
TOWARDS A LANGUAGE INDEPENDENT REFACTORING 
FRAMEWORK 

Carlos López, Raúl Marticorena 
Área de Lenguajes y Sistemas Informáticos Universidad de Burgos.09006 Burgos, Spain 

Yania Crespo, Francisco Javier Pérez 
Departamento de Informática Universidad de Valladolid. 47001 Valladolid, Spain 

Keywords: Refactoring, metamodel, language independence, object oriented programming, UML. 

Abstract: Using metamodels to keep source code information is one of the current trends in refactoring tools. This 
representation makes possible to detect refactoring opportunities, and to execute refactorings on metamodel 
instances. This paper describes an approach to language independent reuse in metamodel based refactoring 
detection and execution. We use an experimental metamodel, MOON, and analyze the problems of 
migrating from MOON to UML 2.0 metamodel or adapting from UML 2.0 to MOON. Some code 
refactorings can be detected and applied on basic UML abstractions. Nevertheless, other refactorings need 
information related to program instructions. “Action” concept, included in UML 2.0, is a fundamental unit 
of behaviour specification that allows to store program instructions and to obtain certain information related 
to this granularity level. Therefore, we compare the complexity of UML 2.0 metamodel with MOON 
metamodel as a solution for developing refactoring frameworks. 

1 INTRODUCTION 

Language independent refactoring is one of the 
current trends in refactoring research (Mens and 
Tourwé,  2004). Defining metrics and refactorings in 
a language independent way offers a solution to the 
reuse in development of refactoring tools when they 
are adapted to new source languages. It is also a 
rational support in multilanguage integrated 
development environments. 

There are different trends to address these 
problems: on the one hand, using abstract syntax 
trees and on the other hand, using metamodels 
(Demeyer et al., 1999). In this work, we display a 
proposal using metamodels, showing a previous 
support and studying the suitability of the UML 2.0 
metamodel (OMG, 2004), with the new “action” 
concept, as new support to refactoring tools. 

This paper is structured as follows: Section 2 
establishes the current works with metamodels; 
Section 3 presents the current state of our work, 
describing the modules of a refactoring framework, 
language extensions and dependencies; Section 4 

shows the standardization problem of the MOON 
metamodel, and presents a reengineering example, 
with UML 2.0 as the new candidate to replace it. 
Finally, in Section 5, we conclude with the pros and 
cons of using UML 2.0 as the core model of the 
refactoring framework. 

2 RELATED WORKS 

Some approaches to the problem of language 
independence are based on metamodel solutions. In 
(Tichelaar et al., 2000), FAMIX is defined as a 
metamodel for storing information, aimed at the 
integration of several CASE tools. One of these 
CASE tools is a refactoring assistant tool named 
MOOSE (Ducasse et al., 2000). 

The FAMIX core model specifies the entities 
and relations that can (and should) be extracted 
immediately from the source code. The core model 
consists of the main OO entities: Class, Method, 
Attribute, InheritanceDefinition, 
etc.  
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For reengineering purposes, it needs two entities: 
Invocation and Access associations. An 
Invocation represents the definition of a 
Method calling another Method. An Access 
represents a method body accessing an 
Attribute. These abstractions are needed for 
reengineering tasks, such as dependency analysis, 
metrics computation and reengineering operations. 
FAMIX metamodel does not contain advanced 
inheritance and genericity features. 

In the same way, a new solution based on 
metamodels is proposed in (Van Gorp et al., 2003). 
They propose eight additive and language-
independent extensions to the UML 1.4 metamodel, 
which form the foundation of a new metamodel 
named GrammyUML. This study does not consider 
the Action Semantic package in UML. 

Our proposal is based on MOON, Minimal 
Object-Oriented Notation (Crespo, 2000). MOON 
represents the necessary abstract constructions in 
refactorings definition and analysis, just like 
FAMIX. MOON abstractions are common to a 
family of programming languages: object-oriented 
programming languages (OOPL), statically typed 
with or without genericity. This is the basis for a 
metamodel-centered solution, with the objective of 
reusing it in the development and adaptation of 
refactoring tools. 

The MOON metamodel stores: classes, 
relationships, variants on the type system, a set of 
correctness rules to govern inheritance, etc. The 
main difference with FAMIX relies on the type 
system. The core of MOON metamodel includes 
classes as Entity representing any concept in 
source code that has a Type (self reference, super 
reference, local variable, method formal argument, 
class attribute and function result). It also collects 
the method body description: local variables, formal 
arguments and instructions. The instructions are 
classified in the following way: creation, 
assignment, call and compound instructions. 

