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Abstract: Declarative models are a commonly used approach to deal with software complexity: by abstracting away
the intricacies of the implementation these models are often easier to understand than the underlying code.
Popular modeling languages such as UML can however become complex to use when modeling systems in
sufficient detail.
In this paper we introduce a new declarative model, the EP-model, named after the basic entities it contains -
events and properties - that possesses the following features: it has a small metamodel; it supports a graphical
notation; it can represent both static and dynamic aspects of an application; finally, it allows executable models
to be described by annotating model elements with code snippets. By leaving complex parts at the code level
this hybrid approach achieves executability while keeping the basic modeling language simple.

1 INTRODUCTION

Abstraction is a key concept for dealing with com-
plexity. By abstracting away details of the implemen-
tation one can construct a higher-level model that is
easier to understand than the underlying code. Al-
though the relations between successive abstraction
layers are varied, a common theme is that of separat-
ing what a system does from how it is actually done.
We call the approaches that rely on this distinction
declarative.

An important element of a declarative approach
is the language used for representing the high-level
models. The de-facto standard for modeling object-
oriented systems is the Unified Modeling Language
(Object Management Group, 2003). The UML is a
powerful language for describing systems at various
levels of abstraction and from multiple viewpoints. It
has a large number of diagrams available for describ-
ing systems from different perspectives, each with
their own syntax and semantics. This expressiveness
also means that UML is a rather large and complex
language (Kobryn, 2002; Siau and Cao, 2001).

The complexity and size of the language becomes a
hindrance when designing systems at a detailed level.
While it is possible in principle to transform UML

into an executable language (Raistrick et al., 2000) by
instrumenting it with a precise Action Semantics (Al-
catel et al., 2000) this results in an even bigger lan-
guage. Indeed executability and simplicity seem to
be conflicting goals if we judge by previous attempts.
The main subject of this paper is a new executable
model, the EP-model, that is based on a rather trivial
observation: certain aspects of programs can be eas-
ily presented in a simple form at a declarative level
while other aspects are much more difficult to capture
at such a level. Our basic approach to this problem
is that of leaving things that are truly complex to de-
scribe at a low level (source code) and extracting only
those aspects that can easily be presented.

We now discuss the main features of EP-models
and contrast them with existing approaches. The sim-
plicity of EP-models is mainly due to the small num-
ber of concepts that they are based on: indeed the
high-level metamodel can be described using only
two types of entities - events and properties - and four
types of relationships among those entities.

The second main feature of EP-models is their ex-
ecutability. Executability by itself is not a new idea
(e.g., (Belina and Hogrefe, 1989; Raistrick et al.,
2000)). What makes our model interesting is the fact
that executability is achieved without relying on a
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overly complex language for the modeling notation.
Instead we propose a hybrid approach in which the
model itself is unchanged but code segments annotate
the various modeling elements to allow executabil-
ity. A useful characteristic of our hybrid approach
is the ”locality” of the code segments: indeed each
code snippet can only refer to the model elements that
are adjacent to the element that it annotates. Clearly
this locality reduces coupling since it disallows the
code to access elements that it is not related to. Al-
though there have been a few approaches to reduce
coupling at the method level (the Law of Demeter
(Lieberherr and Holland, 1989) is representative of
such approaches) current approaches are rather low-
level in the sense that they refer to an existing class
structure. On the other hand the EP-models provide
a ”sandboxing” approach for code that is situated at a
higher semantic level.

Finally, EP-models model both static and dynamic
aspects of a system in a single diagram. On the other
hand UML separates static and dynamic aspects into
different diagrams. One reason for this difference
lies in the fact that while UML is largely grounded
in the object-oriented paradigm our model combines
ideas from both object-oriented and functional pro-
gramming: it borrows the notion of state from object-
oriented programming while representing dynamic
behavior as functions without side-effects that are
decomposed over the state. We remark that the
idea of combining the functional and object-oriented
paradigms is not new but most attempts have focused
so far at the level of programming language design
(e.g., (Hughes and Sparud, 1995; Rémy and Vouillon,
1997; Odersky and Wadler, 1997)).

