
PARALLEL PROCESSING OF ”GROUP-BY JOIN” QUERIES ON
SHARED NOTHING MACHINES

M. Al Hajj Hassan and M. Bamha
LIFO, Universit́ed’Orl éans

B.P. 6759, 45067 Orléans Cedex 2, France

Keywords: PDBMS,Parallel joins, Data skew, Join product skew, GroupBy-Join queries, BSP cost model.

Abstract: SQL queries involving join and group-by operations are frequently used in many decision support applications.
In these applications, the size of the input relations is usually very large, so the parallelization of these queries
is highly recommended in order to obtain a desirable response time. The main drawbacks of the presented
parallel algorithms that treat this kind of queries are that they are very sensitive to data skew and involve
expansive communication and Input/Output costs in the evaluation of the join operation. In this paper, we
present an algorithm that minimizes the communication cost by performing the group-by operation before
redistribution where only tuples that will be present in the join result are redistributed. In addition, it evaluates
the query without the need of materializing the result of the join operation and thus reducing the Input/Output
cost of join intermediate results. The performance of this algorithm is analyzed using the scalable and portable
BSP (Bulk Synchronous Parallel) cost model which predicts a near-linear speed-up even for highly skewed
data.

1 INTRODUCTION

Data warehousing, On-Line Analytical Processing
(OLAP) and other multidimensional analysis tech-
nologies have been employed by data analysts to ex-
tract interesting information from large database sys-
tems in order to improve the business performance
and help the organisations in decision making. In
these applications, aggregate queries are widely used
to summarize large volume of data which may be the
result of the join of several tables containing billions
of records (Datta et al., 1998; Chaudhuri and Shim,
1994). The main difficulty in such applications is
that the result of these analytical queries must be ob-
tained interactively (Datta et al., 1998; Tsois and Sel-
lis, 2003) despite the huge volume of data in ware-
houses and their rapid growth especially in OLAP
systems (Datta et al., 1998). For this reason, paral-
lel processing of these queries is highly recommended
in order to obtain acceptable response time (Bamha,
2005). Research has shown that join, which is one
of the most expansive operations in DBMS, is paral-
lelizable with near-linear speed-up only in ideal cases
(Bamha and Hains, 2000). However, data skew de-
grades the performance of parallel systems (Bamha

and Hains, 1999; Bamha and Hains, 2000; Seetha and
Yu, 1990; Hua and Lee, 1991; Wolf et al., 1994; De-
Witt et al., 1992). Thus, effective parallel algorithms
that evenly distribute the load among processors and
minimizes the inter-site communication must be em-
ployed in parallel and distributed systems in order to
obtain acceptable performance.

In traditional algorithms that treat ”GroupBy-Join”
queries1, join operations are performed in the first
step and then the group-by operation (Chaudhuri
and Shim, 1994; Yan and Larson, 1994). But the
response time of these queries is significantly reduced
if the group-by operation is performed before the
join (Chaudhuri and Shim, 1994), because group-by
reduces the size of the relations thus minimizing the
join and data redistribution costs. Several algorithms
that perform the group-by operation before the join
operation were presented in the literature (Shatdal
and Naughton, 1995; Taniar et al., 2000; Taniar and
Rahayu, 2001; Yan and Larson, 1994).
In the ”Early Distribution Schema” algorithm pre-
sented in (Taniar and Rahayu, 2001), all the tuples of
the tables are redistributed before applying the join

1GroupBy-Join queries are queries involving group-by
and join operations.

301
Al Hajj Hassan M. and Bamha M. (2006).
PARALLEL PROCESSING OF ”GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES.
In Proceedings of the First International Conference on Software and Data Technologies, pages 301-307
DOI: 10.5220/0001316003010307
Copyright c© SciTePress

or the group-by operations, thus the communication
cost in this algorithm is very high. However, the cost
of its join operation is reduced because the group-by
is performed before the expansive join operation.
In the second algorithm, ”Early GroupBy Scheme”
(Taniar and Rahayu, 2001), the group-by operation
is performed before the distribution and the join
operations thus reducing the volume of data. But in
this algorithm, all the tuples of the group-by results
are redistributed even if they do not contribute in
the join result. This is a drawback, because in some
cases only few tuples of relations formed of million
of tuples contribute in the join operation, thus the
distribution of all these tuples is useless.

