
IMPACT OF WRAPPED SYSTEM CALL MECHANISM ON
COMMODITY PROCESSORS

Satoshi Yamada and Shigeru Kusakabe
Grad. School of Information Sci. & Electrical Eng., Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan

Hideo Taniguchi
Faculty of Engineering, Okayama University

3-1-1 Tsushima-naka, Okayama, 700-8530 Japan

Keywords: System call, mode change, locality of reference.

Abstract: Split-phase style transactions separate issuing a request and receiving the result of an operation in different
threads. We apply this style to system call mechanism so that a system call is split into several threads in
order to cut off the mode changes from system call execution inside the kernel. This style of system call
mechanism improves throughput, and is also useful in enhancing locality of reference. In this paper, we call
this mechanism as Wrapped System Call (WSC) mechanism, and we evaluate the effectiveness of WSC on
commodity processors. WSC mechanism can be effective even on commodity platforms which do not have
explicit multithread support. We evaluate WSC mechanism based on a performance evaluation model by using
a simplified benchmark. We also apply WSC mechanism to variants ofcp program to observe the effect on
the enhancement of locality of reference. When we apply WSC mechanism tocp program, the combination
of our split-phase style system calls and our scheduling mechanism is effective in improving throughput by
reducing mode changes and exploiting locality of reference.

1 INTRODUCTION

Although recent commodity processors are built
based on a procedural sequential computation model,
we believe some dataflow-like multithreading mod-
els are effective not only in supporting non-sequential
programming models but also in achieving high
throughput even on commodity processors. Based
on this assumption, we are developing a program-
ming environment, which is based on a dataflow-
like fine-grain multithreading model(Culler et al.,
1993). Our work also includes a dataflow-like mul-
tithread programming language and an operating sys-
tem, CEFOS(Communication and Execution Fusion
OS)(Kusakabe and et al, 1999).

In our dataflow-like multithreading model, we use
a split-phase style system call mechanism in which a
request of a system call and the receipt of the system
call result are separated in different threads. Split-
phase style transactions are useful in hiding laten-
cies of unpredictably long operations in several sit-
uations. We apply this style to system calls and
call as Wrapped System Call (WSC) mechanism.
WSC mechanism is useful both in reducing overhead
caused by system call mechanisms on commodity

processors and in enhancing locality of reference.
In this paper, we evaluate the effectiveness of WSC

mechanism on commodity processors. Section 2 in-
troduces our operating system, CEFOS, and some of
its features including WSC mechanism. Section 3 dis-
cusses the performance estimation and experimental
benchmark results of WSC mechanism from the view
point of system call overhead. Section 4 evaluates
WSC mechanism for variants ofcp program from the
view point of locality of reference. We conclude WSC
mechanism can reduce system call overhead and en-
hance locality of reference even on commodity plat-
forms, which have no explicit support to dataflow-like
multithreading.

2 SCHEDULING MECHANISMS
IN CEFOS

2.1 CEFOS for Fine-Grained
Multithreading

While running user programs under the control of an
operating system like Unix, frequent context switches

308
Yamada S., Kusakabe S. and Taniguchi H. (2006).
IMPACT OF WRAPPED SYSTEM CALL MECHANISM ON COMMODITY PROCESSORS.
In Proceedings of the First International Conference on Software and Data Technologies, pages 308-315
DOI: 10.5220/0001321003080315
Copyright c© SciTePress

Table 1: Results of LMbench (Clock Cycles).

processor null call 2p/0K 2p/16K L1$ L2$ MainMem
Celeron 500MHz 315 675 3235 3 11 93

Pentium4 2.53 GHz 1090 3298 5798 2 18 261
Intel Core Duo 1.6GHz 464 1327 2820 3 14 152

PowerPC G4 1GHz 200 788 2167 4 10 127

and communications between user processes and the
kernel are performed behind the scenes. A system call
requests a service of the kernel, and then voluntarily
causes mode change. Activities involving operating
system level operations are rather expensive on com-
modity platforms.

