
ASPECTBOXES – CONTROLLING THE VISIBILITY OF ASPECTS

Alexandre Bergel1, Robert Hirschfeld2, Siobhán Clarke1 and Pascal Costanza3

1 Distributed Systems Group
Trinity College Dublin, Ireland

2 Hasso-Plattner-Institut
Universität Potsdam, Germany

3 Programming Technology Lab
Vrije Universiteit Brussel, Belgium

Keywords: Aspect-oriented programming, aspect composition, scoping change, aspects, classboxes, squeak.

Abstract: Aspect composition is still a hot research topic where there is no consensus on how to express where and when
aspects have to be composed into a base system. In this paper we present a modular construct for aspects, called
aspectboxes, that enables aspects application to be limited to a well defined scope. An aspectbox encapsulates
class and aspect definitions. Classes can be imported into an aspectbox defining a base system to which
aspects may then be applied. Refinements and instrumentation defined by an aspect are visible only within
this particular aspectbox leaving other parts of the system unaffected.

1 INTRODUCTION

Aspect-oriented programming (AOP) promises to im-
prove the modularity of programs by providing a
modularity construct called aspect to clearly and con-
cisely capture the implementation of crosscutting be-
havior. An aspect instruments a base software system
by inserting pieces of code called advices at locations
designed by a set of pointcuts.

An important focus of current research in AOP is
on aspect composition (Douence et al., 2004; Klaeren
et al., 2000; Nagy et al., 2005; Brichau et al., 2002).
Ordering and nesting are commonly used when com-
posing aspects and advices (Kiczales et al., 2001;
Tanter, 2006). Whereas most aspect languages pro-
vide means to compose aspects at a very fine grained
level, experience has shown that ensuring a sound
combination of aspects is a challenging and diffi-
cult task (Lopez-Herrejon et al., 2006). First steps
are already taken by AspectJ (Kiczales et al., 2001)
by restricting pointcuts to a Java package or a class
through the use of dedicated pointcuts primitives such
as within and withincode primitive pointcuts.

If we regard an aspect as an extension to a base
system, multiple extensions are difficult to manage
and control, even if they are not interacting with each
other. We believe that the reason for this is the lack of
a proper scoping mechanism.

In this paper we define a new modular construct
for an aspect language called an aspectbox. An as-
pectbox is a modular unit that may contain class and
aspect definitions. Classes can be imported into an as-
pectbox and the aspect is then applied to the imported
classes. Refinements originated from such aspects are
visible only within the aspectbox that defines this as-
pect. Outside this aspectbox the base system behaves
as if there were no aspect. Other parts outside a par-
ticular aspectbox remain unaffected.

In Section 2 we provide an example illustrating the
issues when composing aspects. In Section 4 we de-
scribe the aspectboxes module system and its proper-
ties. In Section 5 we present our Squeak-based imple-
mentation of aspectboxes. Related work is discussed
in Section 6. We conclude by summarizing the pre-
sented work in Section 7.

2 MOTIVATION

To motivate the need for limiting the scope of aspects,
we use an example based on the design of a small
four-wheel electric car, and its implementation based
on a mainstream aspect language, AspectJ (Kiczales
et al., 2001).

The CyCab (Baille et al., 1999) is an electric four
wheel car designed to transport up to two people. The

29
Bergel A., Hirschfeld R., Clarke S. and Costanza P. (2006).
ASPECTBOXES – CONTROLLING THE VISIBILITY OF ASPECTS.
In Proceedings of the First International Conference on Software and Data Technologies, pages 29-35
DOI: 10.5220/0001316800290035
Copyright c© SciTePress

Unit

Module

Dependancy

Driving Control

Position Control

Joystick

Position and
Velocity

Motion
Engine Wheels

Safety Control
PowerOff,

Break

Figure 1: The three units and their modules that compose
the CyCab electrical car.

mechanics is taken from a small electrical golf car
frame. Functionalities implemented in a CyCab range
from an autonomous driving facility (like a coach in a
train) to ultrasonic sensors for collision avoidance. A
CyCab is composed of three different units (driving
control, position control and safety control). Each
unit is composed of one or more modules. Figure 1
illustrates the architecture of a CyCab.

