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Abstract: The main objective of this research is a rigorous investigation of an architectural approach for developing 
and evolving reactive autonomic (self-managing) systems, and for continuous monitoring of their quality. In 
this paper, we draw upon our research experience and the experience of other autonomic computing 
researchers to discuss the main aspects of Autonomic Systems Timed Reactive Model (AS-TRM) 
architecture and demonstrate its reactive, distributed and autonomic computing nature. To our knowledge, 
ours is the first attempt to model reactive behavior in the autonomic systems. 

1    INTRODUCTION 

Autonomic computing is a new research area led by 
IBM Corporation, which area concentrates on 
making complex computing systems smarter and 
easier to manage (Kephart, Chess, 2003, Horn, 2001, 
Ganeck, Corbi, 2001). The main characteristic of 
autonomic computing is self-management, i.e., self-
monitoring of its own use and quality in the face of 
changing configurations and external conditions, 
based on automatic problem-determination 
algorithms. Many of autonomic systems concepts 
imitate self-regulatory model of human autonomic 
system; thus autonomic computer systems are 
envisioned to combine the following seven 
characteristics: self-configuring, self-healing, self-
optimizing self-protecting, self-defining, 
contextually aware and anticipatory (Kephart, Chess, 
2003, Horn, 2001). The first four characteristics 
listed above are considered to be the core 
characteristics of an autonomic computer system 
(McCann, Huebscher, 2004).  

However, according to our best knowledge, 
autonomic computing technology has not been 
applied to model and develop real-time reactive 
systems, which systems have high demand for 
autonomic computing technology to remove the 
complexity of modeling and development. With 
autonomic behavior, real-time reactive systems will 

be more self-managed to themselves and more 
adaptive to their environment.  

Research Goals. The long-term research goals 
for this project are: 1) modeling of distributed 
autonomic reactive components along with their 
relationships; 2) modeling of the qualitative 
properties constraining systems’ behavior, such as 
reliability. In order to achieve our research goals, we 
need to: 1) develop an appropriate formal framework 
for autonomic distributed real-time reactive systems 
that leverages their modeling, development, 
integration and maintenance, as well as for 
continuous self-monitoring of their quality 
formalism to support distributed autonomic 
behavior, and 2) build corresponding architecture 
along with communication mechanism to implement 
distributed autonomic behavior. In this paper we 
describe the architecture and the communication 
mechanism for of Autonomic Systems Timed 
Reactive Model (AS-TRM) by revealing its reactive, 
distributed and autonomic computing nature. 

 
Our Approach. We add reactiveness to the 

autonomic components’ behavior thus allowing 
them to communicate and synchronize with the 
environment while fulfilling their tasks.  The novelty 
of our approach consists in combining the 
advantages of both the formal representation of 
reactive components in TROM formalism 
(Achuthan, 1995), and the autonomy of components 
in agent-oriented paradigm. Our objectives include 
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an extension of TROM as an Autonomic System 
Timed Reactive Model (AS-TRM) to include the 
specification of distributed reactive components 
along with their relationships, and the non-functional 
properties constraining systems’ behavior.  

Fig. 1 illustrates the concept of the Reactive 
Autonomic System AS-TRM. To our knowledge, 
ours is the first attempt to model reactiveness in 
autonomic systems. 
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Figure 1: The characteristics of visionary Reactive 
Autonomic System AS-TRM. 

This paper is organized as follows: The AS-TRM 
architecture fulfilling the requirements of both 
autonomic and reactive behavior is introduced in 
section 2. Section 3 presents the structure of the AS-
TRM communication system. In section 4, we 
review the related work. Finally, we present our 
conclusion and future work.   

2    AS-TRM ARCHITECTURE  

This section provides the comprehensive conceptual 
view of the AS-TRM architecture; it is intended to 
capture and convey the significant architectural 
decisions, which serve as a foundation for the further 
design and implementation. We focus on the 
structural and the dynamic view, as well as on the 
specific characteristics of AS-TRM to discuss its 
reactive, distributed and autonomic aspects.  

