
TOWARDS A LANGUAGE INDEPENDENT REFACTORING
FRAMEWORK

Carlos López, Raúl Marticorena
Área de Lenguajes y Sistemas Informáticos Universidad de Burgos.09006 Burgos, Spain

Yania Crespo, Francisco Javier Pérez
Departamento de Informática Universidad de Valladolid. 47001 Valladolid, Spain

Keywords: Refactoring, metamodel, language independence, object oriented programming, UML.

Abstract: Using metamodels to keep source code information is one of the current trends in refactoring tools. This
representation makes possible to detect refactoring opportunities, and to execute refactorings on metamodel
instances. This paper describes an approach to language independent reuse in metamodel based refactoring
detection and execution. We use an experimental metamodel, MOON, and analyze the problems of
migrating from MOON to UML 2.0 metamodel or adapting from UML 2.0 to MOON. Some code
refactorings can be detected and applied on basic UML abstractions. Nevertheless, other refactorings need
information related to program instructions. “Action” concept, included in UML 2.0, is a fundamental unit
of behaviour specification that allows to store program instructions and to obtain certain information related
to this granularity level. Therefore, we compare the complexity of UML 2.0 metamodel with MOON
metamodel as a solution for developing refactoring frameworks.

1 INTRODUCTION

Language independent refactoring is one of the
current trends in refactoring research (Mens and
Tourwé, 2004). Defining metrics and refactorings in
a language independent way offers a solution to the
reuse in development of refactoring tools when they
are adapted to new source languages. It is also a
rational support in multilanguage integrated
development environments.

There are different trends to address these
problems: on the one hand, using abstract syntax
trees and on the other hand, using metamodels
(Demeyer et al., 1999). In this work, we display a
proposal using metamodels, showing a previous
support and studying the suitability of the UML 2.0
metamodel (OMG, 2004), with the new “action”
concept, as new support to refactoring tools.

This paper is structured as follows: Section 2
establishes the current works with metamodels;
Section 3 presents the current state of our work,
describing the modules of a refactoring framework,
language extensions and dependencies; Section 4

shows the standardization problem of the MOON
metamodel, and presents a reengineering example,
with UML 2.0 as the new candidate to replace it.
Finally, in Section 5, we conclude with the pros and
cons of using UML 2.0 as the core model of the
refactoring framework.

2 RELATED WORKS

Some approaches to the problem of language
independence are based on metamodel solutions. In
(Tichelaar et al., 2000), FAMIX is defined as a
metamodel for storing information, aimed at the
integration of several CASE tools. One of these
CASE tools is a refactoring assistant tool named
MOOSE (Ducasse et al., 2000).

The FAMIX core model specifies the entities
and relations that can (and should) be extracted
immediately from the source code. The core model
consists of the main OO entities: Class, Method,
Attribute, InheritanceDefinition,
etc.

165
López C., Marticorena R., Crespo Y. and Javier Pérez F. (2006).
TOWARDS A LANGUAGE INDEPENDENT REFACTORING FRAMEWORK.
In Proceedings of the First International Conference on Software and Data Technologies, pages 165-170
DOI: 10.5220/0001319201650170
Copyright c© SciTePress

For reengineering purposes, it needs two entities:
Invocation and Access associations. An
Invocation represents the definition of a
Method calling another Method. An Access
represents a method body accessing an
Attribute. These abstractions are needed for
reengineering tasks, such as dependency analysis,
metrics computation and reengineering operations.
FAMIX metamodel does not contain advanced
inheritance and genericity features.

In the same way, a new solution based on
metamodels is proposed in (Van Gorp et al., 2003).
They propose eight additive and language-
independent extensions to the UML 1.4 metamodel,
which form the foundation of a new metamodel
named GrammyUML. This study does not consider
the Action Semantic package in UML.

Our proposal is based on MOON, Minimal
Object-Oriented Notation (Crespo, 2000). MOON
represents the necessary abstract constructions in
refactorings definition and analysis, just like
FAMIX. MOON abstractions are common to a
family of programming languages: object-oriented
programming languages (OOPL), statically typed
with or without genericity. This is the basis for a
metamodel-centered solution, with the objective of
reusing it in the development and adaptation of
refactoring tools.

The MOON metamodel stores: classes,
relationships, variants on the type system, a set of
correctness rules to govern inheritance, etc. The
main difference with FAMIX relies on the type
system. The core of MOON metamodel includes
classes as Entity representing any concept in
source code that has a Type (self reference, super
reference, local variable, method formal argument,
class attribute and function result). It also collects
the method body description: local variables, formal
arguments and instructions. The instructions are
classified in the following way: creation,
assignment, call and compound instructions.