For example, Figure 1 outlines the MOON 
metamodel classes related to genericity and their 
semantic rules expressed in OCL. Types are 
classified into formal parameters (FORMAL_PAR) 
and types derived from class definitions 
(CLASS_TYPE). Non-generic class definition leads to 
a 1-1 association between class (CLASS_DEF) and 
type (CLASS_TYPE). When class definition is 
generic, it is said that is the “determining class” of a 
potentially infinite set of types. Each generic 
instantiation corresponds to a different type 
(CLASS_TYPE). A generic class definition contains a 
list of formal parameters. 

Figure 1: MOON Parametric Types. 

All these previous works propose metamodels to 
support a complete refactoring process. In the next 
section, the current state of the framework is 
proposed over MOON, in order to evaluate the 
suitability of the UML 2.0 metamodel in Section 4. 

3 REFACTORING FRAMEWORK 

This section establishes the current state of the 
proposed framework, focusing on the core (in 
Section 3.1) and the concrete language extensions 
(in Section 3.2), checked in previous works. The 
main purpose is to give the “big picture” of the 
current proposal, explaining the role of the MOON 
metamodel. 

3.1 Framework Core  

In previous works, we have designed a framework to 
detect, to define, and to execute refactorings. Figure 
2 shows the main modules that compose it.  

Here we present a brief description for each one 
of them: 

Module A represents the metamodel. The 
metamodel is the basis of the solution for language 
independence. It must collect the basic elements of 
any object-oriented language: classes, attributes, 
methods, client-provider relations, inheritance and 
genericity. In particular, it is necessary to include 
information about instructions, assignment 
instructions and expressions. 

Module B defines the refactoring engine. It is 
composed of a core and a repository. The engine 
core contains the necessary abstract classes to define 
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the refactorings by composing their inputs, pre-, 
postconditions and actions. The core establishes how 
to execute any concrete refactoring, once its 
components are known. The refactoring repository 
contains concrete predicates, functions and actions 
as well as the concrete refactorings as their 
composition. All the repository elements are defined 
on the metamodel elements and provide the reuse 
functionality when a concrete language extension is 
developed. 
 

 
Figure 2: Language Independent Refactoring Framework. 

Module C is composed of two submodules: 
Metric Collector and Bad Smells Inference. It is 
responsible for detecting bad smells using metrics. 
To remove the detected bad smells, it is possible to 
suggest a refactoring set defined in the refactoring 
repository. In (Fowler, 2000), relations between bad 
smells and refactoring have been proposed. The idea 
of collecting metrics from a language independent 
metamodel presents clear advantages from the reuse  
point of view. 

Module D isolates the queries and traversals on 
metamodel elements. These queries and traversals 
are necessary in the refactoring repository and in the 

metric collector. This module is reused, avoiding 
duplicated code in modules B and C. Furthermore, 
Visitor and Strategy (Gamma et al., 1995) design 
patterns are applied to add new operations without 
changing the metamodel classes on which they 
operate. 

3.2 Framework Extension  

The framework introduced here has been validated 
with the implementation of two concrete languages 
extensions: Java and Eiffel, because to reuse the 
framework core, a concrete language extension is 
required. In Figure 3, we show some examples of 
Java extensions plugged in the framework core. 
 

Module extension A is responsible for picking 
up source code information and transforming it into 
language extension instances. There are particular 
language features, for example in Java, native and 
transient modifiers that are represented in java 
extension on the metamodel core. Their classes 
implement abstract methods defined on the core 
module. 

Module extension B defines the specific features 
of each refactoring, according to the particular 
selected language. 

Module extension D uses language extensions to 
regenerate the code. Each concrete language 
extension in module extension A has the semantic to 
walk through elements using visitor classes. 

4 EXAMPLE: UML 2.0 AS 
METAMODEL 

MOON can evolve to be fitted for a standard 
metamodel. UML is currently embraced as the 
standard in object oriented modelling languages.  

