
AN ANALYSIS OF THE EFFECTS OF SPATIAL LOCALITY ON THE
CACHE PERFORMANCE OF BINARY SEARCH TREES

Thomas B. Puzak
The University of Connecticut

Storrs, Connecticut, USA

Chun-Hsi Huang
The University of Connecticut

Storrs, Connecticut, USA

Keywords: Cache Aware Binary Trees, Binary Tree Spatial Locality, Binary Tree Cache Performance.

Abstract: The topological structure of binary search trees does not translate well into the linear nature of a computer’s
memory system, resulting in high cache miss rates on data accesses. This paper analyzes the cache perfor-
mance of search operations on several varieties of binary trees. Using uniform and nonuniform key distri-
butions, the number of cache misses encountered per search is measured for Vanilla, AVL, and two types of
Cache Aware Trees. Additionally, concrete measurements of the degree of spatial locality observed in the
trees is provided. This allows the trees to be evaluated for situational merit, and for definitive explanations
of their performance to be given. Results show that the balancing operations of AVL trees effectively negates
any spatial locality gained through naive allocation schemes. Furthermore, for uniform input, this paper shows
that large cache lines are only beneficial to trees that consider the cache’s line size in their allocation strat-
egy. Results in the paper demonstrate that adaptive cache aware allocation schemes that approximate the
key distribution of a tree have universally better performance than static systems that favor a particular key
distribution.

1 INTRODUCTION

Binary trees are an attractive data structure for rep-
resenting large data sets because they exhibit an ex-
pected sub-linear search complexity. Unfortunately,
because they are a pointer based data structure, bi-
nary trees perform poorly with respect to caches. This
problem is exacerbated with balanced binary trees,
which guaranteelg n search complexity, because the
tree’s balancing operations destroy any inherent spa-
tial locality present when the keys were initially in-
serted.

The poor cache performance of a binary tree is in
direct contrast with static data structures like arrays.
While an array will exhibit good cache performance,
especially with large cache lines, its search complex-
ity is an undesirableO(n). Therefore the choice to
use a binary tree represents a trade-off, in which the
user improves his search complexity at the cost of de-
graded cache performance.

The focus of this paper is to study the L1 data
cache performance of various binary trees with spe-
cial consideration given to the spatial locality of the
data stored within the tree. Previous research has cited
spatial locality as a reason for the observed experi-

mental results measuring the cache performance of
pointer based data structures, but no concrete measure
of spatial locality in the data structures has been pro-
vided. This paper provides a method and formula for
quantifying the degree of spatial locality inherent in a
tree’s structure based on the number of cache misses
taken while accessing the tree.

Two classical binary trees, vanilla (naive) and AVL,
are analyzed in this work. Additionally aCache
Aware Binary Tree is defined and studied. A cache
aware tree operates by making the tree’s topology cor-
respond with the order in which its nodes are allo-
cated. The goal of a cache aware tree is to ensure
that the descendants of any particular node are more
likely to be located in the same cache line as the node,
thereby leading to higher cache hit rates.

In the experimental stage of this work, a program
is run that constructs and then repeatedly searches a
binary tree. Two key distributions are used to build
and search the tree; the first is a uniformly random
set, and the second is a highly nonuniform set of keys.
The number of L1 data cache misses is used as the
metric to evaluate cache performance.

The results demonstrate that for uniform key dis-
tributions, large cache lines do not benefit vanilla or

94
B. Puzak T. and Huang C. (2006).
AN ANALYSIS OF THE EFFECTS OF SPATIAL LOCALITY ON THE CACHE PERFORMANCE OF BINARY SEARCH TREES.
In Proceedings of the First International Conference on Software and Data Technologies, pages 94-101
DOI: 10.5220/0001315900940101
Copyright c© SciTePress



AVL trees. Only the cache aware tree, whose nodes
are allocated with cache parameters in mind, experi-
ences fewer cache misses as cache line size increases.
Additionally, results quantitatively show the negative
effects that the AVL tree’s balancing operations have
on spatial locality, while still highlighting the impor-
tance of a short search path. Furthermore, it becomes
clear that the cache aware allocation scheme must
adapt itself to the observed distribution of the input
keys in order to be universally acceptable.