For example, Figure 1 outlines the MOON
metamodel classes related to genericity and their
semantic rules expressed in OCL. Types are
classified into formal parameters (FORMAL_PAR)
and types derived from class definitions
(CLASS_TYPE). Non-generic class definition leads to
a 1-1 association between class (CLASS_DEF) and
type (CLASS_TYPE). When class definition is
generic, it is said that is the “determining class” of a
potentially infinite set of types. Each generic
instantiation corresponds to a different type
(CLASS_TYPE). A generic class definition contains a
list of formal parameters.

Figure 1: MOON Parametric Types.

All these previous works propose metamodels to
support a complete refactoring process. In the next
section, the current state of the framework is
proposed over MOON, in order to evaluate the
suitability of the UML 2.0 metamodel in Section 4.

3 REFACTORING FRAMEWORK

This section establishes the current state of the
proposed framework, focusing on the core (in
Section 3.1) and the concrete language extensions
(in Section 3.2), checked in previous works. The
main purpose is to give the “big picture” of the
current proposal, explaining the role of the MOON
metamodel.

3.1 Framework Core

In previous works, we have designed a framework to
detect, to define, and to execute refactorings. Figure
2 shows the main modules that compose it.

Here we present a brief description for each one
of them:

Module A represents the metamodel. The
metamodel is the basis of the solution for language
independence. It must collect the basic elements of
any object-oriented language: classes, attributes,
methods, client-provider relations, inheritance and
genericity. In particular, it is necessary to include
information about instructions, assignment
instructions and expressions.

Module B defines the refactoring engine. It is
composed of a core and a repository. The engine
core contains the necessary abstract classes to define

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

166

the refactorings by composing their inputs, pre-,
postconditions and actions. The core establishes how
to execute any concrete refactoring, once its
components are known. The refactoring repository
contains concrete predicates, functions and actions
as well as the concrete refactorings as their
composition. All the repository elements are defined
on the metamodel elements and provide the reuse
functionality when a concrete language extension is
developed.

Figure 2: Language Independent Refactoring Framework.

Module C is composed of two submodules:
Metric Collector and Bad Smells Inference. It is
responsible for detecting bad smells using metrics.
To remove the detected bad smells, it is possible to
suggest a refactoring set defined in the refactoring
repository. In (Fowler, 2000), relations between bad
smells and refactoring have been proposed. The idea
of collecting metrics from a language independent
metamodel presents clear advantages from the reuse
point of view.

Module D isolates the queries and traversals on
metamodel elements. These queries and traversals
are necessary in the refactoring repository and in the

metric collector. This module is reused, avoiding
duplicated code in modules B and C. Furthermore,
Visitor and Strategy (Gamma et al., 1995) design
patterns are applied to add new operations without
changing the metamodel classes on which they
operate.

3.2 Framework Extension

The framework introduced here has been validated
with the implementation of two concrete languages
extensions: Java and Eiffel, because to reuse the
framework core, a concrete language extension is
required. In Figure 3, we show some examples of
Java extensions plugged in the framework core.

Module extension A is responsible for picking
up source code information and transforming it into
language extension instances. There are particular
language features, for example in Java, native and
transient modifiers that are represented in java
extension on the metamodel core. Their classes
implement abstract methods defined on the core
module.

Module extension B defines the specific features
of each refactoring, according to the particular
selected language.

Module extension D uses language extensions to
regenerate the code. Each concrete language
extension in module extension A has the semantic to
walk through elements using visitor classes.

4 EXAMPLE: UML 2.0 AS
METAMODEL

MOON can evolve to be fitted for a standard
metamodel. UML is currently embraced as the
standard in object oriented modelling languages.

When talking about requirements for using a

Figure 3: Refactoring Framework with Java Extensions.

TOWARDS A LANGUAGE INDEPENDENT REFACTORING FRAMEWORK

167

metamodel in the refactoring context, a question is
missing: can the method body (instruction, local
variable, etc…) be stored with UML? The action
concept, defined in UML 2.0, is the fundamental
unit of behavior specification. An action takes a set
of inputs and converts them into a set of outputs.
Actions could store method body information, hence
UML 2.0. metamodel can become a candidate to
module A (see Figure 2). Furthermore, UML 2.0
includes template mechanisms, which provide
support for generic types available in programming
languages. Module A extensions could be solved
with UML profiles (OMG, 2004). Profiles are
mechanisms that allow metaclasses from existing
metamodels to be extended to adapt them for
different purposes. Profiles include the ability of
tailoring the UML metamodel for different language
features, such as Java, C#, C++, Eiffel, etc. The
Profile mechanism is consistent with the OMG Meta
Object Facility (MOF).

In the following subsections we present an
example. It guides the mapping from program
language constructions to UML abstractions,
including advanced features: actions and templates.