Our AS-TRM architecture builds upon extending 
the TROM formalism (Achuthan, 1995) for 
modeling reactive systems. Reactive systems are the 
computer systems that continuously react to their 
physical environment, continually sensing and 
responding to the environment, at the speed 
determined by the environment. Reactive autonomic 
systems have infinite behavior and must satisfy the 

following two important requirements for 
reactiveness: 

- stimulus synchronization: the process is always 
able to react to stimulus from the environment; 

- response synchronization: the time elapsed 
between a stimulus and its response is acceptable to 
the relative dynamics of the environment so that the 
environment is still receptive to the response. 

The TROM formalism for developing real-time 
reactive systems is briefly introduced below. 

2.1 TROM 

Real-time reactive systems are some of the most 
complex systems, so the modeling and development 
of real-time reactive systems becomes very 
challenging and difficult work. The TROM 
formalism (Achuthan, 1995) for real-time reactive 
systems developed at Concordia University is a 
powerful tool for dealing with complexity issues in 
developing such systems. The TROM formalism is a 
three-tier formal model (Achuthan, 1995). This 
three-tier structure describes system configuration, 
reactive classes, and relative Abstract Data Types 
(see Fig.2).  
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Figure 2: TROM Formal Model. 

The lowest tier is the Larch Shared Language 
(LSL) tier, which specifies the Abstract Data Types 
used in the reactive classes (Achuthan, 1995). The 
middle tier is specifying the reactive classes named 
Generic Reactive Classes (GRCs). A GRC is a 
hierarchical finite state machine augmented with 
ports, attributes, logical assertions on the attributes, 
and time constraints. The upper-most tier is the 
System Configuration Specification, which models 
the collaboration between the reactive classes and 
their communication through port links (Achuthan, 
1995). As a layered model, each upper tier 
communicates only with its immediate lower tier. 
The independence between the tiers makes the 
modularity, reuse, encapsulation, and hierarchical 
decomposition possible.  
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On the other hand, autonomic computing is the 
new research area, which focuses on developing 
complex computing system smarter and easier to 
manage. The goal of our work is to extend the 
current TROM formalism to AS-TRM to include the 
specification of distributed reactive autonomic 
components along with their relationships, and the 
qualitative properties constraining the system’s 
behavior.  

2.2 AS-TRM 

AS-TRM can be considered as TROM with 
extended autonomic behavior, and the autonomic 
functionalities are those creating the autonomic 
behavior. Autonomic functionalities can be 
implemented locally, using locally maintained 
measurements and knowledge. The autonomic 
behavior can be implemented among the members 
within a peer group through sharing measurements 
and knowledge of the group.  

 
Figure 3: AS-TRM Formal Model. 

AS-TRM extends the TROM formal model by 
adding more tiers (see Fig. 3) and including the 
specifications for a time-reactive component (RC), 
an autonomic group of synchronously interacting 
RCs (ACG) and an autonomic system (AS) that 
consists of asynchronously communicating ACGs.  

RC. This newly added tier encapsulates TROM 
objects (the TROM formalism’s second tier) into an 
AS-TRM reactive component. The synchronous 
interaction between the RCs allow for realization of 
a reactive task. The communication between RC and 
its upper tier ACG is realized through an interface 
and is asynchronous (see section 3.1). 

ACG. AS-TRM Autonomic Group of RCs is a 
set of synchronously communicating RCs 
cooperating in fulfillment of a group task. Each 
ACG can accomplish a complete real-time reactive 
task independently. The self-monitoring behavior at 
the ACG tier and the asynchronous interaction 

between ACG and the RCs is realized by an ACG 
Manager (AGM). The responsibilities of an AGM 
include the following: 

- Continuous monitoring of the ACG quality 
level required by the evolving nature of the peer 
group 

- AGM monitors the behavior of the 
synchronously communicating RCs and analyzes the 
correctness of their functionalities according to the 
policies.  

- AGM receives diagnostic messages from RCs 
and sends back treatment messages to them;  

- AGM unplugs the broken RCs from their group 
and plugs them back when they are ready;  

- AGM automates the initialization and 
maintenance according to evolving group 
configuration and changes in the run time; 

- AGM encapsulates any data under control of 
this group and manages all data shared either 
between RCs or between the group and other groups.  

The reactive behavior is modeled at the RC and 
ACG tiers. We model the environmental objects 
communicating with the system as RCs, and 
incorporate them into the ACG fulfilling the 
corresponding reactive task.  

