
ROA MODULAR LDAP-BASED APPROACH TO INDUSTRIAL 
SOFTWARE REVISION CONTROL 

Cristina De Castro 
IEIIT-CNR, Italian National Research Council 

V.le Risorgimento 2, Bologna 40136, Italy 

Paolo Toppan 
CNIT, Italian Inter-University Consortium for telecommunications, 

V.le Risorgimento 2, Bologna 40136, Italy  

Keywords: Software revision control, industrial context, plant installations, LDAP schemes for revision control. 

Abstract: A software revision control system stores and manages successive, revised versions of applications, so that 
every design stage can be easily backtracked. In an industrial context, revision control concerns the 
evolution of software installed on complex systems and plants, where the need for revision is likely to arise 
from many different and correlated factors. In this paper, starting from the wide bibliography available on 
the subject, some typical schemes are discussed for representing such factors. An LDAP-based architecture 
is addressed for modelling and storing their evolution. 

1 INTRODUCTION 

The efficient management of applications’ lifecycle 
is becoming more and more important and complex 
in industrial environments, where software is 
installed in large and often distributed plants. The 
overall process results from several different factors: 
for instance, a malfunctioning can arise from the 
incorrect interaction between an old software 
version running on an updated or modified machine; 
software results generally from the synergy of many 
different people, approaches and requirements, etc. 
The problem of revising software in industrial plants 
is thus more and more challenging and the critical 
issue of software documentation is bound to become 
more and more essential in the backtracking process.  
Versioning is widely used for the management of 
software development and revision (Westfechtel et 
al., 2001, Fischer et al, 2003), even if not always 
with a precise temporal semantics. This process, 
named revision control, allows to backtrack and 
compare every design stage. Far from expecting to 
solve this very difficult task, this paper discusses 
some simple, typical schemes for representing a 
software revision process and proposes an LDAP-
based temporal architecture for their representation. 

2 COMPONENTS OF AN 
INSTALLATION, EVOLUTION 
AND THE LDAP SCHEME 

In an industrial context, software can not be 
considered an isolated issue. As a matter of fact, 
software is installed on a set of machines and has 
related configuration specifications. An installation 
instance (Fig. 1) can thus be defined as the set of 
these three groups of components and their 
interaction. In this scheme, the plant requirements 
and the documentation of software, hardware and 
installation features, detailing all the design phases 
and the interactions, are considered part of the 
installation instance. As a matter of fact, they play a 
fundamental role in the process of software 
development and revision. An installation instance 
represents the snapshot of the state of a plant after a 
generic installation or update, thus it represents a 
version in the process of industrial software revision 
control. Let us now consider the generic structure of 
an installation instance, one of its versions is the 
collection of the  following component versions: (1) 
requirements version; (2) software version; (3) 
hardware version; (4) configuration files version; (5)  
documentation version.  

261

De Castro C. and Toppan P. (2006).
ROA MODULAR LDAP-BASED APPROACH TO INDUSTRIAL SOFTWARE REVISION CONTROL.
In Proceedings of the First International Conference on Software and Data Technologies, pages 261-265
Copyright c© SciTePress



 
Figure 1: Installation instance. 

 
 

In order to allow a component version  to be shared 
and referred by many installation instances, each of 
the components can be labelled independently. As 
far as the type of temporal labelling is concerned, it 
is quite common to label the versions by means of 
progressive numbers, but the necessity can arise of  
referring the system to a precise temporal phase of 
its lifecycle. For instance, if a malfunctioning causes 
trouble to a client, it can be of great importance, 
even from a juridical point of view (Grandi et al, 
2003, Harris et al, n.d.), to know precisely how the 
installation was when the problem occurred. The 
support of at least two kinds of time dimensions is 
widely emphasized in literature (Böhlen et al,  2006, 
Elmasri et al, 1990, Tansel et al, 1993): transaction 
time, which tells when an event is recorded or 
updated in a knowledge base, and valid time, which 
represents when an event occurs, occurred or is 
expected to occur in the real world. Transaction-time 
is represented by adding the endpoints IN, OUT and 
valid-time is represented by the endpoints FROM, 
TO. In the considered environment, transaction time 
tells when the installation version description 
discussed above was recorded in the revision control 
knowledge base and valid time refers to when the 
installation is operative in the plant. For instance, the 
installation version h in Fig. 2 was recorded in the 
knowledge base on May 3rd 2006 and it has not 
been updated yet, so IN = May 3rd 2006 and OUT = 
∞. It has been fully operative on the plant FROM 
May 15th 2006 and is expected to be used until (TO) 
December 23rd 2007. Note that there is no need a 
priori that they should be labelled with the same 
values of transaction and valid-time. For instance, 
the software version j can have been recorded before 
May 3rd 2006 but used within the installation 
version h. In this way, components can be shared 
and duplication is partly avoided. For instance, the 
installation version g in the background in Fig. 2 
shares software version j.  