2 RELATED WORK

A function calledccmorph, defined in (Chilimbi et al.,
1999b; Chilimbi et al., 2000) is designed to rearrange
binary trees to make them more cache conscious. The
work shows that by morphing a tree into a cache con-
scious form, the performance of searching the tree
(measured in milliseconds) is improved

In (Bawawy et al., 2001)ccmorph’s performance
in conjunction with software based prefetching was
studied. Additionally, (Hallberg et al., 2003) showed
that cache conscious allocation, particularly with
large cache lines, greatly outweighs the benefits of
hardware or software prefetching.

The effects of different cache associativities on the
cache performance of searching binary trees is studied
in (Fix, 2003).

Efforts to improve the cache performance of Bi-
nary Space Partitioning (BSP) trees through intelli-
gent allocation of nodes within the tree are studied in
(Havran, 2000a; Havran, 1997; Havran, 2000b). The
author demonstrates that by allocating multiple nodes
in a single cache line and then by distributing those
nodes breadth first in the growing tree, the running
time of a depth first traversal is improved.

A purely empirical analysis on how the sizes and
distributions of input and search keys affects the cache
performance of binary trees was conducted in (Iancu
and Acharya, 2001). In general it was found that bal-
anced trees generally outperformed those that move
nodes to the front, except with search key distribu-
tions that are highly skewed to access only a few keys
repeatedly.

The work in (Oksanen, 1995) provides a means for
predicting the number of cache misses on a particu-
lar search of the tree based on the strategy used to
allocate the tree’s nodes. Additionally, experiments
are conducted to measure the performance improve-
ment of tree accesses (in milliseconds) when cache
conscious allocation strategies are employed.

3 CLASSICAL BINARY TREES

The vanilla tree is the most naive version of a binary
tree. A vanilla tree’s topology is wholly determined
by the insertion order of the keys used to build the
tree. While the expected depth and search complexity
of a vanilla tree isO(lg n) when the tree is built on
a uniformly random input distribution (Cormen et al.,
1998), other distributions carry no such guarantee.

AVL trees (Adelson-Velskii and Landis, 1962;
Weiss, 1999) guaranteeO(lg n) depth and search
complexity by adding an invariant to the vanilla tree
requiring that for every node in the tree, the heights
of that node’s left and right subtrees may differ by
at most one. Re-balancing of the tree is performed
through a set of well known operations called AVL
rotations.

4 CACHE AWARE BINARY
TREES

The idea behind a cache aware binary search tree is to
increase the degree of spatial locality exhibited in the
tree’s structure by packing nodes located on a partic-
ular search path into the same cache line.

Nodes in the tree are labeled eitherused or unused.
When a key is inserted into a cache aware tree, the
standard vanilla protocol is followed with two excep-
tions. First, if the key being inserted lands on an un-
used node then the key is placed into that node and
the node becomes used. Second, if the key falls to a
used leaf node, a block of memory equal to the size of
a cache line is allocated. This block is broken up into
nodes, which are then distributed into the tree accord-
ing to some heuristic.

We define the termlocal family to be a group of
nodes that were allocated as a block of memory and
inserted into the tree together. These nodes all reside
in the same cache line.

4.1 Balanced Subtree Ordered Local
Families

In this type of cache aware binary tree (Type I Aware
Trees), local families are distributed into the tree
breadth first. All local families in the tree have iden-
tical topologies. Trees built in this fashion favor uni-
form key distributions, because each local family is
of height lg(SCL) whereSCL is the size of a cache
line. Figure 1 illustrates the process of insertion into
a Type I Aware Tree with and without allocation.

In (Havran, 2000a), binary trees are constructed by
packing multiple nodes into a cache line and then ar-
ranging them breadth first into a binary tree in order

AN ANALYSIS OF THE EFFECTS OF SPATIAL LOCALITY ON THE CACHE PERFORMANCE OF BINARY
SEARCH TREES

95



− Used Node

− Unused Node

− Local Family

5

10

15

12

5

10

15

12

11

10

155

Insert 12

Insert 11

Insertion With Allocation

Insertion Without Allocation

5

10

15

12

Figure 1: Insertion into a Type I Aware Tree.

to improve the time (CPU cycles) necessary to con-
duct complete depth first traversal of the tree. In equa-
tions 1 - 5 we build on this work to determine the ex-
pected number of cache lines accessed when the tree
is searched.

