
section 2. Section 3 presents the structure of the AS-
TRM communication system. In section 4, we
review the related work. Finally, we present our
conclusion and future work.

2 AS-TRM ARCHITECTURE

This section provides the comprehensive conceptual
view of the AS-TRM architecture; it is intended to
capture and convey the significant architectural
decisions, which serve as a foundation for the further
design and implementation. We focus on the
structural and the dynamic view, as well as on the
specific characteristics of AS-TRM to discuss its
reactive, distributed and autonomic aspects.

Our AS-TRM architecture builds upon extending
the TROM formalism (Achuthan, 1995) for
modeling reactive systems. Reactive systems are the
computer systems that continuously react to their
physical environment, continually sensing and
responding to the environment, at the speed
determined by the environment. Reactive autonomic
systems have infinite behavior and must satisfy the

following two important requirements for
reactiveness:

- stimulus synchronization: the process is always
able to react to stimulus from the environment;

- response synchronization: the time elapsed
between a stimulus and its response is acceptable to
the relative dynamics of the environment so that the
environment is still receptive to the response.

The TROM formalism for developing real-time
reactive systems is briefly introduced below.

2.1 TROM

Real-time reactive systems are some of the most
complex systems, so the modeling and development
of real-time reactive systems becomes very
challenging and difficult work. The TROM
formalism (Achuthan, 1995) for real-time reactive
systems developed at Concordia University is a
powerful tool for dealing with complexity issues in
developing such systems. The TROM formalism is a
three-tier formal model (Achuthan, 1995). This
three-tier structure describes system configuration,
reactive classes, and relative Abstract Data Types
(see Fig.2).

System
Computation

TROM
Computation

Data Model

System Config.
Specification

Time-reactive
Object Model

LSL
First Order

Logic

TROM Theory:
Axioms

System Theory:
Synchr. Axioms

Operating
Semantics

3-Tiered Design
Specification Logic Semantics

Figure 2: TROM Formal Model.

The lowest tier is the Larch Shared Language
(LSL) tier, which specifies the Abstract Data Types
used in the reactive classes (Achuthan, 1995). The
middle tier is specifying the reactive classes named
Generic Reactive Classes (GRCs). A GRC is a
hierarchical finite state machine augmented with
ports, attributes, logical assertions on the attributes,
and time constraints. The upper-most tier is the
System Configuration Specification, which models
the collaboration between the reactive classes and
their communication through port links (Achuthan,
1995). As a layered model, each upper tier
communicates only with its immediate lower tier.
The independence between the tiers makes the
modularity, reuse, encapsulation, and hierarchical
decomposition possible.

REACTIVE, DISTRIBUTED AND AUTONOMIC COMPUTING ASPECTS OF AS-TRM

197

On the other hand, autonomic computing is the
new research area, which focuses on developing
complex computing system smarter and easier to
manage. The goal of our work is to extend the
current TROM formalism to AS-TRM to include the
specification of distributed reactive autonomic
components along with their relationships, and the
qualitative properties constraining the system’s
behavior.

2.2 AS-TRM

AS-TRM can be considered as TROM with
extended autonomic behavior, and the autonomic
functionalities are those creating the autonomic
behavior. Autonomic functionalities can be
implemented locally, using locally maintained
measurements and knowledge. The autonomic
behavior can be implemented among the members
within a peer group through sharing measurements
and knowledge of the group.

Figure 3: AS-TRM Formal Model.

AS-TRM extends the TROM formal model by
adding more tiers (see Fig. 3) and including the
specifications for a time-reactive component (RC),
an autonomic group of synchronously interacting
RCs (ACG) and an autonomic system (AS) that
consists of asynchronously communicating ACGs.

RC. This newly added tier encapsulates TROM
objects (the TROM formalism’s second tier) into an
AS-TRM reactive component. The synchronous
interaction between the RCs allow for realization of
a reactive task. The communication between RC and
its upper tier ACG is realized through an interface
and is asynchronous (see section 3.1).

ACG. AS-TRM Autonomic Group of RCs is a
set of synchronously communicating RCs
cooperating in fulfillment of a group task. Each
ACG can accomplish a complete real-time reactive
task independently. The self-monitoring behavior at
the ACG tier and the asynchronous interaction

between ACG and the RCs is realized by an ACG
Manager (AGM). The responsibilities of an AGM
include the following:

- Continuous monitoring of the ACG quality
level required by the evolving nature of the peer
group

- AGM monitors the behavior of the
synchronously communicating RCs and analyzes the
correctness of their functionalities according to the
policies.

- AGM receives diagnostic messages from RCs
and sends back treatment messages to them;

- AGM unplugs the broken RCs from their group
and plugs them back when they are ready;

- AGM automates the initialization and
maintenance according to evolving group
configuration and changes in the run time;

- AGM encapsulates any data under control of
this group and manages all data shared either
between RCs or between the group and other groups.