A further advantage of using this kind of 
timestamping is that, if a bug is detected  within an 
installation version, all the other versions that may 
be touched by the same bug can be found in a very 
simple way by means of temporal queries.  
This structure can be easily developed by means of 
the Lightweight Directory Access Protocol (LDAP). 
LDAP (Howes et al, 2003, Koutsonikola et al, 2004) can 
be particularly suitable for representing installation 
versions in wide enterprises: as a matter of fact, 
LDAP is widely used in enterprise databases and it 
is optimised for reading operations, being thus 
suitable for storing and managing temporal data that 
must be backtracked. Furthermore, LDAP schemes 
can be very easily changed and extended in order to 
record new attributes and new classes. This feature 
can be very useful when designing a revision 
control. As a matter of fact, new objects and new 
attributes are very likely to be modified or added due 
to new needs or improvements made by the people 
who develop it. LDAP was also built for distributed 
environments, so it suits the distributed location of 
industrial applications very well.  
Referring to the schemes discussed above, the 
LDAP object-classes tree can be defined as follows 
(see Fig. 3, Tab. 1): the 0-level class describes the 
installation in general; the 1-level classes are 
respectively plant requirements, software, hardware, 
configuration files and documentation. It must be 
observed that the timespan of the different objects 
can have different meanings. For instance, the 
temporal attributes of class “software” have the 
following meaning: 1) IN, OUT: when the software 
version was recorded/updated in the revision 
information system; 2) FROM, TO: the period in 
which the software version  is/was/will be operative.  
 
 
 
 
 

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

262



 

 
Figure 2: Timestamps of an Installation Version and its components. 

 

 
Figure 3: An LDAP basic structure for the representation of installation versions. 

 
3 CONCLUSIONS  

In this paper, a basic architecture was discussed for 
representing the temporal evolution of a software 
installation on an industrial plant. This model 
divides an installation in many interacting 
components and, making use of the LDAP model, 
represents them in a hierarchy. The evolution of the 
system is represented by means of  
both transaction-time and valid-time. Future work 
will be devoted to deepen the semantics and the 
interaction mechanisms of the components of this 
model, in order to merge it in a revision control 
system.  

ACKNOWLEDGEMENTS  

The authors want to thank the InSeBaLa project of 
Regione Emilia Romagna (Italy) for supporting this 
work.  

 
 
 
 
 
 
 
 
 
 
 
 

 

ROA MODULAR LDAP-BASED APPROACH TO INDUSTRIAL SOFTWARE REVISION CONTROL

263



 

 

Table 1: Semantics of classes and attributes. 

Class      Attributes              Description 
installation oid, name, description  

 
plant 
 
 
IN, OUT 
 
 
FROM, TO 

 
 
the specific industrial plant where the installation 
was made  
 
when the installation version was 
recorded/updated in the revision information 
system  
 
the period in which the installation version 
is/was/will be fully operative on the plant 

plant 
requirements 
 

oid , plant, goals (multivalued), description,  
technical requirements (multivalued) 
 
…. 
 
IN, OUT 
 
 
 
FROM, TO 

 
 
 
 
 
when the requirements version were 
recorded/updated in the revision information 
system  
 
the period in which the requirements  
are/were/will be the actual reference of the plant 

software  oid, name, description, plant , goals (multivalued) 
 
hardware requirements (multivalued) 
 
…. 
 
 
IN, OUT 
 
 
FROM, TO 

 
 
 
it can refer to the hardware version/s of  
another/others installation version/s 
 
 
when the software version was recorded/updated 
in the revision information system  
 
the period in which the software version  
is/was/will be operative on the plant 

hardware oid, name, description, plant, goals (multivalued), 
 
software requirements (multivalued) 
 
…. 
 
IN, OUT 
 
 
FROM, TO 

 
 
it can refer to the software version/s of  
another/other  installation version/s 
 
 
when the hardware version was recorded/updated 
in the revision information system  
 
the period in which the hardware version  
is/was/will be operative on the plant 

configuration 
files 

oid  
name, description, plant, goals (multivalued) 
IN, OUT, FROM, TO 

 
 
similar semantics 

documentation oid , plant, description, goals, … 
 
software description, hardware description 
 
IN, OUT, FROM, TO 

 
 
it can refer to the software version/s of  
another/other  installation version/s 
…. 

 
 

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

264



REFERENCES  

Böhlen, M., Gamper, J., Jensen, C.S. (2006). “Multi-
dimensional aggregation for temporal data”. Proc. of 
EDBT-2006, pp. 257-275.  

Elmasri, R., El-Assal, I., Kouramajian, V. (1990). 
“Semantics of Temporal Data in an Extended ER 
Model”. Proc. Intl. Conf. on E-R Approach, pp. 52-61 

Fischer, M., Pinzger, M., Gall, H. (2003). “Populating a 
Release History Database from Version Control and 
Bug Tracking Systems. Proc. of 19th IEEE 
International Conference on Software Maintenance 
(ICSM'03),  pp. 23-29. 

Grandi, F., Mandreoli, F., Tiberio, P., Bergonzini, M. 
(2003). “A Temporal Data Model and Management 
System for Normative Texts in XML Format”. Proc. 
of WIDM’03.  

Harris, C., Allen, R. B., Plaisant, C., Shneiderman, B. 
(n.d.). “Temporal Visualization for Legal Case 
Histories”. http://hcil.cs.umd.edu/trs/99-18/99-18.html 

Howes, T. A., Smith, M. C., Good, G. S. (2003). 
Understanding and Deploying LDAP Directory 
Services, Addison Wesley 2003, 2^ ed. 

Koutsonikola, V., Vakali, A. (2004). “LDAP: framework, 
practices, and trends”, IEEE Internet Computing, Vol. 
8,  Issue 5,  Pages: 66 - 72   

Tansel, A., Snodgrass, R.T., Clifford, J., Gadia, S.K., 
Segev, A. (eds.) (1993). Temporal Databases, Theory, 
Design and Implementation. Benjamin-Cummings. 

Westfechtel, B., Munch, B. P., Conradi, R. (2001). “A 
Layered Architecture for Uniform Version 
Management”, IEEE Transactions on Software 
Engineering, Vol. 27, N. 12 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

 

ROA MODULAR LDAP-BASED APPROACH TO INDUSTRIAL SOFTWARE REVISION CONTROL

265