Driving Control. A CyCab is steered with a joystick
emitting electrical pulses used by the motion engine
to activate the four motored wheels. This feature is
provided by three modules within the driving control
unit. The joystick module emits signals that are
captured by the motion engine module. This module
controls the wheels.

Position Control. The position control unit computes
the velocity and the location of the CyCab based on
the acceleration given by the motion engine to the
wheels and their angle between the car head.

Safety Control. The safety control unit verifies the
interactions between the three modules of the driving
control unit. For example, it asserts that pulses emit-
ted by the joystick trigger the correct reaction in the
engine and the wheels reflect the heading dictated by
the joystick. In addition, in the event of failure the
power is shut down and communication between the
three modules is cut off.

3 EXAMPLE ANALYSIS

Behavior defined by the safety control unit crosscuts
the whole driving control unit. For example, the im-
pact of a power shut-down is that the joystick, the mo-
tion engine and wheels are disconnected. This can
be easily captured in an aspect that adds behaviour to
check the power status into each affected module, as
implemented by the following AspectJ aspect:

aspect PowerOff {
private boolean hasPower = ...;
pointcut drivingControl():

target(Joystick) && call(public * *(..)) ‖
target(Engine) && call(public * *(..)) ‖
target(Wheels) && call(public * *(..));

void around(): drivingControl() {
if (hasPower == true)

proceed();
}
...

}

The PowerOffAndBreak aspect inserts a check be-
fore all public methods of the classes Joystick, Engine
and Wheels to proceed only if power is equal to true.
This aspect is applied to the driving control unit and
has to be composed with the PositionAndVelocity as-
pect defined by the position control unit:

aspect PositionAndVelocity {
double speed;
pointcut speedUp() : call (* Engine.accelerate());
after(): speedUp() {

//... Speed calculation
}
...

}

PositionAndVelocity inserts a speed calculation
functionality after the execution of the accelerate
method. Defining the position and velocity module
as an aspect has the benefit to leave the driving con-
trol unit free from referring to the speed and position
computation. The two aspects PowerOffAndBreak and
PositionAndVelocity are woven into the base system,
the driving control unit, to form a deployable system.
With current aspect languages such as AspectJ, exten-
sions defined by all aspects are automatically applied
to all the modules in the system (i.e., the physical dis-
play screen, the electronic control unit in charge of
the safety).

This facility is particularly dangerous regarding the
implicit sharing of the control flow of the application.
A failure raised by the PositionAndVelocity aspect may
easily impact the PowerOffAndBreak aspect affecting
the electronic control unit in charge of the safety.

Whereas most of current aspect languages offer so-
phisticated pointcut primitives to express location of
join points, they do not provide a means to limit the
impact of an aspect into a well-defined system area.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

30

In the up coming section we define a module system
for an aspect-oriented programming environment in
which one or more aspect compositions are effective
only in the context of a well-defined subset of the base
system.

4 SCOPING ASPECTS WITH
ASPECTBOXES

Most of today’s aspect languages do not provide a
way to limit the impact of an aspect within a delimited
scope. In this section, we describe a module system
for an aspect-oriented programming language that al-
lows for controlling the visibility of a set of aspects
relative to a well-defined system area.

4.1 Aspectboxes in a Nutshell

Aspectboxes is a namespace mechanism for aspects.
An aspect lives in an aspectbox and the effects of this
aspect is limited to the aspectbox in which it is de-
fined and to other aspectboxes that rely on the base
system extended by this aspect. An aspectbox can (i)
define classes, (ii) import classes from another aspect-
box and (iii) define aspects.

The import relationship is transitive: If an aspect-
box AB2 imports a class C from another aspectbox
AB1, then a third aspectbox AB3 can import C from
AB2. From the point of view of the importing as-
pectbox AB3, there is no difference if the class is de-
fined or imported in the provider aspectbox AB2. Be-
cause aspects cannot be reused across multiple base
systems, aspects cannot be imported.