The reactive behavior is modeled at the RC and
ACG tiers. We model the environmental objects
communicating with the system as RCs, and
incorporate them into the ACG fulfilling the
corresponding reactive task.

The self-healing and self-optimizing autonomic
behavior can be implemented on peer group level as
the following aspects:

- Automating backup of policies for the group;
- Knowledge and resource sharing within the

group;
- Execution time optimization according to the

empirical data.
AS. Autonomic System (AS) tier is abstracting a

set of asynchronously communicating ACGs. The
self-monitoring behavior and the asynchronous
interaction between AS and the ACGs is realized by
the Global Manager (GM). The responsibilities of
the Global Manager (GM) include the following:

- Continuous monitoring of the AS quality level
required enduring the safety of the autonomic
system;

- GM verifies user access according to the
security policies and different level privileges
defined among GM, ACGs, RCs, and environment;

- GM monitors the behavior of the ACGs and
analyzes whether they work correctly according to
the policies;

- GM receives diagnostic messages from ACGs
and sends back treatment messages to them;

- GM receives a request for updating the
compositional rules for ACGs and synchronization
axioms among RCs from the user, and forwards the
updates to the AGMs.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

198

The self-protecting, self-configuring, self-
optimizing, and self-healing autonomic behavior can
be implemented at the AS level as the following
aspects:

- automating user access support;
- automating the configuration for users;
- knowledge and resource sharing within the

system;
- automating the backup of the policies for the

entire system.

Figure 4: AS-TRM Architecture.

2.3 Characteristics of AS-TRM

Below we summarize the autonomic characteristics
of the AS-TRM architecture shown in Fig. 4 (based
on a figure in (Bantz et al, 2003)) in addition to real-
time and reactive those inherited from the TROM
formalism (Achuthan, 1995):

- AS-TRM is self-managed: it can monitor its
components (internal knowledge) and its
environment (external knowledge) by checking the
status from them, so that it can adapt to changes that
may occur, which may be known changes or
unexpected changes;

- AS-TRM is distributed: the components within
AS-TRM can collaborate to complete a common
real-time reactive task distributively;

- AS-TRM is proactive: it can initiate changes to
the system;

- AS-TRM is evolving: a) the policies of each
RC can be changed in the run time according to the
changes of requirements; b) the composition rules of
the RCs within corresponding peer group can be
changed in the run time; c) the synchronization
axioms among the RCs within corresponding peer
group can be changed in the run time.

2.4 Architecture of AS-TRM

Our architectural goal is to capture the above-
mentioned characteristics of AS-TRM. The

architecture of AS-TRM (see Fig. 4) is based on the
tiers of the AS-TRM formal model, and consists of
Reactive Components (RCs), AS-TRM Component
Group Manager (AGM), and Global Manager (GM),
which are connected to each other at the local, peer
group, and system levels.

At the peer group level, which is also the AS-
TRM Autonomic Group of RCs (ACG) level, every
AGM interacts and shares knowledge as well as
information with its RCs; it receives information
(policies) from its superior (Global Manager) and
implements them with its own resources. The
autonomic behavior at this level is a result of peer
knowledge-sharing, getting local agreement, and
acting locally on that knowledge. Fig. 5 is another
architectural view of AS-TRM.

ACG architecture. An ACG consists of an
AGM and a set of managed RCs. An AGM consists
of a collection of intelligent agents which are
responsible for the autonomic behavior of self-
configuring, self-healing, self-optimizing, as well as
self-protecting, and a replicator for replicating the
states of the RCs within the ACG. The intelligent
agents in the AGM can communicate one another
through the Autonomic Signal Channel. Each
managed RC communicates its events and other
measurements with the AGM. According to the
input received from the RCs, the AGM makes the
decisions based on the policies, facts, and rules
(stored in the ACG repository) and communicates
the instructions with corresponding RCs.

Anatomy of GM and RC. A GM consists of a
set of intelligent agents which are responsible for the
autonomic behavior of self-configuring, self-healing,
self-optimizing, as well as self-protecting, and a
replicator for replicating the states of the ACGs
within the AS-TRM system. The intelligent agents
in the GM can communicate each other through the
Autonomic Signal Channel. Every ACG
communicates its events and other measurements
with the GM. According to the input received from
the ACGs, the GM makes the decisions based on the
policies, facts, and rules (stored in the AS
repository) and communicates the instructions with
corresponding ACGs.

REACTIVE, DISTRIBUTED AND AUTONOMIC COMPUTING ASPECTS OF AS-TRM

199

Figure 5: Anatomy of AS-TRM.