2 AN EXAMPLE: FLASHCARDS

To illustrate the concepts introduced in this paper, we
will make use of a simple application calledFlash-
Cardsthat will be used as a running example. The ap-
plication allows the user to design and work with a set
of flash cards. A flash card contains of a question and
an answer. Flash cards are commonly used as a study
aid. The application should allow the user to add a
number of flash cards, specifying for each card the
corresponding question-answer pair. The main win-
dow should present an overview of the cards entered
so far. The user can enter a specialquizmode: in this
mode he can review the flash cards one at a time. For
each flash card the question is displayed and the user
can choose to also view the answer.

3 THE STATIC VIEW: LOCAL
PROPERTIES AND THE
SYSTEM STATE

The static structure of an EP-system is given by a set
of local properties in each model. (A second class
of properties namedquery propertieswill be intro-
duced in section 6). Local properties have a name and
a type. We shall assume that no two properties in
the same model have the same name. The type has a
name and an associated set of values. This type can be
either internal or external: an internal type is given
by another model in the EP-system. Examples of ex-
ternal types are the built-in types of a programming
language or a class in a class library; external types
are not represented by EP-models. A property is ei-
ther single-valued or multi-valued. We call multival-
ued properties alsocollection properties.

Example 1 We name the EP-model for represent-
ing a flash cardFlashCard. This model contains
two properties, namedquestionand answer, of type
java.lang.String, an external Java type. Another ex-
ample is theMain EP-model representing the main
window of the FlashCards application. TheaddBut-
tonandquizButtonproperties are properties of an ex-
ternal type (SWING components). The other proper-
ties of the Main model -list, cardDialog, quizDialog,
flashCards- have an internal type represented by an
EP-model. We note that theflashCardsproperty is a
collection property of typeFlashCard- this property
refers to the collection of flash cards entered by the
user.

When an EP-model executes, it goes through a series
of system states. Informally, a system state is a set
of instances, each instance belonging to some model
and assigning concrete values to the local properties
in that model.

For a more formal definition of a system state:

Definition 1 A valuation for a modelM is a function
that assigns to each local propertyp in M a value of
the type ofp.

Definition 2 An instance of modelM is a triplet
(M, id, φ) whereM is a model,id is a namefor the
instance andφ is a valuation forM . We callφ(p) is
thevalueof (local) propertyp in M on this instance.

Definition 3 A system state is a set of instances.

Condition In any system state the id’s of the in-
stances are unique.
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4 EVENTS, THE
TRANSFORMATION MAPPING
AND CENTERED FUNCTIONS

External triggers that modify the current system state
are represented in a model bylocal events. (Another
class of events - remote events - will be presented in
a later section.) A local event has a name, atype and
a source. We shall assume that no two events in the
same model have the same name.

The event type is platform-specific: in Java an
event type is a pair(l,m) wherel is a listener inter-
face andm a method of this interface.

The source of an event is a local property in the
model that contains the event.

Example 2 In the Main model we have two lo-
cal eventsadd and quiz. The add event repre-
sents pressing the add button and thequiz event oc-
curs when we press the quiz button. Both events
have as type(java.awt.event.ActionListener, action-
Performed). The source of theadd event is thead-
dButtonproperty of theMain model and the source of
the quiz event is thequizButtonproperty of thequiz
event.

Definition 4 We say that alocal event occurs on an
instance x if an (external) event of the given type oc-
curs on the object referred to by the source of the local
event. In this case we also say that instancex is the
locus of the local event.

Example 3 When we press theaddbutton in the main
window, an event occurs on theMain instance; this
instance is then the locus of this event.

Definition 5 When a local event occurs on instance
x of thecurrent system state, then the current state is
replaced by a new state which we call theresult state.

Definition 6 For a given local evente the mapping
that associates with each system state and instance of
this state on whiche occurs a result state is called the
transformation mapping for e and is denoted byFe.