These algorithms fully materialize the intermediate
results of the join operations. This is a significant
drawback because the size of the result of this
operation is generally large with respect to the size of
the input relations. In addition, the Input/Output cost
in these algorithms is very high where it is reasonable
to assume that the output relation cannot fit in the
main memory of each processor, so it must be reread
in order to evaluate the aggregate function.

In this paper, we present a new parallel algorithm
used to evaluate ”GroupBy-Join” queries on Shared
Nothing machines (a multiprocessors machine where
each processor has its own memory and disks (DeWitt
and Gray, 1992)). In this algorithm, we do not materi-
alize the join operation as in the traditional algorithms
where the join operation is evaluated first and then the
group-by and aggregate functions (Yan and Larson,
1994). So the Input/Output cost is minimal because
we do not need to save the huge volume of data that
results from the join operation.
We also use the histograms of both relations in order
to find the tuples which will be present in the join re-
sult. After finding these tuples, we apply on them the
grouping and aggregate function, in each processor,
before performing the join. Using our approach, we
reduce the size of data and communication costs to
minimum. It is proved in (Bamha and Hains, 2000;
Bamha and Hains, 1999), using the BSP model, that
histogram management has a negligible cost when
compared to the gain it provides in reducing the com-
munication cost. In addition, Our algorithm avoids
the problem of data skew because the hashing func-
tions are only applied on histograms and not on input
relations.
The performance of this algorithm is analyzed using
the scalable and portable BSP cost model (Skillicorn
et al., 1997) which predicts for our algorithm a near-
linear speed-up even for highly skewed data.

The rest of the paper is organized as follows. In
section 2, we present the BSP cost model used to eval-
uate the processing time of the different phases of the

algorithm. In section 3, we give an overview of differ-
ent computation methods of ”GroupBy-Join” queries.
In section 4, we describe our algorithm. We then con-
clude in section 5.

2 THE BSP COST MODEL

Bulk-Synchronous Parallel(BSP) cost model is a pro-
gramming model introduced by L. Valiant (Valiant,
1990) to offer a high degree of abstraction like PRAM
models and yet allow portable and predictable perfor-
mance on a wide variety of multi-processor architec-
tures (Bisseling, 2004; Skillicorn et al., 1997). A BSP
computer contains a set of processor-memory pairs, a
communication network allowing inter-processor de-
livery of messages and a global synchronization unit
which executes collective requests for a synchroniza-
tion barrier. Its performance is characterized by 3 pa-
rameters expressed as multiples of the local process-
ing speed:

• the number of processor-memory pairsp,

• the timel required for a global synchronization,

• the timeg for collectively delivering a 1-relation
(communication phase where each processor re-
ceives/sends at most one word). The network is
assumed to deliver anh-relation in timeg ∗ h for
any arityh.

TIM
E

P1 P2 P3 Pp

global synchronisation

global synchronisation

...

. . .

. . .

Figure 1: A BSP superstep.

A BSP program is executed as a sequence ofsuper-
steps, each one divided into (at most) three successive
and logically disjoint phases. In the first phase each
processor uses only its local data to perform sequen-
tial computations and to request data transfers to/from
other nodes. In the second phase the network deliv-
ers the requested data transfers and in the third phase
a global synchronization barrier occurs, making the
transferred data available for the next superstep. The
execution time of a supersteps is thus the sum of the
maximal local processing time, of the data delivery

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

302

time and of the global synchronization time:

Time(s) = max
i:processor

w
(s)
i + max

i:processor
h

(s)
i ∗ g + l

wherew
(s)
i is the local processing time on proces-

sor i during supersteps andh
(s)
i = max{h

(s)
i+ , h

(s)
i−}

whereh
(s)
i+ (resp.h(s)

i−) is the number of words trans-
mitted (resp. received) by processori during super-
steps. The execution time,

∑

s Time(s), of a BSP
program composed ofS supersteps is therefore a sum
of 3 terms:W +H ∗g+S∗l whereW =

P
s maxi w

(s)
i

andH =
P

s maxi h
(s)
i . In generalW , H andS are

functions ofp and of the size of datan, or (as in the
present application) of more complex parameters like
data skew and histogram sizes. To minimize execu-
tion time of a BSP algorithm, design must jointly min-
imize the numberS of supersteps and the total volume
h (resp.W) and imbalanceh(s) (resp.W (s)) of com-
munication (resp. local computation).