3 AS-TRM COMMUNICATION

SYSTEM

The AS-TRM Communication System (ACS) is an
autonomous messaging system in the AS-TRM that
exposes interfaces for both synchronous and
asynchronous message-delivery services. By virtue
of its architecture, the ACS is an application of the
Demand Migration Framework (DMF) (Vassev,
2005) which extends the DMF architecture by
adding new features for adaptation to the autonomic
computing needs. The ACS architecture provides
two means of communication among AS-TRM
entities (RC, AGM and GM) – asynchronous and
synchronous (see section 2.3). Asynchronous
communication was inherited from DMF centralized
message-persistent asynchronous communication,
and synchronous communication is a variant of peer-
to-peer communication (Vassev, 2005). The former
takes place between the RCs and the AGMs, and
between the AGMs and the GM. Peer-to-peer
communication takes place between RCs. Fig. 6
depicts the layered architecture of the ACS derived
from the DMF. The architectural ACS model
consists of four layers – Message Space (MS),
Message Space Proxies (MSPs), Transport Agents

(TAs) and Peer-to-Peer Transport Agents (P2PTAs).
While the MS, MSP and TA layers are derived
directly from the DMF (Vassev, 2005), the P2PTA
layer is an ACS extension that addresses
synchronous communication issues. The ACS
inherently relies on MS, MSPs and TAs to “form
architecture applicable to asynchronous
communication systems, where the messages are
delivered in a demand-driven manner” (Vassev,
2005). The MS incorporates a persistent storage
mechanism for all the messages exchanged
asynchronously in the AS-TRM. The MS in turn
incorporates an Object Query Language (OQL)
(Emmerich, 2000) for querying the stored messages.
On top of this, we have the MSP presentation layer.
There is a single MS and multiple MSPs in the
model, each MSP being associated with a TA.

The TAs (see the dark grey segments named TA
in Fig. 6) form a migration layer (Vassev, 2005) for
transporting messages asynchronously to and from
the RCs, AGMs and the GM that adhere to the TAs’
interface. TAs are “independent stand-alone
components able to carry objects over the machine
boundaries” (Vassev, 2005). We use them to migrate
messages from one node to another. The TAs
provide a transparent form of migration. On top of
the TA layer, we have the P2PTA layer (see the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

200

white segments wrapping the TA layer and bordered
with a dashed circle). P2PTAs provide an alternative
means of communication, which is synchronous
point-to-point communication. The RCs use the
P2PTAs for direct synchronous communication.

TA TA
MSP

TA TA

MS

MSP

MSP MSP

GM

TA
Interface

ASTC

TA
Interfac

e

Direct
TA

Interfa

ASTC

TA
Interfac

e

Direct
TA

I t f

TA
Interface RC

P2PT
A

Inter

TA
Interface

RC
P2P
TA

Inter

TA
Interface

Env.
RC

P2P
TA

Inter

P2PTA

P2PTA

P2P
TA

P2P
TA

AG
M

TA
Interfac

e

AGM

TA
Interface

Figure 6: AS-TRM Communication System.

3.1 Messaging

The messages communicated via the ACS fall into
two major groups – heartbeat and regular messages.
The heartbeat messages are used for self-monitoring,
and they provide a summary of the component state.
The RCs send proactively and regularly their state to
the associated AGM, and the AGMs send their state
to the GM. The regular messages are the AS-TRM
work and configuration messages. In addition, each
AS-TRM message has a priority, recognizable by
the transport agents. This helps messages with
higher priority to be delivered first. From the
functional perspective, the ACS addresses:

- asynchronous broadcasting;
- canceling messages;
- asynchronous and synchronous sending and

receiving heartbeat and regular messages;
- asynchronous sending and receiving regular

messages to and by a specified node.

3.2 Autonomic Features

The AS-TRM Communication System extends the
DMF (Vassev, 2005) by implying some autonomic
computing features like self-protection, self-
optimization and self-configuration (see section 2).
Some of the autonomic computing features are

addressed by the DMF architecture (Vassev, 2005).
The core components – MS and TAs, work in
autonomous and independent mode. Hence, the ACS
inherently consists of autonomous elements. In order
to make the ACS’ components autonomic, we
extend their autonomous architecture by adding to
them a management unit (see Fig. 7). The
management unit (MU) controls and monitors the
associated ACS’ unit. Hence, each ACS’ component
is a peer of autonomous units – a management unit
and ACS work unit (WU). The MU performs control
functions over the WU, which simply performs its
work duty and reports proactively its state to the
MU. The last can decide to shut down and/or restart
the former if there is no state report received for an
efficient amount of time.

Figure 7: ACS’ Components Architecture.

The ACS’ autonomic features are:
Self-protection. Only communication-trusted

end-points are able to communicate via ACS. The
ACS exposes an integrated security mechanism that
prevents unauthorized access. This autonomic
feature is inherited from the DMF architecture.