Mathematically we describe transformation map-
pings usingcentered functions.

Definition 7 A centered state is a pair (s, x) wheres
is a system state andx is an instance ofs. We callx
thecenter of the centered state.

Notation We also uses(x) to denote a system states
centered atx.

Definition 8 A centered function is a function whose
domain is a set of centered states (for the given EP-
system).

We may view the transformation mappingFe as a
centered function that maps the current state centered
at the locus of the event to the result state.

The transformation mapping completely describes
the dynamic behavior of an EP-system. Indeed if the
EP-system expresses the transformation mapping pre-
cisely, then the EP-system is executable. The remain-
der of this paper is essentially looking at the question
of how to best represent centered functionFe at the
level of the EP-models.

5 BICENTERED FUNCTIONS

To represent the transformation mapping, we shall de-
compose it into simpler functions. First we need to
define the effect an event has on a system state.

Definition 9 A local event e affects a local property
p if for some system state the value of this property is
changed on some instance of this state when the event
occurs. In this case we also say that the local event
affects property p on this instance.

Example 4 The effect of thequiz event in theMain
model is to show the QuizDialog, to set the question-
Field (a text field) to the first question and to set the
index property indicating the position of the current
card among the stack of flash cards. Thus thequiz
event affects thevisibleand indexproperties ofQuiz-
Dialog.

To fully describe a local evente, it suffices to spec-
ify the effect ofe on each local property affected by
e. The effect ofe on propertyp can be expressed by
the function that returns the new value of property p
on an instance of the result state aftere occurs on the
current state; we denote this function byFe,p.
Example 5 Let e denote thequiz event in the Main
model and letp stand for thevisible property in
the QuizDialogmodel. ThenFep represents the new
value of thevisible property when thequiz event oc-
curs; in this caseFe,p = true.

The value ofFe,p depends ontwocentered states:
• the current states(x) centered at the locus of local

evente, i.e., at the instance wheree occurs

• the result state centered at an instance at which we
are evaluating the new value ofp

This dual dependency motivates the next definition.

Definition 10 A bicentered function is a function of
the formf(s(x), s′(y)) wheres(x) ands′(y) are two
system states centered at instancesx and y, respec-
tively.

We note that functionFe,p is a special bicentered
function where the second argument state is the result
state.

The centered functionFe is fully specified by the
functionsFe,p, wherep ranges over all properties af-
fected bye. We have thus reduced the problem of de-
composing the centered transformation mappingFe
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into that of decomposing the related bicentered func-
tions Fe,p. Before we address the decomposition of
bicentered functions, we explain how to decompose
centered functions since they will be used in the de-
composition of the bicentered functions.

6 DECOMPOSING CENTERED
FUNCTIONS USING
PROPERTY GRAPHS

In this section we shall describe how to decompose
centered functions and how to represent this decom-
position in EP-models.

The computation of a centered function will be
based on the decomposition of this function into “sim-
pler” functions. Each centered function is represented
at the model level by aquery property . Just like
local properties query properties have anameand a
type. Local properties and query properties together
make up the set of properties of an EP-system. To de-
compose the query property, we first describe which
values a query property depends on. This is done by
defining for each query property aproperty graph.

Definition 11 Theproperty graph for a query prop-
ertyq is defined as follows: the set of nodes is a set of
properties that contains propertyq and other local or
query properties. There are three types of edges:lo-
cal edges, forward edges and inverse edges. A local
edge is given by a pair(p1, p2) of properties in the
same model. Forward edges and inverse edges are la-
beled by a propertyp which we call thelink property;
for forward properties the link property is a property
in the model ofp1 whose type is a model containingp2

while for inverse properties the link property belongs
to the model ofp2 and its type is a model containing
p1. The link property is a local property or a query
property.

Intuitively, a local edge represents a dependency of
two properties on the same instance while forward
and inverse edges represent a dependency between
two properties on two separate instances connected
by the link propertyp.