A pointcut definition contained in an aspect refers
only to classes that are imported (i.e., visible within
the aspectbox that defines this aspect). An aspect in
an aspectbox refines the behavior of the classes that
are imported or defined, for instance by adding some
code before and after some methods. The classes aug-
mented with the aspect can also be imported from an-
other aspectbox. From the point of view of an import-
ing aspectbox, there is no distinction between classes
defined within the aspectbox and those imported.

4.2 Namespace for Classes and
Aspects

An aspectbox defines a namespace for class defini-
tions, aspect definitions and aspect compositions.

Aspectbox as namespace for classes. The class En-
gine contained in the aspectbox DrivingControlAB1 as

1We end the name of aspectboxes by AB to clearly make
a distinction between them and regular class names

illustrated in Figure 1 is defined as the following2:
(Aspectbox named: #DrivingControlAB)

createClassNamed: #Engine
instanceVariableNames: ”

The class Engine does not have any instance vari-
ables and two methods accelerateWheels: anAcceler-
ation and setAnglewithHeading: anAngle are defined
on it.
DrivingControlAB.Engine>>

accelerateWheels: anAcceleration
”accelerate the wheels with a given acceleration”
...

DrivingControlAB.Engine>>
setAnglewithHeading: anAngle

”set the heading of the car by setting
appropriately the wheel angle”
...

An aspectbox acts as a code packaging mechanism
and constrains aspect visibility. A class is visible
within an aspectbox if this class is defined in or im-
ported to this aspectbox. Any class visible within an
aspectbox AB1 can be imported from AB1 by other as-
pectboxes. The aspectbox PositionControlAB imports
the class Engine from DrivingControlAB

(Aspectbox named: #PositionControlAB)
import: #Engine from: #DrivingControlAB

An instantiation of a class can occurs in any aspect-
box as long as this class is visible in the aspectbox that
contains the code performing the instantiation. Class
instances (i.e., objects) do not belong to an aspectbox.

Aspectbox as namespace for aspect definitions.
The module position and velocity is implemented by
the PositionAndVelocity aspect:
(Aspectbox named: #PositionControlAB)

createAspectNamed: #PositionAndVelocity
instanceVariableNames: ’heading velocity’

Because the aspect PositionAndVelocity has to
be applied to the class Engine, this class has to
be imported from the DrivingControlAB aspectbox.
This aspect also defines advices to be applied to
the methods accelerateWheels: anAcceleration and
setAnglewithHeading: anAngle that compute the
velocity and the heading, respectively, as illustrated
in Figure 2.

Aspectbox as namespace for aspect compositions.
An aspect, which is defined in an aspectbox, is ap-
plied to classes that are visible in this aspectbox (i.e.,
classes that are imported or defined). The effect of
this aspect is limited to the aspectbox in which this

2Since our aspectboxes prototype is implemented in
Squeak, we therefore use the Squeak syntax to describe
them.

ASPECTBOXES – CONTROLLING THE VISIBILITY OF ASPECTS

31

PositionControlAB. PositionAndVelocity>> adviceComputeVelocity
ˆAfterAdvice

pointcut: (JoinPointDescriptor
targetClass: Engine targetSelector: #accelerateWheels:)

afterBlock: [:receiver :arguments :aspect |
”computation of the velocity according to the speed of the wheels”
velocity := ...]

PositionControlAB. PositionAndVelocity>> adviceComputeHeading
ˆAfterAdvice

pointcut: (JoinPointDescriptor
targetClass: Engine targetSelector: #setAnglewithHeading:)

afterBlock: [:receiver :arguments :aspect |
”computation of the heading according to the speed of the wheels”
heading := ...]

Figure 2: The velocity and the heading are computed by two advices adviceComputeVelocity and adviceComputeHead-
ing, respectively.

aspect is defined. Outside this aspectbox, it is as if no
aspect would have been applied to the base system.

The aspectbox SafetyControlAB defines the aspect
PowerOff. This aspect has one advice, adviceDriving-
Control that proceed a method call if the hasPower is
true.