3 COMPUTATION OF
”GROUP-BY JOIN” QUERIES

In DBMS, the aggregate functions can be applied on
the tuples of a single table, but in most SQL queries,
they are applied on the output of the join of multiple
relations. In the later case, we can distinguish two
types of ”GroupBy-Join” queries. We will illustrate
these two types using the following example.
In this example, we have three relations that represent
respectively Suppliers, Products and the quantity of a
product shipped by a supplier in a specific date.

SUPPLIER (Sid, Sname, City)
PRODUCT (Pid, Pname, Category)
SHIPMENT (Sid, Pid, Date, Quantity)

Query 1
Select p.Pid, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Where p.Pid = s.Pid
Group By p.Pid

Query 2
Select p.Category, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Where p.Pid = s.Pid
Group By p.Category

The purpose ofQuery1 is to find the total quantity
of every product shipped by all the suppliers, while
that of Query2 is to find the total amount of every
category of product shipped by all the suppliers.
The difference betweenQuery1 and Query2 lies
in the group-by and join attributes. InQuery1,
the join attribute (Pid) and the group-by attribute

are the same. In this case, it is preferable to carry
out the group-by operation first and then the join
operation (Taniar et al., 2000; Taniar and Rahayu,
2001), because the group-by operation reduces the
size of the relations to be joined. As a consequence,
applying the group-by operation before the join
operation in PDBMS2 results in a huge gain in the
communication cost and the execution time of the
”GroupBy-Join” queries.
In the contrary, this can not be applied on Query 2,
because the join attribute (Pid) is different from the
group-by attribute (category).

In this paper, we focus on ”GroupBy-Join”
queries when the join attributes are part of the
group-by attributes. In our algorithm, we succeeded
to redistribute only tuples that will be present in
the join result after applying the aggregate function.
Therefore, the communication cost is reduced to
minimum.

4 PRESENTED ALGORITHM

In this section, we present a detailed description of
our parallel algorithm used to evaluate ”GroupBy-
Join” queries when the join attributes are part of
the group-by attributes. We assume that the relation
R (resp. S) is partitioned among processors by
horizontal fragmentation and the fragmentsRi for
i = 1, ..., p are almost of the same size on each
processor, i.e.|Ri| ≃

|R|
p wherep is the number of

processors.
For simplicity of description and without loss of
generality, we consider that the query has only one
join attribute x and that the group-by attribute set
consists ofx, an attributey of R and another attribute
z of S . We also assume that the aggregate function
f is applied on the values of the attributeu of S. So
the treated query is the following:

Select R.x, R.y, S.z, f(S.u)
From R, S

Where R.x = S.x

Group By R.x, R.y, S.z

In the rest of this paper, we use the following
notation for each relationT ∈ {R,S} :

• Ti denotes the fragment of relationT placed on
processori,

• Histw(T) denotes the histogram3 of relation T
with respect to the attributew, i.e. a list of pairs

2PDBMS : Parallel DataBase Management Systems.
3Histograms are implemented as a balanced tree (B-

tree): a data structure that maintains an ordered set of data
to allow efficient search and insert operations.