We definehC to be the height of a complete subtree
or local family. The height of the root node is defined
to be zero. LetSCL be the size of a cache line, and
SN be the size of a node. Then the memory needed
to contain a complete local family in the cache aware
tree is:

M(hC) = (2hC+1 − 1)SN ≤ SCL (1)

From this we derive the complete height of a local
family:

hC = ⌊(lg(
SCL

SN

+ 1)) − 1⌋ (2)

The number of nodes,gN , in the local family with
height greater thanhC is then:

gN = ⌊
SCL − ((2hC+1 − 1)SN )

SN

⌋ (3)

Then the average height of the local familyhA ≥
hC for gN > 0 is:

hA = (lg(2hC+1 + gN )) − 1 (4)

For a binary tree of heighthT the expected search
depth isd = hT − 1. However, on a search of the tree
we expect to accessd + 1 = hT nodes. Therefore the
expected number of local families traversedLFT in a
single search of the tree is:

LFT =
hT

(hA + 1)
(5)

Since one local family exists in each cache line
LFT is equal to the number of cache lines we can
expect to access on a single search of the tree. This
value can be used to calculate the the average number
of nodes accessed per cache line (see section??).

One limitation of subtree ordered local families is
that they favor uniform key distributions. The bal-
anced local family topology will have sub-optimal
cache performance in nonuniform situations.

4.2 Insertion Path Ordered Local
Families

Type II Aware Trees are an attempt to make the al-
location of local families closer to optimal by plac-
ing unused nodes according to an approximation of
the observed input key distribution. Nodes in a Type
II Aware Tree contain two additional integer fields,l
andr, representing the number of keys inserted into
the left and right subtrees of each node respectively.
Insertion into the tree without allocation is performed
exactly as it is in the balanced subtree ordered case,
except thatl andr in each node traversed is updated.

When a key is inserted into the tree and alloca-
tion is required, two FIFO lists are used to store the
last q values ofl andr that were encountered as the
key traveled down through the nodes of the tree. The
valueq can be any positive integer, and reflects how
many predecessors of a new local family will be con-
sidered for determining the key distribution approxi-
mation. The contents of the two FIFO lists are used
to computeL =

∑q
i=1 li andR =

∑q
i=1 ri.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

96



The valuesL andR are used to compute the prob-
abilities of distributing nodes to the left and right in
the newly allocated local family:P (L) = L

(L+R) ,

P (R) = R
(L+R) . When a new local family is allo-

cated, its root is placed in the tree, marked used, and
the key being inserted into the tree is placed in this
node. Then the unused nodes in the local family are
distributed as descendants of the root node according
to P (L) andP (R). The node distribution algorithm
utilizes a biased coin flip whereP (L) andP (R) are
the values of heads and tails, respectively.

For local families of sizej the probability of the
root nodeP (n0) = 1. The probabilities of nodes
ni, i∈[1..j-1] is defined with respect to the root as

P (ni) = P (L)gP (R)h (6)

whereg andh are the number of left and right pointers
traversed fromn0 respectively.

We consider only the lastq nodes to determine
P (L) andP (R) so that distant predecessors do not
affect the topology of a new local family.

To determine the likelihood of a local family with
given topologyΥ we need to consider the number of
ways that the topology can be constructedΨ:

Ψ =
N !∏
SN

(7)

whereN is the number of nodes in the tree, andSN

a set whose elements consist of the number of nodes
in every subtree of the tree. Then the probability of a
local family with a particular topologyΥ is:

P (Υ) = Ψ
∏

PN (8)

wherePN is a set of the probabilities of all of the
nodes in local family, as calculated in equation 6.

Figure 2 illustrates the process of insertion into a
Type II Aware Tree requiring allocation. In this ex-
ample,q = 2 and the size of a local family is 4. It is
important to remember that the newly allocated local
family in Figure 2 is not the only possible topology
that can result from the node distribution method. In
this figureP (L) = 1

3 andP (R) = 2
3 , so the topology

depicted in the figure represents the expected node
distribution.

5 EXPERIMENTAL DESIGN

Experiments are run using the SimpleScalar (Burger
and Austin, 2001) simulation suite. Two rounds of ex-
periments are conducted. The first round is designed
to measure detailed metrics about cache performance.
The second round computes metrics on the structure
of a tree which are used to quantify its spatial locality.