At the model level we represent the property
graph by adding aparent relationship link from a
query property to each of its children properties.
The parent relationship has two attributes: the link
property (undefined for local edges) and type (lo-
cal/forward/inverse).

Example 6 Figure 1 shows the property graph for the
query propertynextIndexin the QuizDialog model:
this query property computes the index of the next
card to be displayed in the quiz dialog. The prop-
erty graph contains two local edges and one inverse

Figure 1: Property graph fornextIndex.

edge (having link propertyquizDialog). The flash-
Cardsand indexproperties are local properties.

We add a code snippet to each query property that
computes the value of the query property in terms of
the values of children properties.

Example 7 The code snippet that computes the value
of property nextIndex is given below. Note that
it only uses values of properties that are chil-
dren of itself in the event graph (see figure 1).
if (index<cards.size()-1)

result = index+1;
else

result = 0;

7 DECOMPOSING BICENTERED
FUNCTIONS USING EVENT
GRAPHS

To decompose theFe,p functions, we will need to pre-
cisely define what instances in the result state are af-
fected by an event. This will be done by associating
with each local event anevent graph.

To define the event graph for a local event, we first
add to each model a set ofremote events. Remote
events have a name but unlike local events they do
not have a type and source attribute. Local events and
remote events together make up the set of events of
an EP-system. We may think of remote events as the
representatives of a local event in other EP-models.

Definition 12 The nodes of theevent graph of a lo-
cal event comprise the local event as well as a set of
remote events. The edges of the event graph are ei-
ther forward,inverseor local edges. Aforward edge
(ei, ej) is labeled by a propertyp in the model ofei;
ej must be an event in the model that is the type ofp.
The forward edge is denoted byei →p ej . An inverse
edge (ei, ej) is labeled by a propertyp in the model
of ej ; ei must belong to the model that is the type of
p. The inverse edge is denoted byei →֒p ej . A local
edge (ei, ej) connects two events in the same model
and does not carry a label; it is denoted byei → ej .
For foward and inverse edges we call propertyp the
link property. The link property is a local property or
a query property. We call the edges in the event graph
alsoevent links.
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Figure 2: Event tree of thequizevent.

Notation We denote the event graph for a local event
e by Ge.

At the level of EP-models we represent event links us-
ing a parent relationship between events: each parent
link connects a source event to a target event; it has
as attributes aproperty (the link property, undefined
for local links) and atypeattribute (with values: for-
ward/inverse/local).

Example 8 Figure 2 shows the event graph of the
quiz event in theMain model. All events but thequiz
event are remote. All event links are forward links.
Three models are involved:Main, QuizDialog and
EOPTextField,the latter model representing a text
field. This reflects the fact that thequiz event affects
properties in theQuizDialoginstance but also sets the
contents of the question and answer text fields which
are modeled byEOPTextField.

To decompose the functionsFe,p over the event graph,
we define auxiliary functions on the nodes of the event
graph. These functions compute and transmit the in-
formation required by theFe,p function.

Definition 13 A parametrization of an event graph
Ge is given by

- attaching to each event ofGe a set of centered
functions represented by query properties

- assigning to each remote event ofGe a set ofpa-
rameters, where each parameter has anameand a
type

- assigning to each event linkl and to each pa-
rameter g in the target event ofl a function Fg,l

that expresses the parameterg in terms of param-
eters and centered functionsfi at the source ofl:
g = Fg,l(f1, . . . , fk).

We now describe how the parametrization is repre-
sented at the model level. We may view a local prop-
erty as a very simple centered function that returns
the value at the center of its argument state. We rep-
resent more general centered functions in EP-models
by query properties (see previous section).

We represent the attachment of a centered function
to an event by introducing afeedsrelation from the
query property to the event. Each non-local event in
an EP-model has a set ofparameters.The function
Fg,l is represented by attaching a code snippet for pa-
rameterg to the event link from the source to the tar-
get event.