4.1 Statement

It is very difficult to select an example that contains
all language features. Our example considers the
parameterized factory methods when the Abstract
Factory design pattern (Gamma et al., 1995) is
applied. A generic factory (GenericFactory) with
subtyped bound is defined, avoiding to use an
inheritance hierarchy with Factory classes to create
suitable product objects.

In Figure 4, a structural solution using design
patterns is shown, where the generic class with
subtyped bound (GenericFactory) and generic
instantiations (FactoryConcreteProd1,
FactoryConcreteProd2) are highlighted. Both of
them are used by client class (FactoryTest) to create
new instances of concrete products
(ConcreteProduct1, ConcreteProduct2).

Code 1 defines (in Java 1.5) the GenericFactory
class using reflective programming by means of
java.lang.Class<T> class, while Code 2 collects
the piece of code associated to FactoryTest in Figure
4. In the shown codes, reserved words have been
emphasized.

Figure 4: Generic Factory Method.

public class GenericFactory
 <P extends ProductIF>
 implements FactoryIF{

 private Class<P> c;

 public GenericFactory
 (Class<P> c) {
 this.c = c;
 }

 public P createProduct(){
 P product = null;
 try{product=c.newInstance();}
 catch(InstantiationException
 e){ }
 catch(IllegalAccessException
 e){ }
 return product;
 }
}

Code 1: Generic Factory Definition Java 1.5

FactoryIF factory1 = new
GenericFactory<ConcreteProduct1>(Concre
teProduct1.class);
GenericFactory factory2 = new
GenericFactory<ConcreteProduct2>(Concre
teProduct2.class);

Code 2: Generic Factory Instantiations.

4.2 UML Mapping

We outline the relevant problems of mapping a
factory method createProduct body to UML
abstractions: exception handlers, instruction
sequences, call instructions and parametric types. In
these mappings the related sections of the “UML 2.0
Superstructure” (OMG, 2004) are indicated.

To model an operation we can associate an
activity diagram (Booch et al., 1999). An action flow
of the operation is represented, so that all diagram
elements are semantically linked to an underlying
model with expressive richness.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

168

UML 2.0 introduces new functionality, allowing
to catch exceptions and manage them inside an
activity diagram. In the behaviour specification, and
more precisely in the activity section, we find the
ExceptionHandler class. This element specifies the
body (action sequence) to be executed in case that
exceptions happen during the running of a protected
node. A protected node groups an activity set that
could throw one or more exceptions. Graphic
notation of both of them can be observed in Figure
5. To map these concepts the following UML
superstructure sections are used:

• ExtraStructuredActivities (in Activities)
mapping Exception Handler.

• Activities mapping Instruction sequence.
In the GenericFactory class context, Figure 5

shows an activity diagram that defines the algorithm
of the createProduct operation. This operation
has a signature with a return value of P parameter
type. GenericFactory class has an attribute
c:java.lang.Class<P> that allows us to
accomplish the creation of new concrete products.

Figure 5: Method body createProduct.

Actions can be contained in activities which
provide their contexts. Activities specify control and
data sequence restrictions over the actions, as well as
nesting mechanisms in control structures.

Each activity is defined by a set of actions which
provide precise semantics. The mapping of the
instructions c.newInstance() with the call action
(CallOperationAction) is represented in the
object diagram of Figure 6. This action obtains its
input (InputPin) from the ouput (OutputPin) of
the reading actions (ActionInputPin and
ReadStructuralFeatureAction). In that way, it
has the object reference contained in the attribute c
(StructuralFeature) in GenericFactory class.

The UML superstructure sections used to map
the call instruction c.newinstance() have been
actions and classes.

:Action :
ReadStructuralFeatureAction

:Action :
CallOperationAction

:Action :
ActionInputPin c:StructuralFeature

: Property

: Pin :
OutputPin

:Pin :
OutputPin

newInstance:Behavioral
Feature : Operation

target

result

operation

from Action structuralFeature

result

Figure 6: Call instruction c.newinstance.

In the UML 2.0 superstructure we can find a
section focused on auxiliar constructors defining
mechanism sets. One of these mechanisms is the use
of templates as support to parameterize classifiers
(Classifiers), packages (Packages) and
operations (Operations). We can also find
mechanisms to define templates, formal parameters
(TemplateParameters) and to tackle the generic
instance process. This subsystem has 20 classes.

Before introducing the example instantiation, we
give a brief description of metaclasses and relations
among the participants:

TemplateableElement is the abstraction that
supports the template definition. It can contain a
TemplateSignature that specifies a formal
parameter sequence (TemplateParameter).
TemplateableElement can also contain links to
other Classifiers:TemplateableElement, related
to the generic instantiations, by the substitution of
the formal parameters (TemplateParameters)
with the current parameters
(ParameterableElement).