When talking about requirements for using a 

Figure 3: Refactoring Framework with Java Extensions. 
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metamodel in the refactoring context, a question is 
missing: can the method body (instruction, local 
variable, etc…) be stored with UML? The action 
concept, defined in UML 2.0, is the fundamental 
unit of behavior specification. An action takes a set 
of inputs and converts them into a set of outputs. 
Actions could store method body information, hence 
UML 2.0. metamodel can become a candidate to 
module A (see Figure 2). Furthermore, UML 2.0 
includes template mechanisms, which provide 
support for generic types available in programming 
languages. Module A extensions could be solved 
with UML profiles (OMG, 2004). Profiles are 
mechanisms that allow metaclasses from existing 
metamodels to be extended to adapt them for 
different purposes. Profiles include the ability of 
tailoring the UML metamodel for different language 
features, such as Java, C#, C++, Eiffel, etc. The 
Profile mechanism is consistent with the OMG Meta 
Object Facility (MOF). 

In the following subsections we present an 
example. It guides the mapping from program 
language constructions to UML abstractions, 
including advanced features: actions and templates. 

4.1 Statement 

It is very difficult to select an example that contains 
all language features. Our example considers the 
parameterized factory methods when the Abstract 
Factory design pattern (Gamma et al., 1995) is 
applied. A generic factory (GenericFactory) with 
subtyped bound is defined, avoiding to use an 
inheritance hierarchy with Factory classes to create 
suitable product objects. 

In Figure 4, a structural solution using design 
patterns is shown, where the generic class with 
subtyped bound (GenericFactory) and generic 
instantiations (FactoryConcreteProd1, 
FactoryConcreteProd2) are highlighted. Both of 
them are used by client class (FactoryTest) to create 
new instances of concrete products 
(ConcreteProduct1, ConcreteProduct2).  

Code 1 defines (in Java 1.5) the GenericFactory 
class using reflective programming by means of 
java.lang.Class<T> class, while Code 2 collects 
the piece of code associated to FactoryTest in Figure 
4. In the shown codes, reserved words have been 
emphasized. 

 

 
Figure 4: Generic Factory Method. 

public class GenericFactory 
 <P extends ProductIF> 
 implements FactoryIF{ 
 
 private Class<P> c; 
 
 public GenericFactory 
  (Class<P> c) { 
  this.c = c; 
 } 
 
 public P createProduct(){ 
  P product = null; 
  try{product=c.newInstance();} 
  catch(InstantiationException  
        e){  } 
  catch(IllegalAccessException  
        e){  } 
  return product; 
 } 
} 

Code 1: Generic Factory Definition Java 1.5 

FactoryIF factory1 = new 
GenericFactory<ConcreteProduct1>(Concre
teProduct1.class); 
GenericFactory factory2 = new 
GenericFactory<ConcreteProduct2>(Concre
teProduct2.class); 

Code 2: Generic Factory Instantiations. 

4.2 UML Mapping 

We outline the relevant problems of mapping a 
factory method createProduct body to UML 
abstractions: exception handlers, instruction 
sequences, call instructions and parametric types. In 
these mappings the related sections of the “UML 2.0 
Superstructure” (OMG, 2004) are indicated. 

To model an operation we can associate an 
activity diagram (Booch et al., 1999). An action flow 
of the operation is represented, so that all diagram 
elements are semantically linked to an underlying 
model with expressive richness. 
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UML 2.0 introduces new functionality, allowing 
to catch exceptions and manage them inside an 
activity diagram. In the behaviour specification, and 
more precisely in the activity section, we find the 
ExceptionHandler class. This element specifies the 
body (action sequence) to be executed in case that 
exceptions happen during the running of a protected 
node. A protected node groups an activity set that 
could throw one or more exceptions. Graphic 
notation of both of them can be observed in Figure 
5. To map these concepts the following UML 
superstructure sections are used: 

• ExtraStructuredActivities (in Activities) 
mapping Exception Handler. 

• Activities mapping Instruction sequence. 
In the GenericFactory class context, Figure 5 

shows an activity diagram that defines the algorithm 
of the createProduct operation. This operation 
has a signature with a return value of P parameter 
type. GenericFactory class has an attribute 
c:java.lang.Class<P> that allows us to 
accomplish the creation of new concrete products. 

 

 
Figure 5: Method body createProduct. 

Actions can be contained in activities which 
provide their contexts. Activities specify control and 
data sequence restrictions over the actions, as well as 
nesting mechanisms in control structures. 

Each activity is defined by a set of actions which 
provide precise semantics. The mapping of the 
instructions c.newInstance() with the call action 
(CallOperationAction) is represented in the 
object diagram of Figure 6. This action obtains its 
input (InputPin) from the ouput (OutputPin) of 
the reading actions (ActionInputPin and 
ReadStructuralFeatureAction). In that way, it 
has the object reference contained in the attribute c 
(StructuralFeature) in GenericFactory class. 