(Aspectbox named: #SafetyControlAB)
createAspectNamed: #PowerOff
instanceVariableNames: ’hasPower’.

SafetyControlAB.PowerOff>>
adviceDrivingControl

| joinpoints |
joinpoints := JointPointDescriptor

targetClasses: {Joystick . Engine . Wheels}.
ˆAroundAdvice

pointcut: joinpoints
aroundBlock: [:receiver :arguments :aspect |

hasPower ifTrue: [aspect proceed]

Aspects PowerOff and PositionAndVelocity de-
scribed above have a common pointcut: public
method of the class Engine. Because these
two aspects belongs to different aspectboxes
(SafetyControlAB and PositionControlAB, respec-
tively), they do not conflict with each other.

4.3 Executing Code in an Aspectbox

Triggering a program execution in an aspectbox is
achieved by the method eval:.

(Aspectbox named: #SafetyControlAB) eval: [
| app |
app := SafetyApplication new.
app run].

The code above instantiates the class SafetyAppli-
cation and invokes the method run. The code invoked
by this method run will benefit from aspects defined

in SafetyControlAB (i.e.,PowerOff). Similarly, an ap-
plication invoked in the aspectbox PositionControlAB
will benefit from PositionAndVelocity without being
affected by SafetyControlAB.

4.4 Absolute Isolation of Aspects

It is widely accepted that encapsulating different
functionalities of a system in distinct modular units
aids their comprehensibility and maintainability (Par-
nas, 1972).

Figure 1 illustrates a modular architecture. Because
it is closely linked to the physical and external phys-
ical mechanic events, the driving control unit needs
special care and should not be altered by other units
that are not necessary for its execution. Also, for
safety reasons, the position control unit has to be built
on top of the motion engine without affecting its ex-
ecution. Different concerns composed into a system
have to be well modularized and isolated from the
base system.

The aspectboxes module system has the following
properties:

• Conflicts between aspects are avoided. By living in
different scopes, aspects are kept separated. Even
if aspects defined in different aspectboxes have the
same join points, there is no need to define prece-
dence rules for composition ordering.

• Minimal extension of the aspect language. Com-
bining the aspectboxes module system with As-
pectS (Hirschfeld, 2003) did not require any mod-
ification of the aspect language syntax. Static ref-
erences contained in the definition of pointcuts are
resolved using the classes visible in the aspectbox
in which these pointcuts are defined in.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

32

Joystick Engine Wheels

Driving Control

PowerOff Position
Velocity

Safety Control Position Control

Base system

Activation block

Aspect
Aspectbox

Pointcut

Figure 3: The PowerOff. and PositionAndVelocity aspects hooked into the driving control module.

5 IMPLEMENTATION

A prototype of aspectboxes is implemented in
Squeak. Figure 3 describes how the safety control
and the position control are hooked into the driving
control module.

AspectS. AspectS (Hirschfeld, 2003) is an approach
to general-purpose aspect-oriented programming in
the Squeak3 Smalltalk environment (Ingalls et al.,
1997). It extends the Squeak metaobject protocol to
accommodate the aspect modularity mechanism. In
contrast to systems like AspectJ, weaving and un-
weaving in AspectS happens dynamically at runtime,
on-demand, employing metaobject composition.
Instead of introducing new language constructs,
AspectS utilizes Squeak itself as its pointcut lan-
guage. AspectS benefits from the expressiveness and
uniformity of Squeak.

Activation blocks. AspectS uses Method Wrap-
pers (Brant et al., 1998) to instrument both message
sends and receptions. Such wrappers support exe-
cution of additional code before, after, around, or
instead of an existing method. The core of the aspect
activation mechanism is implemented in the isActive
method of the class MethodWrapper. All additional
code provided by a wrapper is to be activated only
if all activation blocks associated with it evaluate
to true. Activation blocks are treated as predicate
methods, returning either true or false as the outcome
of their execution.