The self-healing and self-optimizing autonomic 
behavior can be implemented on peer group level as 
the following aspects: 

- Automating backup of policies for the group;  
- Knowledge and resource sharing within the 

group; 
- Execution time optimization according to the 

empirical data.  
AS.  Autonomic System (AS) tier is abstracting a 

set of asynchronously communicating ACGs.  The 
self-monitoring behavior and the asynchronous 
interaction between AS and the ACGs is realized by 
the Global Manager (GM). The responsibilities of 
the Global Manager (GM) include the following: 

- Continuous monitoring of the AS quality level 
required enduring the safety of the autonomic 
system; 

- GM verifies user access according to the 
security policies and different level privileges 
defined among GM, ACGs, RCs, and environment;  

- GM monitors the behavior of the ACGs and 
analyzes whether they work correctly according to 
the policies;  

- GM receives diagnostic messages from ACGs 
and sends back treatment messages to them;  

- GM receives a request for updating the 
compositional rules for ACGs and synchronization 
axioms among RCs from the user, and forwards the 
updates to the AGMs. 
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The self-protecting, self-configuring, self-
optimizing, and self-healing autonomic behavior can 
be implemented at the AS level as the following 
aspects:  

- automating user access support; 
- automating the configuration for users; 
- knowledge and resource sharing within the 

system; 
- automating the backup of the policies for the 

entire system.  

 
Figure 4: AS-TRM Architecture. 

2.3 Characteristics of AS-TRM 

Below we summarize the autonomic characteristics 
of the AS-TRM architecture shown in Fig. 4 (based 
on a figure in (Bantz et al, 2003)) in addition to real-
time and reactive those inherited from the TROM 
formalism (Achuthan, 1995):  

- AS-TRM is self-managed: it can monitor its 
components (internal knowledge) and its 
environment (external knowledge) by checking the 
status from them, so that it can adapt to changes that 
may occur, which may be known changes or 
unexpected changes;  

- AS-TRM is distributed: the components within 
AS-TRM can collaborate to complete a common 
real-time reactive task distributively; 

- AS-TRM is proactive: it can initiate changes to 
the system;  

- AS-TRM is evolving: a) the policies of each 
RC can be changed in the run time according to the 
changes of requirements; b) the composition rules of 
the RCs within corresponding peer group can be 
changed in the run time; c) the synchronization 
axioms among the RCs within corresponding peer 
group can be changed in the run time.  

2.4 Architecture of AS-TRM 

Our architectural goal is to capture the above-
mentioned characteristics of AS-TRM. The 

architecture of AS-TRM  (see Fig. 4) is based on the 
tiers of the AS-TRM formal model, and consists of 
Reactive Components (RCs), AS-TRM Component 
Group Manager (AGM), and Global Manager (GM), 
which are connected to each other at the local, peer 
group, and system levels. 

At the peer group level, which is also the AS-
TRM Autonomic Group of RCs (ACG) level, every 
AGM interacts and shares knowledge as well as 
information with its RCs; it receives information 
(policies) from its superior (Global Manager) and 
implements them with its own resources. The 
autonomic behavior at this level is a result of peer 
knowledge-sharing, getting local agreement, and 
acting locally on that knowledge. Fig. 5 is another 
architectural view of AS-TRM.  

ACG architecture. An ACG consists of an 
AGM and a set of managed RCs. An AGM consists 
of a collection of intelligent agents which are 
responsible for the autonomic behavior of self-
configuring, self-healing, self-optimizing, as well as 
self-protecting, and a replicator for replicating the 
states of the RCs within the ACG. The intelligent 
agents in the AGM can communicate one another 
through the Autonomic Signal Channel. Each 
managed RC communicates its events and other 
measurements with the AGM. According to the 
input received from the RCs, the AGM makes the 
decisions based on the policies, facts, and rules 
(stored in the ACG repository) and communicates 
the instructions with corresponding RCs. 

Anatomy of GM and RC. A GM consists of a 
set of intelligent agents which are responsible for the 
autonomic behavior of self-configuring, self-healing, 
self-optimizing, as well as self-protecting, and a 
replicator for replicating the states of the ACGs 
within the AS-TRM system. The intelligent agents 
in the GM can communicate each other through the 
Autonomic Signal Channel. Every ACG 
communicates its events and other measurements 
with the GM. According to the input received from 
the ACGs, the GM makes the decisions based on the 
policies, facts, and rules (stored in the AS 
repository) and communicates the instructions with 
corresponding ACGs.  
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Figure 5: Anatomy of AS-TRM. 