In order to measure cache performance metrics a
simple C program is run that builds a binary tree from
the keys in an input file, and then repeatedly searches
the tree for the keys in a separate file. The size of
the cache blocks are multiples of 32 bytes, and the
nodes in every tree are exactly 32 bytes. For Type
II Aware Trees the value ofq is set to10. The pro-
gram can run in two modes:build-only or build-
and-search. In build-only mode the program termi-
nates after building the tree, while in build-and-search
mode the program terminates after building the tree
and then searching for all of the keys located in the
search key file.

5.1 Cache Performance Experiments

For the cache performance experiments the L1 is a 4-
way set associative cache; each run is repeated with
L1 block sizes of 32, 64, 128, and 256 bytes; for each
L1 block size, a run is repeated with L1 cache sizes
of 1, 2, 4, 8, 16, 32, 64, 128, and 256 Kb; the size of
the L2 is always 1024 Kb; the L2 is always a unified
8-way set associative cache; and all caches utilize the
LRU replacement algorithm. The parameters of the
L2 were chosen so that L2 misses would have a min-
imal impact on the performance of the L1. At the
program’s termination SimpleScalar reports the total
number of L1 data cache misses during execution.

To compute the average number of L1 data cache
misses per searchM , we first acquireα: the number
of L1 misses taken in build-only mode, andβ: the
number of L1 misses taken in build-and-search mode.
Onn searches of the tree,M is computed as follows:

M =
(β − α)

n
(9)

5.2 Tree Structure Experiments

This round of experiments is designed to measure
metrics about searching a binary tree, as well as
to provide insight into the degree of spatial locality
present in the tree. The metrics of interest here are:
the average number of nodes accessed per search, the
average number of cache lines accessed per search,
the average number of nodes accessed per cache line,
and a value for the amount of a cache line that is filled
with accessed nodes.

To compute the average number of nodes accessed
per search,λ, a global countc of each node encoun-
tered on every search operation is maintained. Onn
searches of the tree, the average number of nodes ac-
cessed per search is:

λ =
c

n
(10)

To determine the average number of cache lines ac-
cessed per search,γ, the cache line address of each

AN ANALYSIS OF THE EFFECTS OF SPATIAL LOCALITY ON THE CACHE PERFORMANCE OF BINARY
SEARCH TREES

97



l=0

10

17

15

l=1

r=2 l=0

10

17

15

l=1

r=3

20

r=1

− Used Node

− Unused Node

− Local Family

L = 1, R = 2

Insert 20

Figure 2: Insertion With Allocation Type II Aware Tree.

node encountered in a search is computed. For each
search the number of unique cache line addresses,u,
is recorded. Forn total searchesγ is computed:

γ =

∑n
i=1 ui

n
(11)

The average number of accessed nodes per cache
line, Φ, is simply:

Φ =
λ

γ
(12)

FromΦ we derive an expression for the density of
the accessed nodes in a cache line∆:

∆ = Φ
(SN )

SCL

(13)

∆ exists in the range [SN

SCL
, 1] and expresses the

amount of available cache line space that is being uti-
lized by nodes that were accessed.

For Cache Aware Trees the number of unused
nodes in the tree,w, is calculated by a complete depth
first traversal of every node (including unused) in the
tree.

5.2.1 Theoretical Bounds

It is possible to boundw and ∆ for Type I Aware
Trees based on the topological structure of a local
family. We define the number of nodes in a local fam-
ily to beη = ⌊SCL

SN
⌋, andN to be the number of keys

inserted into the tree.
The bounds of these values rely on the average

height of a local family,hA, defined in equation 4.
These local families have identical topologies rep-
resenting approximately balanced trees, hencehA is
O(lg η). Therefore we can expect to have the great-
est number of unused nodes when onlyhA + 1 used
nodes reside in each local family. ForN insertions
we will allocate N

(hA+1) local families, each of which

containsη−(hA+1) unused nodes. Multiplying these
quantities we obtain an upper bound forw:

w =
Nη

(hA + 1)
− N = O(

Nη

lg η
− N) (14)

To bound∆ we must realize that regardless of the
key distribution, we can access at mosthA + 1 nodes
in each local family.