PARALLEL PROCESSING OF ”GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES

303

(v, nv) wherenv 6= 0 is the number of tuples of re-
lationT having the valuev for the attributew. The
histogram is often much smaller and never larger
than the relation it describes,

• Histw(Ti) denotes the histogram of fragmentTi,

• Histwi (T) is processori’s fragment of the his-
togram ofT ,

• Histw(T)(v) is the frequency (nv) of valuev in
relationT ,

• Histw(Ti)(v) is the frequency of valuev in sub-
relationTi,

• AGGRw
f,u(T) 4 is the result of applying the ag-

gregate functionf on the values of the aggregate
attribute u of every group of tuples ofT hav-
ing identical values of the group-by attributew.
AGGRw

f,u(T) is formed of a list of tuples having
the form(v, fv) wherefv is the result of applying
the aggregate function on the group of tuples hav-
ing valuev for the attributew (w may be formed of
more than one attribute),

• AGGRw
f,u(Ti) denotes the result of applying the

aggregate function on the attributeu of the frag-
mentTi,

• AGGRw
f,u,i(T) is processori’s fragment of the re-

sult of applying the aggregate function onT ,

• AGGRw
f,u(T)(v) is the resultfv of the aggregate

function of the group of tuples having valuev for
the group-by attributew in relationT ,

• AGGRw
f,u(Ti)(v) is the resultfv of the aggregate

function of the group of tuples having valuev for
the group-by attributew in sub-relationTi,

• ‖T‖ denotes the number of tuples of relationT , and

• |T | denotes the size (expressed in bytes or number
of pages) of relationT .

The algorithm proceeds in four phases. We will
give an upper bound of the execution time of each
superstep using BSP cost model. The notationO(...)
hides only small constant factors:they depend only
on the program implementation but neither on data
nor on the BSP machine parameters.

Phase 1: Creating local histograms
In this phase, the local histogramsHistx(Ri)i=1,...,p

(resp. Histx(Si)i=1,...,p) of blocksRi (resp. Si) are
created in parallel by a scan of the fragmentRi (resp.
Si), on processori, in time ci/o ∗ maxi=1,...,p |Ri|
(resp.ci/o ∗ maxi=1,...,p |Si|) whereci/o is the cost of
writing/reading a page of data from disk.

In addition, the local fragmentsAGGR
x,z
f,u(Si)i=1,...,p

4AGGRw
f,u(T) is implemented as a balanced tree (B-

tree).

of blocksSi are created on the fly while scanning re-
lationSi in parallel, on each processori, by applying
the aggregate functionf on every group of tuples
having identical values of the couple of attributes
(x, z). At the same time, the local histograms
Histx,y(Ri)i=1,...,p are also created.
(In this algorithm the aggregate function may be
MAX,MIN, SUM or COUNT . For the aggregate
AV G a similar algorithm that merges theCOUNT
and theSUM algorithms is applied).

In principle, this phase costs:

Timephase1 = O
�
ci/o ∗ max

i=1,...,p
(|Ri| + |Si|)

�
.

Phase 2: Creating the histogram ofR ⋊⋉ S
The first step in this phase is to create the histograms
Histxi (R) and Histxi (S) by a parallel hashing of
the histogramsHistx(Ri) and Histx(Si). After
hashing, each processori merges the messages it
received to constituteHistxi (R) andHistxi (S).
While merging, processori also retains a trace of the
network layout of the valuesd of the attributex in
its Histxi (R) (resp. Histxi (S)): this is nothing but
the collection of messages it has just received. This
information will help in forming the communication
templates in phase 3.

The cost of redistribution and merging step is
(cf. to proposition 1 in (Bamha and Hains, 2005)):

Timephase2.a =

O
�
min

�
g ∗ |Hist

x(R)|+||Hist
x(R)||, g ∗

|R|

p
+

||R||

p

�
+ min

�
g ∗ |Hist

x(S)| + ||Hist
x(S)||, g ∗

|S|

p
+

||S||

p

�
+ l
�
,

whereg is the BSP communication parameter andl
the cost of a barrier of synchronisation.

We recall that, in the above equation, for a rela-
tion T ∈ {R, S}, the termmin(g ∗ |Histx(T)| +

||Histx(T)||, g ∗ |T |
p

+ ||T ||
p

) is the necessary time
to computeHistx

i=1,...,p(T) starting from the local
histogramsHistx(Ti)i=1,...,p.

The histogram5 Histx
i (R ⋊⋉ S) is then computed

on each processori by intersectingHistx
i (R) and

Histx
i (S) in time:

T imephase2.b =

O
�

max
i=1,...,p

�
min(||Hist

x
i (R)||, ||Hist

x
i (S)||)

��
.