 
3    AS-TRM COMMUNICATION 

SYSTEM 

The AS-TRM Communication System (ACS) is an 
autonomous messaging system in the AS-TRM that 
exposes interfaces for both synchronous and 
asynchronous message-delivery services. By virtue 
of its architecture, the ACS is an application of the 
Demand Migration Framework (DMF) (Vassev, 
2005) which extends the DMF architecture by 
adding new features for adaptation to the autonomic 
computing needs. The ACS architecture provides 
two means of communication among AS-TRM 
entities (RC, AGM and GM) – asynchronous and 
synchronous (see section 2.3). Asynchronous 
communication was inherited from DMF centralized 
message-persistent asynchronous communication, 
and synchronous communication is a variant of peer-
to-peer communication (Vassev, 2005). The former 
takes place between the RCs and the AGMs, and 
between the AGMs and the GM. Peer-to-peer 
communication takes place between RCs. Fig. 6 
depicts the layered architecture of the ACS derived 
from the DMF. The architectural ACS model 
consists of four layers – Message Space (MS), 
Message Space Proxies (MSPs), Transport Agents 

(TAs) and Peer-to-Peer Transport Agents (P2PTAs). 
While the MS, MSP and TA layers are derived 
directly from the DMF (Vassev, 2005), the P2PTA 
layer is an ACS extension that addresses 
synchronous communication issues. The ACS 
inherently relies on MS, MSPs and TAs to “form 
architecture applicable to asynchronous 
communication systems, where the messages are 
delivered in a demand-driven manner” (Vassev, 
2005). The MS incorporates a persistent storage 
mechanism for all the messages exchanged 
asynchronously in the AS-TRM. The MS in turn 
incorporates an Object Query Language (OQL) 
(Emmerich, 2000) for querying the stored messages. 
On top of this, we have the MSP presentation layer. 
There is a single MS and multiple MSPs in the 
model, each MSP being associated with a TA.  

The TAs (see the dark grey segments named TA 
in Fig. 6) form a migration layer (Vassev, 2005) for 
transporting messages asynchronously to and from 
the RCs, AGMs and the GM that adhere to the TAs’ 
interface. TAs are “independent stand-alone 
components able to carry objects over the machine 
boundaries” (Vassev, 2005). We use them to migrate 
messages from one node to another. The TAs 
provide a transparent form of migration. On top of 
the TA layer, we have the P2PTA layer (see the 

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

200



 

white segments wrapping the TA layer and bordered 
with a dashed circle). P2PTAs provide an alternative 
means of communication, which is synchronous 
point-to-point communication. The RCs use the 
P2PTAs for direct synchronous communication. 

 
 
 
 
 

TA TA
MSP 
 
 
 
 

TA TA 

MS 

MSP 

MSP MSP 

 
GM 

TA 
Interface 

 
ASTC 

TA 
Interfac

e

Direct 
TA 

Interfa

 
ASTC 

TA 
Interfac

e

Direct 
TA 

I t f

TA 
Interface RC 

P2PT
A 

Inter

TA 
Interface 

 
RC 
P2P 
TA 

Inter 

TA 
Interface 

Env. 
RC 

P2P 
TA 

Inter 

P2PTA 

P2PTA 

P2P
TA 

P2P 
TA 

 
AG
M

TA 
Interfac

e

 
AGM 

TA 
Interface 

 

 
Figure 6: AS-TRM Communication System. 

3.1  Messaging 

The messages communicated via the ACS fall into 
two major groups – heartbeat and regular messages. 
The heartbeat messages are used for self-monitoring, 
and they provide a summary of the component state. 
The RCs send proactively and regularly their state to 
the associated AGM, and the AGMs send their state 
to the GM. The regular messages are the AS-TRM 
work and configuration messages. In addition, each 
AS-TRM message has a priority, recognizable by 
the transport agents. This helps messages with 
higher priority to be delivered first. From the 
functional perspective, the ACS addresses:  

-  asynchronous broadcasting;   
-  canceling messages; 
- asynchronous and synchronous sending and 

receiving heartbeat and regular messages; 
- asynchronous sending and receiving regular 

messages to and by a specified node. 