The UML superstructure sections used to map 
the call instruction c.newinstance() have been 
actions and classes. 

:Action : 
ReadStructuralFeatureAction

:Action : 
CallOperationAction

:Action : 
ActionInputPin c:StructuralFeature 

: Property

: Pin : 
OutputPin

:Pin : 
OutputPin

newInstance:Behavioral
Feature : Operation

target

result

operation

from Action structuralFeature

result

 
Figure 6: Call instruction c.newinstance. 

In the UML 2.0 superstructure we can find a 
section focused on auxiliar constructors defining 
mechanism sets. One of these mechanisms is the use 
of templates as support to parameterize classifiers 
(Classifiers), packages (Packages) and 
operations (Operations). We can also find 
mechanisms to define templates, formal parameters 
(TemplateParameters) and to tackle the generic 
instance process. This subsystem has 20 classes. 

Before introducing the example instantiation, we 
give a brief description of metaclasses and relations 
among the participants: 

TemplateableElement is the abstraction that 
supports the template definition. It can contain a 
TemplateSignature that specifies a formal 
parameter sequence (TemplateParameter). 
TemplateableElement can also contain links to 
other Classifiers:TemplateableElement, related 
to the generic instantiations, by the substitution of 
the formal parameters (TemplateParameters) 
with the current parameters  
(ParameterableElement).  

TemplateParameter refers to a 
ParameterableElement that it is exposed as a 
formal parameter in the template. 

TemplateParameterSubstitution 
associates the current parameters with the formal 
parameters as part of the TemplateBinding 
relation. 

RedefinableTemplateSignature 
specializes TemplateSignatures and 
RedefinableElement to allow adding new formal 
parameters in the definition context of templates 
over classifiers. 

A classifier (Classifier) is a specialization of 
TemplateableElement and of 
ParameterableElement. 

In Figure 7 we show the mapping of the generic 
factory definition with its bounded formal parameter 
by the subtype of ProductIF. 
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GenericFactory:Class:Classifier : 
TemplateableElement

:TemplateSignature : 
RedefinableTemplateSignature

P : TemplateParameter

ProductIF:Class : Classifier

 
Figure 7: Generic definition. 

Figure 8 shows the generic instantiation of a 
concrete product factory of ConcreteProduct1. 
Those objects that are useful as nexus between both 
diagrams have been highlighted. 

GenericFactory<ConcreteProduct1>:Classifier
:Class : TemplateableElement

 : TemplateBinding

 : TemplateParameterSubstitution

P : TemplateParameter ConcreteProduct1:Classifier:Class 
: ParameterableElement

 
Figure 8: Generic instantiation. 

5 CONCLUSIONS 

UML can be used to store source code, even though 
there is a high complexity in the metamodel 
structure. Table 1 shows a comparison of the two 
metamodels, MOON and UML, divided in 
subsystems/sections and number of classes. The 
number of related classes in the UML metamodel is 
three times higher than in the MOON metamodel. 

Table1: Comparative MOON vs. UML metamodel. 

MOON UML 

Subsystem Number of 
classes Sections Number of 

classes 
Module 24 
Inheritance 7 

classes 55 

Genericity 5 templates 20 
Instructions 20 actions 54 
  activities 52 
Total 56 Total 181 

The paper focuses on UML abstractions which 
are needed to represent code information, classes 
and activity diagrams. Although the displayed 
example in Section 4 achieves a mapping to UML 
abstractions (generic classes, exceptions, etc.), the 
experiment is limited because it does not include all 
abstractions in object oriented languages. In this 
sense, we have identified some abstractions that are 

not represented in the UML metamodel, as typecast 
and multiple bounds of parametric types. Both 
features are supported on the MOON metamodel, 
but MOON does not support concepts such as 
exceptions, conditionals, loops, etc. Besides, MOON 
supports three type variants in genericity giving a 
suitable support to this feature in statically typed 
object oriented languages. 

Due to the previous advantages and the minimal 
core size in the MOON metamodel, we think that an 
UML approach is only appropriate from the point of 
view of a standardization effort, and reuse in other 
abstraction levels, such as the design level. 
Therefore, we propose a new design solution with 
the UML metamodel extension as a future direction, 
extending the current MOON metamodel in the 
same way as we have done with programming 
languages. This should provide full support to a 
refactoring process reusing the previously designed 
framework. 
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