Self-configuration. The ACS is a distributed
system with hot-plugging (Vassev, 2005) features.
For example, the TAs are able to discover available
MS and plug into the ACS. This autonomic feature
is inherited from the DMF architecture.

Self-healing. The ACS’ components can be
restarted by the embedded management unit. The
ACS addresses at least one delivery semantics
(Vassev, 2005), which prevents messages sent
asynchronously to be lost. That allows the restarted
component to continue from the point it stopped.

4 RELATED WORK

An autonomic system may contain many autonomic
components that communicate and negotiate with
each other and other types of resources within or
outside of system boundaries. This is referred to as
autonomic manager collaboration. The architectural
concepts for autonomic systems are mainly based on

REACTIVE, DISTRIBUTED AND AUTONOMIC COMPUTING ASPECTS OF AS-TRM

201

IBM Corporation’s blueprints and on the on-going
research for autonomic computing conducted at the
IBM’s laboratories (IBM, 2003, IBM 2004, IBM,
2005). The three blueprints are overviews of the
basic concepts, constructs and behaviors for building
autonomic capability into computer systems. The
autonomic component architecture relies on the
technique of feedback control optimization based on
forecasting models, which technique facilitates the
self-management features of an autonomic system.

In (Yuan-Shun, 2005), a new model-driven
scheme for autonomic management is presented.
This scheme can better allocate resources by using
reliability models to predict and direct the
distribution of monitoring efforts. If certain services
or components are predicted to have high reliability
at a particular time, then there is no need for
intensive monitoring during that period, but those
with low reliability require intensive monitoring.

Our research considerably differs from the
related work in this area for the reason that we target
the modeling of both reactiveness and autonomicity
in distributed systems.

5 CONCLUSIONS AND FUTURE
WORK

The research work reported in this paper is our first
step towards developing a formal framework for
developing distributed reactive autonomic
components along with their relationships, and the
qualitative properties such as reliability and safety
constraining the behavior of the system. Particularly,
it addresses: 1) the extension of the existing TROM
formalism for modeling real-time reactive systems
to AS-TRM formalism for supporting autonomic
behavior; 2) the characteristics of AS-TRM for
determining the requirement specification, design,
and implementation of AS-TRM; and 3) the
architecture and communication mechanism of AS-
TRM for implementing autonomic as well as real-
time reactive functionalities. This paper describes
only the architecture aspects of AS-TRM, i.e. it does
not deal with load balancing and efficiency aspects,
as these are part of our future work on AS-TRM.

One of the most important aspects of autonomic
systems is their self-management – a feature
requiring formal mechanism for self-diagnosis of the
AS-TRM system’s quality status. The evolving
nature of the AS-TRM requires continuous
monitoring of the quality levels to evaluate the risk
of deploying a change on the configuration of the

AS-TRM system, and to diagnose potential safety
hazards in AS functionality. We are investigating
means for achieving continuous quality assessment
of the evolving AS-TRM. We intend to develop and
analyze algorithms and negotiation protocols for
conflicting quality requirements, and determine what
bidding or negotiation algorithms are most effective.

REFERENCES

Achuthan, R., 1995. A Formal Model for Object-Oriented
Development of Real-Time Reactive Systems. Ph.D.
Thesis, Department of Computer Science, Concordia
University, Montreal, Canada.

Bantz, D.F. et al, 2003. Autonomic Personal Computing.
IBM Systems Journal, Vol 42, No 1, pp. 165-176.

Emmerich, W., 2000. Engineering Distributed Objects.
Baffins Lane, Chichester, Wiley.

Ganeck, A.G., Corbi, T.A., 2003. The Dawning of the
autonomic computing era. IBM Systems Journal, Vol
42, No 1, pp.5-18.

Horn, P., 2001. Autonomic Computing: IBM’s Perspective
on the State of Information Technology. IBM
Manifesto.

IBM, 2003. An architectural blueprint for autonomic
computing.

IBM 2004. An architectural blueprint for autonomic
computing.

IBM 2005. An architectural blueprint for autonomic
computing.

Kephart, J.O., Chess, D.M., 2003. The Vision of
Autonomic Computing. IEEE Computer, pp.41-50.

McCann, J. A., Huebscher, M.C., 2004. Evaluation issues
in Autonomic Computing. Proceedings of the
International Workshop on Agents and Autonomic
Computing and Grid Enabled Virtual Organizations
(AAC-GEVO’04), pp.21-24.

Vassev E., 2005. General Architecture for Demand
Migration in the GIPSY Demand-Driven Execution
Engine. Masters Thesis, Department of Computer
Science and Software Engineering, Concordia
University, Montreal, Canada.

Yuan-Shun Dai, 2005. Autonomic Computing and
Reliability Improvement. Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC'05), pp. 204-206.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

202