3.2 Autonomic Features 

The AS-TRM Communication System extends the 
DMF (Vassev, 2005) by implying some autonomic 
computing features like self-protection, self-
optimization and self-configuration (see section 2). 
Some of the autonomic computing features are 

addressed by the DMF architecture (Vassev, 2005). 
The core components – MS and TAs, work in 
autonomous and independent mode. Hence, the ACS 
inherently consists of autonomous elements. In order 
to make the ACS’ components autonomic, we 
extend their autonomous architecture by adding to 
them a management unit (see Fig. 7). The 
management unit (MU) controls and monitors the 
associated ACS’ unit. Hence, each ACS’ component 
is a peer of autonomous units – a management unit 
and ACS work unit (WU). The MU performs control 
functions over the WU, which simply performs its 
work duty and reports proactively its state to the 
MU. The last can decide to shut down and/or restart 
the former if there is no state report received for an 
efficient amount of time.  

 
Figure 7: ACS’ Components Architecture. 

The ACS’ autonomic features are:  
Self-protection. Only communication-trusted 

end-points are able to communicate via ACS. The 
ACS exposes an integrated security mechanism that 
prevents unauthorized access. This autonomic 
feature is inherited from the DMF architecture.  

Self-configuration. The ACS is a distributed 
system with hot-plugging (Vassev, 2005) features. 
For example, the TAs are able to discover available 
MS and plug into the ACS. This autonomic feature 
is inherited from the DMF architecture.    

Self-healing. The ACS’ components can be 
restarted by the embedded management unit. The 
ACS addresses at least one delivery semantics 
(Vassev, 2005), which prevents messages sent 
asynchronously to be lost. That allows the restarted 
component to continue from the point it stopped.  

4    RELATED WORK 

An autonomic system may contain many autonomic 
components that communicate and negotiate with 
each other and other types of resources within or 
outside of system boundaries. This is referred to as 
autonomic manager collaboration. The architectural 
concepts for autonomic systems are mainly based on 
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IBM Corporation’s blueprints and on the on-going 
research for autonomic computing conducted at the 
IBM’s laboratories (IBM, 2003, IBM 2004, IBM, 
2005). The three blueprints are overviews of the 
basic concepts, constructs and behaviors for building 
autonomic capability into computer systems. The 
autonomic component architecture relies on the 
technique of feedback control optimization based on 
forecasting models, which technique facilitates the 
self-management features of an autonomic system.  

In (Yuan-Shun, 2005), a new model-driven 
scheme for autonomic management is presented. 
This scheme can better allocate resources by using 
reliability models to predict and direct the 
distribution of monitoring efforts. If certain services 
or components are predicted to have high reliability 
at a particular time, then there is no need for 
intensive monitoring during that period, but those 
with low reliability require intensive monitoring.  

Our research considerably differs from the 
related work in this area for the reason that we target 
the modeling of both reactiveness and autonomicity 
in distributed systems.  

5    CONCLUSIONS AND FUTURE 
WORK 

The research work reported in this paper is our first 
step towards developing a formal framework for 
developing distributed reactive autonomic 
components along with their relationships, and the 
qualitative properties such as reliability and safety 
constraining the behavior of the system. Particularly, 
it addresses: 1) the extension of the existing TROM 
formalism for modeling real-time reactive systems 
to AS-TRM formalism for supporting autonomic 
behavior; 2) the characteristics of AS-TRM for 
determining the requirement specification, design, 
and implementation of AS-TRM; and 3) the 
architecture and communication mechanism of AS-
TRM for implementing autonomic as well as real-
time reactive functionalities. This paper describes 
only the architecture aspects of AS-TRM, i.e. it does 
not deal with load balancing and efficiency aspects, 
as these are part of our future work on AS-TRM. 

One of the most important aspects of autonomic 
systems is their self-management – a feature 
requiring formal mechanism for self-diagnosis of the 
AS-TRM system’s quality status. The evolving 
nature of the AS-TRM requires continuous 
monitoring of the quality levels to evaluate the risk 
of deploying a change on the configuration of the 

AS-TRM system, and to diagnose potential safety 
hazards in AS functionality. We are investigating 
means for achieving continuous quality assessment 
of the evolving AS-TRM. We intend to develop and 
analyze algorithms and negotiation protocols for 
conflicting quality requirements, and determine what 
bidding or negotiation algorithms are most effective. 
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