Aspectboxes. The aspectboxes module system is
fully integrated in the Squeak environment. When
an aspect is woven, activation blocks are created and
placed at join points shadows. When the control flow
of the application reaches a join point, the isActive
methods is executed in order to determine if this po-
tential join point is within the scope of an aspectbox

3Squeak is an open-source Smalltalk available from
http://www.squeak.org

defining this aspect to yield activation or not (i.e., if it
is associated with the current control flow).

6 RELATED WORK

AspectJ. The pointcut language offered by AspectJ
provides a mechanism to restrict a pointcut definition
to a package or a class (i.e.,within and withincode
pointcut primitives). The purpose of these constructs
is to restrict the location of join points between a base
system and an aspect, however advices hooked at
those join points remain globally visible. Therefore,
the restricting pointcut primitives of AspectJ do not
help in scoping an aspect application.

CaesarJ. Aspects, packages and classes are unified
in CaesarJ (Aracic et al., 2006) under a single notion,
a cclass. Aspect deployment can either be global or
thread local.

Aspectboxes promotes a syntactic scoping of
aspects: an aspect is scoped to the aspectbox that
defines it. In CaesarJ, an aspect is scoped to the
thread it was installed in.

Classboxes. The Classbox module system allows a
class to be extended by means of class member addi-
tions and redefinitions. These extensions are visible
in a locally and well-delimited scope. Several ver-
sions of a same class can coexist at the same time in
the same system. Each class version corresponds to a
particular view of this class (Bergel et al., 2005).

Classboxes and aspectboxes have a common root
which is the scoping mechanism for refinement.
Whereas classboxes support structural refinement
(i.e., class members addition and redefinition), as-
pectboxes offer a scoping mechanism for behavioral
refinement.

Context-aware aspects. Context awareness pro-
motes software program behaviour to depend on
“context”. Context-aware aspects (Tanter et al., 2006)

ASPECTBOXES – CONTROLLING THE VISIBILITY OF ASPECTS

33

offers language constructs to handle contexts. A con-
text is defined by the programmer as a plain standard
object. The pointcut language is extended with primi-
tives such as inContext(c) and createdInContext(c) that
restrict a pointcut expression to a particular context c
and to objects that were created in a context c, respec-
tively.

Whereas context-aware aspects trigger the acti-
vation of aspects based on some arbitrary context
activation function, aspectboxes promote the con-
current applications of aspects by restricting them to
different scope.

Context-oriented programming. Con-
textL (Costanza and Hirschfeld, 2005), a CLOS-
based implementation for Context-Oriented Program-
ming, provides dedicated programming language
constructs to associate partial class and method
definitions with layers. Layers activation and deac-
tivation is driven by the control flow of a running
program. When a layer is activated, the partial
definitions become part of the program until this
layer is deactivated.

Whereas scoping software system refinement is the
common problem for context-oriented programming
and aspectboxes, the approaches are different. A
layer in ContextL encapsulate structural definitions,
whereas aspectboxes encapsulate behavioral defini-
tions.

AWED. Aspects with Explicit Distribution
(AWED) (Navarro et al., 2006) is an approach
for defining crosscutting behaviour on remote loca-
tions (i.e., distributed applications). AWED is an
aspect language supporting remote pointcuts, dis-
tributed advices and distributed aspects. A distributed
aspect allows for state sharing and aspect instance to
be distributed across multiple hosts.

7 CONCLUSION

Aspectboxes provide a new aspect modularity con-
struct limiting the scope of aspect composition with a
base software system. Modifications to the base sys-
tem are visible only in the aspectbox the aspect is de-
fined in. This allows one to deploy multiple concur-
rent modifications in the same base system, avoiding
conflicting situations across aspectboxes.

In the work presented in this paper, an aspect can-
not be imported from an aspectbox. The reason for
this is that aspects are not generic (i.e., cannot be ap-
plied to other base systems). As future work, we plan
to refine the notion of import to enable reuse of as-
pects within multiple aspectboxes.

Our prototypical implementation is based on As-

pectS. It integrates the composition mechanisms of
AspectS and Classboxes to achieve the desired com-
position and scoping behavior.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of
the Science Foundation Ireland and Lero — the Irish
Software Engineering Research Centre. We also like
to thank Parinaz Davari and Daniel Rostrup for their
valuable comments.