5The size ofHist(R ⋊⋉ S) ≡ Hist(R) ∩ Hist(S) is
generally very small compared to|Hist(R)| and|Hist(S)|
becauseHist(R ⋊⋉ S) contains only values that appears in
both relationsR andS.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

304

The total cost of this phase is:

Timephase2 = Timephase2.a + Timephase2.b

O
�
min

�
g ∗ |Hist

x(R)|+||Hist
x(R)||, g ∗

|R|

p
+
||R||

p

�
+ min

�
g ∗ |Hist

x(S)| + ||Hist
x(S)||, g ∗

|S|

p
+

||S||

p

�
+ max

i=1,...,p

�
min(||Hist

x
i (R)||, ||Hist

x
i (S)||)

�
+ l
�
.

Phase 3: Data redistribution
In order to reduce the communication cost, only tu-
ples of Histx,y(R) and AGGR

x,z
f,u(S) that will be

present in the join result will be redistributed.
To this end, we first compute on each processor
j the intersectionsHist

(j)x
(Ri) = Hist(j)x(Ri) ∩

Histj(R ⋊⋉ S) and Hist
(j)x

(Si) = Hist(j)x(Si) ∩

Histj(R ⋊⋉ S) for i = 1, ..., p where Hist(j)x(Ri)

(resp. Hist(j)x(Si)) is the fragment ofHistx(Ri)
(resp. Histx(Si)) which was sent by processori to
processorj in the second phase.
The cost of this step is:

O(
X

i

||Hist
(j)x(Ri)|| +

X
i

||Hist
(j)x(Si)||).

We recall that,P
i ||Hist(j)x(Ri)|| = || ∪i Hist(j)x(Ri)|| ≤

min(||Histx(R)||, ||R||
p

)

andP
i ||Hist(j)x(Si)|| = || ∪i Hist(j)x(Si)|| ≤

min(||Histx(S)||, ||S||
p

),
thus the total cost of this step is:

Timephase3.a = O
�
min

�
||Hist

x(R)||,
||R||

p

�
+ min

�
||Hist

x(S)||,
||S||

p

��
.

Now each processorj sends each fragment
Hist

(j)x
(Ri) (resp. Hist

(j)x
(Si)) to pro-

cessor i. Thus, each processori receivesP
j |Hist

(j)x
(Ri)| +

P
j |Hist

(j)x
(Si)| pages of

data from the other processors.
In fact, Histx(Ri) = ∪jHist(j)x(Ri)

and |Histx(Ri)| =
P

j |Hist(j)x(Ri)| ≥P
j |Hist(j)x(Ri) ∩ Histx(R ⋊⋉ S)|, thus

|Histx(Ri)| ≥
P

j |Hist
(j)x

(Ri)| (this also ap-
plies toHistx(Si)).
Therefore, the total cost of this stage of communica-
tion is at most:

Timephase3.b = O
�
g ∗
�
|Hist

x
(Ri)|+|Hist

x
(Si)|

�
+l
�
.

Remark 1 ∪jHist
(j)x

(Ri) is simply the intersection
of Histx(Ri) and the histogramHistx(R ⋊⋉ S) which
will be noted:

Hist
x
(Ri) = ∪jHist

(j)x
(Ri)

= Hist
x(Ri) ∩ Hist

x(R ⋊⋉ S).

Hence Hist
x
(Ri) is only the restriction of the

fragment ofHistx(Ri) to values which will be present
in the join of the relationsR andS. (this also applies
to Hist

x
(Si)).

Now, each processor obeys all the distribut-
ing orders it has received, so only tuples of
Hist

x,y
(Ri) = Histx,y(Ri) ∩ Hist

x
(Ri) and

AGGR
x,z
f,u(Si) = AGGR

x,z
f,u(Si) ∩ Hist

x
(Si) are

redistributed.