∆ =
(hA + 1)

η
= O(

lg η

η
) (15)

For Type II Cache Aware Trees, we can reasonably
expect our biased coin flip to predict the position of
an future key half of the time. Since the root of the
local family is always used we predictη2 + 1 used
nodes, andη2 − 1 unused nodes per local family. The
expected number of unused nodes is:

w = N(
η − 2

η + 2
) = O(N) (16)

Of course, it is difficult to obtain a strong bound for
w and a bound for∆ for Type II Aware Trees because
the local families in these trees are not guaranteed to
have identical topologies. Regardless of this short-
coming, we can expect general performance trends
depending on the key distribution. For example, if the
key distribution is uniform, the topologies of the local
families will be balanced, and the values ofw and∆
approach those of Type I Aware Trees. However, for
nonuniform key distributions, there is the potential for
highly elevated performance. Indeedw approaches0
and∆ approaches1. This expectation is reflected in
the results in section 6.

5.2.2 Type I Aware Tree Predictions

The average height of a local family in a Type I Aware
Tree allows equation 5 to be applied to predict the
values for the tree structure experiments. The predic-
tions are based on modifications of equations 11 – 13:

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

98



γ′ = λ
hA+1 , Φ′ = λ

γ′
,and ∆′ = Φ′ (SN )

SCL
. Hence,

the predictions only rely on the direct calculation ofλ
from equation 10.

5.3 Key Distribution Details

Each round of experiments is repeated with two key
distributions. The importance of key distributions on
the structure and cache performance of binary trees
was made clear in (Iancu and Acharya, 2001).

The first distribution is uniformly random. Trees
are built on an input file of 1,000,000 keys of which
99,996 are unique, taken from the range [0,99999].
On a duplicate insertion the topology of the tree is not
changed. Using the same distribution on the range [0,
99999] the tree is searched 5,000,000 times.

The second distribution represents a highly nonuni-
form key set. The search key file consists of 3,118,271
values taken from the instruction addresses of a run-
ning program. Because of their origin, this file con-
sists of long sequences of increasing numbers. The
file used to construct the tree, consisting of 174,719
keys, was created from the search key file by taking
unique keys from the search file in an order preserving
fashion.

6 EXPERIMENTAL RESULTS
AND ANALYSIS

In the cases with a uniform key distribution, the
vanilla tree and the cache aware trees1 had maximum
heights of 44, while the AVL tree had a maximum
height of 20. For the nonuniform distribution, the
vanilla tree and the aware trees had maximum heights
of 1728, while the AVL tree had a maximum height of
21. These values have substantial consequences with
respect to the cache performance of the trees. Because
of space restrictions only tables of representative re-
sults are presented2. In the tables, C refers to cache
size, and B refers to the cache data block size.

For the Vanilla tree built on the uniform key dis-
tribution, the number of misses per search decreases
as cache size increases, but stays the same or slightly
increases as cache line size increases with fixed cache
size. This trend is due to the poor degree of spatial
locality in the Vanilla tree; with 256 byte cache lines
Φ = 1.20. With a nonuniform key distribution how-
ever, large cache lines lead to improved cache perfor-
mance. The highly predictable nature of the nonuni-
form distribution and naive allocation scheme results

1Only used nodes are counted in the height of the cache
aware trees.

2For complete results please see (Puzak, 2006)

in a natural spatial locality (Φ = 5.91 at 256 byte
lines).

AVL trees had far fewer misses overall than their
Vanilla cousins, but larger cache lines do not con-
tribute to improved performance. See Table 1 for an
example. The observed cache performance is due to
the very low degree of spatial locality present in the
cache aware tree. Indeed,Φ = 1.07 when the key dis-
tribution is uniform, and only1.14 when it is nonuni-
form.

Somewhat ironically, the AVL tree has the best
cache performance of any tree analyzed when the key
distribution is nonuniform. This is attributable to the
average number of nodes accessed per searchλ. With
the nonuniform key distributionλ = 17.05 for AVL
trees andλ = 442.06 for the Vanilla and Cache Aware
Trees. In other words, a typical search of a Vanilla or
Aware tree performs 26 times more memory accesses
than the same search on an AVL tree. More memory
accesses lead to more cache misses.

With the uniform key distribution, the Type I aware
tree takes fewer cache misses per search as both cache
size and cache line size increases. Type II Aware
Trees have performance nearly equal to that of Type I
Aware Trees. See Table 2 for the Type I Aware Tree’s
cache performance results. This performance is at-
tributable to the good degree of spatial locality ob-
served in the cache aware trees. Tables 3 and 4 rep-
resent the predicted and observed values of the tree
structure experiments for the Type I aware trees on
uniform and nonuniform distributions, respectively.