We have now all the pieces together for implement-
ing a local evente at the level of an EP-system: de-
compose the transformation mappingFe into the bi-
centered functionsFe,p, one for each propertyp af-
fected bye. For each functionFe,p create an event
graph with a parametrization that provides a func-
tional decomposition ofFe,p. Note that this may
entail creating new query properties feeding remote
events. Finally decompose these query properties us-
ing property graphs. Repeating these steps for each
local event will result in an executable EP-system that
represents the final application. For a more detailed
description and additional examples the reader is re-
ferred to (Kelsen, 2006).

8 APPLICATIONS OF
EP-SYSTEMS

We see three directions for future work that corre-
spond to potential applications of EP-models.

1. Modeling applications: as we have seen in this pa-
per we can use EP-models to model simple appli-
cations. Because EP-models are executable the EP-
system in fact constitutes the application: no addi-
tional code is needed. Of course in practice one
would write a code generator for efficient execu-
tion. To prove the feasibility of this approach we
have developed a tool (Glodt and Kelsen, 2006)
that provides a visual environment for designing
EP-systems: the tool is implemented as an Eclipse
plug-in that supports editing and executing EP-
models with rule-based background code genera-
tion. It is not clear yet whether EP-models are
a reasonable approach for modeling large applica-
tions: to answer this question, we are planning to
develop such an application using our tool. In any
case EP-models would supplement rather than re-
place existing UML models: indeed many UML ar-
tifacts such as use cases and deployment diagrams
could supplement EP-models by providing high-
level views of the application and also describing
aspects not represented by our models.

2. Mastering software complexity: EP-models have
a number of features that may help in controlling
the complexity of the resulting system: first EP-
systems exhibitlocality because code snippets may
only depend on values that are located on ”adja-
cent” elements in the EP-system. We have imple-
mented (Glodt and Kelsen, 2006) this locality us-
ing a sandbox model: the sandbox for a code snip-
pet only contains the values that are accessible by
this code in the model. This locality should help
in reducing coupling ((Stevens et al., 1999)) in the
resulting application. Second the models provide
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facilities for comnprehending the dynamic behav-
ior of an EP-system: we can understand the effect
of an event on the system by following the edges of
the event tree. Similarly data dependencies can be
quickly discovered with the help of property trees.

3. A laboratory for testing object-oriented methods
and concepts: since our models provide a restricted
environment for describing the static and dynamic
aspects of an application, they should be easier to
analyze and can be used as a testbed for devel-
oping mathematical models that may carry over
to more unrestricted environments. For example
techniques such as design patterns (Gamma et al.,
1995) or refactoring (Fowler, 1999) could be ex-
amined in these more restricted models. This could
potentially provide a more rigorous basis for these
techniques that could carry over at least in part to
more traditional software programs. Another ben-
efit of trying out these techniques on EP-models is
of course their potential to make the EP-modeling
process more effective.

9 CONCLUSIONS

We have presented a declarative model, named the
EP-model. EP-models are based on a small meta-
model comprising two types of entities,eventsand
properties, and four binary relationships between
those entities.

EP-models are executable; executability is
achieved by associating code snippets with entities
and relationships. These code snippets compute
functions without side-effects. This hybrid approach
allows one to keep the basic modeling language
simple by leaving complex parts at the code level.
The code snippets obey a locality constraint: they
can only use values connected with neighboring
modeling elements. This reduces the amount of
coupling in the resulting application.

EP-models combine static and dynamic aspects of a
system in a single diagram. They combine the notion
of state from object-oriented programming with the
notion of functional decomposition from functional
programming.

Future work will examine

• whether EP-models can be used to model appli-
cations of a realistic size and what the advan-
tages/disadvantages are over existing UML-based
methods;

• whether EP-models can be used as a cleanroom for
testing object-oriented ideas and concepts. As an
example we plan to study refactoring and design
patterns in the context of these models. Because of
the simple structure and executability of these mod-

els, such a study could provide a more rigorous ba-
sis for some of these techniques which could then
possibly be carried over to more traditional soft-
ware programs.
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