TemplateParameter refers to a
ParameterableElement that it is exposed as a
formal parameter in the template.

TemplateParameterSubstitution
associates the current parameters with the formal
parameters as part of the TemplateBinding
relation.

RedefinableTemplateSignature
specializes TemplateSignatures and
RedefinableElement to allow adding new formal
parameters in the definition context of templates
over classifiers.

A classifier (Classifier) is a specialization of
TemplateableElement and of
ParameterableElement.

In Figure 7 we show the mapping of the generic
factory definition with its bounded formal parameter
by the subtype of ProductIF.

TOWARDS A LANGUAGE INDEPENDENT REFACTORING FRAMEWORK

169

GenericFactory:Class:Classifier :
TemplateableElement

:TemplateSignature :
RedefinableTemplateSignature

P : TemplateParameter

ProductIF:Class : Classifier

Figure 7: Generic definition.

Figure 8 shows the generic instantiation of a
concrete product factory of ConcreteProduct1.
Those objects that are useful as nexus between both
diagrams have been highlighted.

GenericFactory<ConcreteProduct1>:Classifier
:Class : TemplateableElement

 : TemplateBinding

 : TemplateParameterSubstitution

P : TemplateParameter ConcreteProduct1:Classifier:Class
: ParameterableElement

Figure 8: Generic instantiation.

5 CONCLUSIONS

UML can be used to store source code, even though
there is a high complexity in the metamodel
structure. Table 1 shows a comparison of the two
metamodels, MOON and UML, divided in
subsystems/sections and number of classes. The
number of related classes in the UML metamodel is
three times higher than in the MOON metamodel.

Table1: Comparative MOON vs. UML metamodel.

MOON UML

Subsystem Number of
classes Sections Number of

classes
Module 24
Inheritance 7

classes 55

Genericity 5 templates 20
Instructions 20 actions 54
 activities 52
Total 56 Total 181

The paper focuses on UML abstractions which
are needed to represent code information, classes
and activity diagrams. Although the displayed
example in Section 4 achieves a mapping to UML
abstractions (generic classes, exceptions, etc.), the
experiment is limited because it does not include all
abstractions in object oriented languages. In this
sense, we have identified some abstractions that are

not represented in the UML metamodel, as typecast
and multiple bounds of parametric types. Both
features are supported on the MOON metamodel,
but MOON does not support concepts such as
exceptions, conditionals, loops, etc. Besides, MOON
supports three type variants in genericity giving a
suitable support to this feature in statically typed
object oriented languages.

Due to the previous advantages and the minimal
core size in the MOON metamodel, we think that an
UML approach is only appropriate from the point of
view of a standardization effort, and reuse in other
abstraction levels, such as the design level.
Therefore, we propose a new design solution with
the UML metamodel extension as a future direction,
extending the current MOON metamodel in the
same way as we have done with programming
languages. This should provide full support to a
refactoring process reusing the previously designed
framework.

REFERENCES

Booch, G., Rumbaugh, J. y Jacobson, I. (1999). The
Unified Modeling Language User Guide. Addison
Wesley.

Crespo, Y. (2000). Incremento del potencial de
reutilización del software mediante refactorizaciones.
PhD thesis, Universidad de Valladolid. Available at
http://giro.infor.uva.es/Publications/2000/Cre00/.

Demeyer, S., Tichelaar, S., and Steyaert, P. (1999).
FAMIX 2.0 - the FAMOOS in-formation exchange
model. Technical report, Institute of Computer Science
and Applied Mathematic. University of Bern.

Ducasse, S., Lanza, M., and Tichelaar, S. (2000).
MOOSE: an extensible language-independent
environment for reengineering object-oriented systems.
In Proceedings on constructing Software Engineering
Tools (CoSET 2000).

Fowler, M. (2000). Refactoring. Improving the Design of
Existing Code. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J.(1995). Design Patterns. Elements of Reusable
Object Oriented Software. Addison Wesley.

Mens, T. and Tourwé, T. (2004). A survey of software
refactoring. IEEE Trans. Softw. Eng., 30(2):126–139.

OMG 2004. Unified Modeling Language: Superstructure
version 2.0. http://www.uml.org.

Tichelaar, S., Ducasse, S., Demeyer, S., and Nierstrasz, O.
(2000). A meta-model for language-independent
refactoring. In Proceedings ISPSE 2000, pages 157–
167. IEEE.

Van Gorp, P., Stenten H., Mens, T., and Demeyer, S.
(2003) Towards automating source-consistent UML
Refactorings. In Proceedings of UML 2003 - The
Unified Modeling Language. Springer-Verlag, 2003

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

170