The accuracy of the predictions for the uniform
case suggests that the model is a good approximation
of the physical world. The larger discrepancies in the
nonuniform case exist because we can only expect to
traverse an average ofhA + 1 nodes per local family
if the key distribution is uniform.

On the nonuniform key distribution, the number of
misses per search for the Type I Aware Tree improves
as cache size increases. However, with fixed cache
size more cache misses are observed as cache line size
increases from 32 to 64 bytes. Increases in line size
beyond 64 bytes lead to modest decreases in cache
misses. This observation is explained by the nature of
the nonuniform input distribution. In this case, most
new keys are inserted to the right, but the node distri-
bution algorithm favors placing nodes to the left first.
Therefore, with 64 byte cache lines, unused nodes al-
most never become used.

Type II Aware Trees enjoy elevated cache perfor-
mance as both cache size, and cache line size in-
creases regardless of the input distribution. See Ta-
ble 5 for the results from the nonuniform distribution.
The good cache performance of the Type II Aware
tree, regardless of its key distribution, is due to its
high level of spatial locality. The results of the tree
structure experiments for the Type II Aware Tree and

AN ANALYSIS OF THE EFFECTS OF SPATIAL LOCALITY ON THE CACHE PERFORMANCE OF BINARY
SEARCH TREES

99



Table 1: Average Cache Misses Per Search, AVL Tree, Uniform Distribution.

B C=1K C=2K C=4K C=8K C=16K C=32K C=64K C=128 C=256K
32 21 13.98 11.8 10.51 9.24 7.96 6.69 5.44 4.18
64 23.98 16.26 12.77 11.26 9.88 8.59 7.32 6.04 4.73
128 22.72 18.8 14.42 12.12 10.41 9.02 7.71 6.42 5.09
256 20.43 19.53 17.43 12.96 10.94 9.33 7.96 6.66 5.32

Table 2: Average Cache Misses Per Search, Type I Aware Tree, Uniform Distribution.

B C=1K C=2K C=4K C=8K C=16K C=32K C=64K C=128 C=256K
32 36.7 23.19 17 14.33 12.28 10.42 8.7 7 5.3
64 28.66 18.25 11.97 10.05 8.69 7.43 6.27 5.14 4
128 18.99 13.63 8.65 7.15 6.17 5.28 4.49 3.73 2.98
256 13.6 11.42 7.38 5.47 4.74 4.06 3.51 2.97 2.43

Table 3: Predicted and Observed Type I Aware Tree Results, Uniform Distribution.

B λ γ γ′ Φ Φ′ ∆ ∆′ w

32 22.44 22.44 22.44 1.00 1.00 1.00 1.00 0
64 22.44 15.29 14.16 1.47 1.58 0.74 0.79 33410
128 22.44 10.16 9.66 2.21 2.32 0.55 0.58 77820
256 22.44 7.53 7.08 2.98 3.16 0.37 0.40 155676

Table 4: Predicted and Observed Type I Aware Tree Results, Nonuniform Distribution.

B λ γ γ′ Φ Φ′ ∆ ∆′ w

32 442.06 442.06 442.06 1.00 1.00 1.00 1.00 0
64 442.06 436.11 278.90 1.01 1.59 0.51 0.80 164411
128 442.06 220.17 190.38 2.01 2.32 0.50 0.58 174037
256 442.06 147.34 139.45 3.00 3.17 0.38 0.40 291169

Table 5: Average Cache Misses Per Search, Type II Aware Tree, Nonuniform Distribution.

B C=1K C=2K C=4K C=8K C=16K C=32K C=64K C=128 C=256K
32 1085.63 1059.21 1000.74 883.72 699.66 391.9 88.51 5.77 0.89
64 553.99 540.2 510.51 455.25 357.35 204.67 51.31 6.57 0.47
128 284.37 277.43 264.13 237.32 187.42 108.81 25.93 2 0.34
256 149.34 146.69 140.21 126.74 101.46 62.78 18.11 0.26 0.26

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

100



the nonuniform input distribution is provided in Ta-
ble 6. In addition to high degrees of spatial local-

Table 6: Tree Structure Results, Type II Aware Tree,
Nonuniform Distribution.