REFERENCES

Aracic, I., Gasiunas, V., Mezini, M., and Ostermann, K.
(2006). An overview of caesarj. Transactions on
Aspect-Oriented Software Development, 3880:135 –
173.

Baille, G., Garnier, P., Mathieu, H., and Pissard-Gibollet,
R. (1999). Le cycab de l’inria rhône-alpes. Technical
Report RT-0229, INRIA.

Bergel, A., Ducasse, S., and Nierstrasz, O. (2005). Class-
box/J: Controlling the scope of change in Java. In Pro-
ceedings of Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05), pages
177–189, New York, NY, USA. ACM Press.

Brant, J., Foote, B., Johnson, R., and Roberts, D. (1998).
Wrappers to the Rescue. In Proceedings ECOOP
’98, volume 1445 of LNCS, pages 396–417. Springer-
Verlag. method wrappers.

Brichau, J., Mens, K., and Volder, K. D. (2002). Build-
ing composable aspect-specific languages with logic
metaprogramming. In Proceedings of the 1st
ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE
2002), volume 2487 of LNCS. Springer-Verlag.

Costanza, P. and Hirschfeld, R. (2005). Language con-
structs for context-oriented programming. In Proceed-
ings of the Dynamic Languages Symposium 2005.

Douence, R., Fradet, P., and Südholt, M. (2004). Composi-
tion, reuse and interaction analysis of stateful aspects.
In AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 141–150, New York, NY, USA. ACM Press.

Hirschfeld, R. (2003). AspectS – Aspect-Oriented Pro-
gramming with Squeak. In Aksit, M., Mezini, M.,
and Unland, R., editors, Objects, Components, Ar-
chitectures, Services, and Applications for a Net-
worked World, number 2591 in LNCS, pages 216–
232. Springer.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., and Kay,
A. (1997). Back to the future: The story of Squeak, A
practical Smalltalk written in itself. In Proceedings
OOPSLA ’97, ACM SIGPLAN Notices, pages 318–
326. ACM Press.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

34

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An overview of As-
pectJ. In Proceeding ECOOP 2001, number 2072 in
LNCS, pages 327–353. Springer Verlag.

Klaeren, H., Pulvermüller, E., Raschid, A., and Speck, A.
(2000). Aspect composition applying the design by
contract principle. In Proceedings of the 2nd Inter-
national Symposium on Generative and Component-
Based Software Engineering (GCSE 2000), volume
2177 of LNCS, pages 57–69. Springer-Verlag.

Lopez-Herrejon, R., Batory, D., and Lengauer, C. (2006).
A disciplined approach to aspect composition. In
PEPM ’06: Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based
program manipulation, pages 68–77, New York, NY,
USA. ACM Press.

Nagy, I., Bergmans, L., and Aksit, M. (2005). Composing
aspects at shared join points. In Robert Hirschfeld,
Ryszard Kowalczyk, A. P. and Weske, M., editors,
Proceedings of International Conference NetObject-
Days, NODe2005, volume P-69 of Lecture Notes in
Informatics, Erfurt, Germany. Gesellschaft für Infor-
matik (GI).

Navarro, L. D. B., Südholt, M., Vanderperren, W., Fraine,
B. D., and Suvée, D. (2006). Explicitly distributed
AOP using AWED. In Proceedings of the 5th Int.
ACM Conf. on Aspect-Oriented Software Develop-
ment (AOSD’06). ACM Press.

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. CACM, 15(12):1053–
1058.

Tanter, É. (2006). Aspects of composition in the reflex aop
kernel. In Proceedings of the 5th International Sym-
posium on Software Composition (SC 2006), LNCS,
pages 99–114, Vienna, Austria.

Tanter, É., Gybels, K., Denker, M., and Bergel, A. (2006).
Context-aware aspects. In Proceedings of the 5th In-
ternational Symposium on Software Composition (SC
2006), LNCS, pages 229–244, Vienna, Austria.

ASPECTBOXES – CONTROLLING THE VISIBILITY OF ASPECTS

35