To this end, we first evaluateHist
x,y

(Ri) and
AGGR

x,z
f,u(Si). The cost of this step is of order:

T imephase3.c =

O
�

max
i=1,...,p

�
||Hist

x,y(Ri)|| + ||AGGR
x,z
f,u(Si)||

��
,

which is the necessary time to traverse all the
tuples ofHistx,y(Ri) and AGGR

x,z
f,u(Si) and access

Hist
x
(Ri) and Hist

x
(Si) respectively on each pro-

cessori.

Now, each processori distributes the tuples of
Hist

x,y
(Ri) andAGGR

x,z

f,u(Si). After distribution,

all the tuples ofHist
x,y

(Ri) and AGGR
x,z

f,u(Si)
having the same values of the join attributex are
stored on the same processor. So, each processor
i merges the blocks of data received from all the
other processors in order to createHist

x,y

i (R) and
AGGR

x,z

f,u,i(S).
The cost of distributing and merging the tuples is
of order (cf. to proposition 1 in (Bamha and Hains,
2005)):

T imephase3.d =

O
�
min

�
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||,

g ∗
|R|

p
+

||R||

p

�
+ min

�
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||,

g ∗
|S|

p
+

||S||

p

�
+ l
�
,

where the terms:

min
�
g ∗ |Hist

x,y
(R)|+ ||Hist

x,y
(R)||, g ∗

|R|

p
+

||R||

p

�
and

min
�
g∗|AGGR

x,z
f,u(S)|+||AGGR

x,z
f,u(S)||, g∗

|S|

p
+
||S||

p

�
represent the necessary time to computeHist

x,y
i (R)

and AGGR
x,z
f,u,i(S) starting from Hist

x,y
(Ri) and

AGGR
x,z
f,u(Si) respectively.

PARALLEL PROCESSING OF ”GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES

305

The total time of the redistribution phase is:

Timephase3 =

O
�
min

�
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||,

g ∗
|R|

p
+

||R||

p

�
+ min

�
||Hist

x(R)||,
||R||

p

�
+ min

�
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||,

g ∗
|S|

p
+

||S||

p

�
+ min

�
||Hist

x(S)||,
||S||

p

�
+ max

i=1,...,p

�
||Hist

x,y(Ri)|| + ||AGGR
x,z
f,u(Si)||

�
+ l
�
.

We mention that we only redistributeHist
x,y

(Ri)

andAGGR
x,z

f,u(Si) and their sizes are generally very
small compared to|Ri| and |Si| respectively. In
addition, the size of|Histx(R ⋊⋉ S)| is generally very
small compared to|Histx(R)| and|Histx(S)|. Thus,
we reduce the communication cost to minimum.

Phase 4: Global computation of the aggre-
gate function
In this phase, we compute the global aggregate
function on each processor. We use the following
algorithm whereAGGR

x,y,z
f,u,i (R ⋊⋉ S) holds the

final result on each processori. The tuples of
AGGR

x,y,z
f,u,i (R ⋊⋉ S) have the form(x, y, z, v) wherev

is the result of the aggregate function.

Par (on each node in parallel) i = 1, ..., p

AGGR
x,y,z
f,u,i (R ⋊⋉ S) = NULL 6

For every tuple t of relation Hist
x,y
i (R) do

freq = Hist
x,y
i (R)(t.x, t.y)

For every entry v1 = AGGR
x,z
f,u,i(S)(t.x, z) do

Insert a new tuple (t.x, t.y, z, f(v1, freq))
into AGGR

x,y,z
f,u,i (R ⋊⋉ S);

EndFor
EndFor

EndPar

The time of this phase is:
O
�
maxi=1,...,p ||AGGR

x,y,z
f,u,i (R ⋊⋉ S)||

�
, because

the combination of the tuples ofHist
x,y
i (R) and

AGGR
x,z
f,u,i(S) is performed to generate all the tuples

of AGGR
x,y,z
f,u,i (R ⋊⋉ S).

Remark 2 In practice, the imbalance of the data re-
lated to the use of the hash functions can be due to:

• a bad choice of the hash function used. This im-
balance can be avoided by using the hashing tech-
niques presented in the literature making it possible
to distribute evenly the values of the join attribute
with a very high probability (Carter and Wegman,
1979),

6This instruction creates a B-tree to store histogram’s
entries.