B λ γ Φ ∆ w
32 442.06 442.06 1.00 1.00 0
64 442.06 227.35 1.94 0.97 5023
128 442.06 118.9 3.72 0.93 15377
256 442.06 64.16 6.89 0.86 35577

ity regardless of the input distribution, Type II Aware
Trees waste only about12% of the nodes wasted by
Type I Aware Trees. Consideration of these obser-
vations suggests that adaptive cache aware allocation
schemes are superior to methods that are biased to a
particular key distribution.

7 CONCLUSIONS

It is impossible to ignore the importance of a short
search depth, so a balanced binary tree should always
be among the first choice of a programmer regardless
of the expected key distribution. However, if a uni-
form key distribution is expected and the target archi-
tecture is built around large cache lines, then a cache
aware tree would be an excellent choice as search
depth would not be much greater than the ideallg n
and the cache performance will be highly elevated.

For nonuniform inputs, it seems much better to uti-
lize a balanced tree because search depth becomes a
major limiting factor. If the cache is made up of very
many large lines, a good alternative may be a Type II
Aware Tree because it will be able to attain high levels
of cache performance despite the nonuniform nature
of the keys.

On the uniform key distribution, the cache perfor-
mance of the trees is ranked as follows: Type I Aware
Tree, Type II Aware Tree, AVL Tree, Vanilla Tree.

On the nonuniform key distribution, the cache per-
formance of the trees is ranked: AVL Tree, Type II
Aware Tree, Type I Aware Tree, Vanilla Tree.

REFERENCES

Adelson-Velskii, G. and Landis, E. (1962). An algo-
rithm for the organization of information.Doklady
Akademii Nauk SSSR. English translation by Myron J.
Ricci in Soviet Math.

Bawawy, A., Aggarwal, A., Yeung, D., and Tseng, C.
(2001). Evaluating the impact of memory system per-
formance on software prefetching and locality opti-

mizations. In15th Annual Conference on Supercom-
puting, page 486.

Bryant, R. and O’Hallaron, D. (2001).Computer Systems:
A Programmer’s Perspective. Prentice Hall Inc, New
Jersey.

Burger, D. and Austin, T. (2001).The SimpleScalar Tool
Set, Version 2.0. SimpleScalar LLC.

Chilimbi, T., Davidson, B., , and Larus, J. (1999a). Cache-
conscious structure definition. InSIGPLAN ’99 Con-
ference on Programming Languages Design and Im-
plementation (PLDI 99).

Chilimbi, T., Hill, M., and Larus, J. (1999b). Cache-
conscious structure layout. InSIGPLAN ’99 Confer-
ence on Programming Languages Design and Imple-
mentation (PLDI 99).

Chilimbi, T., Hill, M. D., and Larus., J. R. (2000). Making
pointer-based data structures cache conscious.Com-
puter Magazine, 33(12):67.

Cormen, T., Leiserson, C., and Rivest, R. L. (1998).Intor-
duction to Algorithms. The MIT Press.

Fix, J. (2003). The set-associative cache performance of
search trees. InFourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, page 565.

Hallberg, J., Palm, T., and Brorsson, M. (2003). Cache-
conscious allocation of pointer-based data structures
revisited with hw/sw prefetching. InSecond Annual
Workshop on Duplicating, Deconstructing, and De-
bunking(WDDD).

Havran, V. (1997). Cache sensitive representation for bsp
trees. InComputergraphics 97, International Confer-
ence on Computer Graphics, page 369.

Havran, V. (2000a). Analysis of cache sensitive representa-
tion for binary space partitioning trees.Informatica,
23(2):203.

Havran, V. (2000b). Heuristic Ray Shooting Algorithms.
PhD thesis, Czech Technical University.

Iancu, C. and Acharya, A. (2001). An evaluation of search
tree techniques in the presence of caches. In2001
IEEE International Symposium on Performance Anal-
ysis of Systems and Software.

Oksanen, K. (1995). Memory reference locality in binary
search trees. Master’s thesis, Helsinki University of
Technology.

Puzak, T. B. (2006). The effects of spatial locality on the
cache performance of binary search trees. Master’s
thesis, The University of Connecticut.

Sleator, D. and Tarjan, R. (1985). Self adjusting binary
search trees.Journal ACM, 32:652.

Weiss, M. (1999).Data Structures and Algorithm Analysis
in JAVA. Addison-Wesley Longman Inc.

AN ANALYSIS OF THE EFFECTS OF SPATIAL LOCALITY ON THE CACHE PERFORMANCE OF BINARY
SEARCH TREES

101