• an intrinsic data imbalance which appears when
some values of the join attribute appear more fre-
quently than others. By definition a hash function
maps tuples having the same join attribute values
to the same processor. These is no way for a clever
hash function to avoid load imbalance that result
from these repeated values (DeWitt et al., 1992).
But this case cannot arise hereowing to the fact
that histograms contains only distinct values of the
join attribute and the hashing functions we use are
always applied to histograms.

The global cost of evaluating the ”GroupBy-Join”
queries is of order:

Timetotal = O
�
ci/o ∗ max

i=1,...,p
(|Ri| + |Si|)

+ max
i=1,...,p

||AGGR
x,y,z
f,u,i (R ⋊⋉ S)||

+ min(g ∗ |Hist
x(R)| + ||Hist

x(R)||, g ∗
|R|

p
+

||R||

p
)

+ min(g ∗ |Hist
x(S)| + ||Hist

x(S)||, g ∗
|S|

p
+

||S||

p
)

+ min
�
g ∗ |Hist

x,y
(R)| + ||Hist

x,y
(R)||,

g ∗
|R|

p
+

||R||

p

�
+ min

�
g ∗ |AGGR

x,z
f,u(S)| + ||AGGR

x,z
f,u(S)||,

g ∗
|S|

p
+

||S||

p

�
+ max

i=1,...,p

�
||Hist

x,y(Ri)|| + ||AGGR
x,z
f,u(Si)||

�
+ l
�
.

Remark 3 In the traditional algorithms, the aggre-
gate function is applied on the output of the join op-
eration. The sequential evaluation of the ”groupBy-
Join” queries requires at least the following lower
bound:boundinf1

= Ω
(

ci/o∗(|R|+|S|+|R ⋊⋉ S|)
)

.
Parallel processing withp processors requires there-
fore: boundinfp

= 1
p ∗ boundinf1

.

Using our approach in the evaluation of the
”GroupBy-Join” queries, we only redistribute tuples
that will be effectively present in the ”groupBy-Join”
result, which reduces the communication cost to
minimum. This algorithm has an asymptotic optimal
complexity because all the terms inTimetotal are
bounded by those ofboundinfp

.

5 CONCLUSION

The algorithm presented in this paper is used to eval-
uate the ”GroupBy-Join” queries on Shared Noth-
ing machines when the join attributes are part of the
group-by attributes. Our main contribution in this
algorithm is that we do not need to materialize the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

306

costly join operation which is necessary in all the
other algorithms presented in the literature, thus we
reduce its Input/Output cost. It also helps us to avoid
the effect of data skew which may result from com-
puting the intermediate join results and from redis-
tributing all the tuples if AVS (Attribute Value Skew)
exists in the relation. In addition, we partially eval-
uate the aggregate function before redistributing the
data between processors or evaluating the join oper-
ation, because group-by and aggregate functions re-
duce the volume of data. To reduce the communica-
tion cost to minimum, we use the histograms to dis-
tribute only the tuples of the grouping result that will
effectively be present in the output of the join oper-
ation. This algorithm is proved to have a near-linear
speed-up, using the BSP cost model, even for highly
skewed data. Our experience with the join operation
(Bamha and Hains, 2000; Bamha and Hains, 1999;
Bamha and Hains, 2005) is evidence that the above
theoretical analysis is accurate in practice.

REFERENCES

Bamha, M. (2005). An optimal and skew-insensitive
join and multi-join algorithm for ditributed architec-
tures. InProceedings of the International Confer-
ence on Database and Expert Systems Applications
(DEXA’2005). 22-26 August, Copenhagen, Dane-
mark, volume 3588 ofLecture Notes in Computer Sci-
ence, pages 616–625. Springer-Verlag.

Bamha, M. and Hains, G. (2000). A skew insensitive al-
gorithm for join and multi-join operation on Shared
Nothing machines. Inthe 11th International Confer-
ence on Database and Expert Systems Applications
DEXA’2000, volume 1873 ofLecture Notes in Com-
puter Science, London, United Kingdom. Springer-
Verlag.

Bamha, M. and Hains, G. (2005). An efficient equi-semi-
join algorithm for distributed architectures. InPro-
ceedings of the 5th International Conference on Com-
putational Science (ICCS’2005). 22-25 May, Atlanta,
USA, volume 3515 ofLecture Notes in Computer Sci-
ence, pages 755–763. Springer-Verlag.

Bamha, M. and Hains, G. (September 1999). A frequency
adaptive join algorithm for Shared Nothing machines.
Journal of Parallel and Distributed Computing Prac-
tices (PDCP), Volume 3, Number 3, pages 333-345.
Appears also in Progress in Computer Research, F.
Columbus Ed. Vol. II, Nova Science Publishers, 2001.

Bisseling, R. H. (2004).Parallel Scientific Computation :
A Structured Approach using BSP and MPI. Oxford
University Press, USA.

Carter, J. L. and Wegman, M. N. (April 1979). Universal
classes of hash functions.Journal of Computer and
System Sciences, 18(2):143–154.

Chaudhuri, S. and Shim, K. (1994). Including Group-By in
Query Optimization. InProceedings of the Twentieth

International Conference on Very Large Databases,
pages 354–366, Santiago, Chile.

Datta, A., Moon, B., and Thomas, H. (1998). A case for
parallelism in datawarehousing and OLAP. InNinth
International Workshop on Database and Expert Sys-
tems Applications, DEXA 98, IEEE Computer Society,
pages 226–231, Vienna.

DeWitt, D. J. and Gray, J. (1992). Parallel database systems
: The future of high performance database systems.
Communications of the ACM, 35(6):85–98.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical Skew Handling in Parallel
Joins. InProceedings of the 18th VLDB Conference,
pages 27–40, Vancouver, British Columbia, Canada.

Hua, K. A. and Lee, C. (1991). Handling data skew in mul-
tiprocessor database computers using partition tuning.
In Lohman, G. M., Sernadas, A., and Camps, R., ed-
itors, Proc. of the 17th International Conference on
Very Large Data Bases, pages 525–535, Barcelona,
Catalonia, Spain. Morgan Kaufmann.

Seetha, M. and Yu, P. S. (December 1990). Effectiveness of
parallel joins.IEEE, Transactions on Knowledge and
Data Enginneerings, 2(4):410–424.

Shatdal, A. and Naughton, J. F. (1995). Adaptive paral-
lel aggregation algorithms.SIGMOD Record (ACM
Special Interest Group on Management of Data),
24(2):104–114.

Skillicorn, D. B., Hill, J. M. D., and McColl, W. F. (1997).
Questions and Answers about BSP.Scientific Pro-
gramming, 6(3):249–274.

Taniar, D., Jiang, Y., Liu, K., and Leung, C. (2000).
Aggregate-join query processing in parallel database
systems,. InProceedings of The Fourth International
Conference/Exhibition on High Performance Comput-
ing in Asia-Pacific Region HPC-Asia2000, volume 2,
pages 824–829. IEEE Computer Society Press.

Taniar, D. and Rahayu, J. W. (2001). Parallel processing of
’groupby-before-join’ queries in cluster architecture.
In Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, Brisbane, Qld, Aus-
tralia, pages 178–185. IEEE Computer Society.

Tsois, A. and Sellis, T. K. (2003). The generalized pre-
grouping transformation: Aggregate-query optimiza-
tion in the presence of dependencies. InVLDB, pages
644–655.

Valiant, L. G. (August 1990). A bridging model for par-
allel computation. Communications of the ACM,
33(8):103–111.

Wolf, J. L., Dias, D. M., Yu, P. S., and Turek, J. (1994).
New algorithms for parallelizing relational database
joins in the presence of data skew.IEEE Transactions
on Knowledge and Data Engineering, 6(6):990–997.

Yan, W. P. and Larson, P.-k. (1994). Performing group-by
before join. InProceedings of the 10th IEEE Inter-
national Conference on Data Engineering, pages 89–
100. IEEE Computer Society Press.

PARALLEL PROCESSING OF ”GROUP-BY JOIN” QUERIES ON SHARED NOTHING MACHINES

307