Table 1 shows the result of a micro-benchmark
LMbench (McVoy and Staelin, 1996) on platforms
with commodity processors and Linux. The row “null
call” shows the overhead of a system call and the row
“2p/0K” shows that of a process switch when we have
two processes of zero KB context. Thus, the row “x
p/y K” shows the overhead of a process switch for
the pair ofx and y which represent the number and
the size of processes, respectively. The rows “L1$”,
“L2$” and “MainMem” show the access latency for
L1 cache, L2 cache and main memory, respectively.
As seen from Table 1, activities involving operating
system level operations such as system calls and con-
text switches are rather expensive on commodity plat-
forms.

Therefore, one of the key issues to improve sys-
tem throughput is to reduce the frequency of context
switches and communications between user processes
and the kernel. In order to address this issue, we em-
ploy mechanisms for efficient cooperation between
the operating system kernel and user processes based
on a dataflow-like multithreading model in CEFOS.

Figure 1 shows the outline of the architecture of
CEFOS consisting of two layers: the external ker-
nel in user mode and the internal kernel in supervi-
sor mode. Internal kernel corresponds to the kernel of
conventional operating systems. A process in CEFOS
has a thread scheduler to schedule its ready threads.

A program in CEFOS consists of one or more par-
tially ordered threads which may be fine-grained com-
pared to conventional threads such as Pthreads. A
thread in our system does not have a sleep state and
we separate threads in a split-phase style at the points
where we anticipate long latencies. Each thread is
non-preemptive and runs to its completion without
going through sleep states like Pthreads. While op-
erations within a thread are executed based on a se-
quential model, threads can be flexibly scheduled as
long as dependencies among threads are not violated.

A process in CEFOS has a thread scheduler and
schedules its ready threads basically in the user-

space. Since threads in CEFOS are a kind of user-
level thread, we can control threads with small over-
head. The external-kernel mechanism in CEFOS in-
termediates interaction between the kernel and thread
schedulers in user processes. Although there ex-
ist some works on user level thread scheduling such
as Capriccio (Behren and et al, 2003), our research
differs in that we use fine-grain thread scheduling.
In order to simplify control structures, process con-
trol is only allowed at the points of thread switch-
ing. Threads in a process are not totally-ordered
but partially-ordered, and we can introduce various
scheduling mechanisms as long as the partial order
relations among threads are not violated. Thus, CE-
FOS has scheduling mechanisms such as WSC mech-
anisms and Semi-Preemption mechanism.

2.2 Display Requests and Data
(DRD) Mechanism

Operating systems use system calls or upcalls
(E.A.Thomas and et al, 1991) for interactions be-
tween user programs and operating system kernel.
System calls issue the demands of user processes
through SVC and Trap instructions, and upcalls in-
voke specific functions of processes. The problem in
these methods is overhead of context switches (Puro-
hit and et al, 2003). We employ Display Requests
and Data (DRD) mechanisms (Taniguchi, 2002) for
cooperation between user processes and the kernel in
CEFOS as we show below:

1. Each process and the kernel share a common mem-
ory area (CA).

2. Each process and the kernel display requests and
necessary information on CA.

3. At some appropriate occasions, each process and
the kernel check the requests and information dis-
played on CA, and change the control of its execu-
tion if necessary.

This DRD mechanism assists cooperation between
processes and the kernel with small overhead. A
sender or receiver of the request does not directly trig-
ger the execution of request at the instance the request
is generated. If the sender triggers directly the exe-
cution of receiver’s side, the system may suffer from

IMPACT OF WRAPPED SYSTEM CALL MECHANISM ON COMMODITY PROCESSORS

309

thread
thread

thread
thread

external kernel

process

.
.
.
.
.

thread
thread

thread
thread

external kernel

process

.
.
.
.
.

thread
thread

thread
thread

external kernel

process

.
.
.
.
.

internal kernel

user
mode

supervisor
mode

Figure 1: Overview of CEFOS.

large overhead to switch. On the other hand, the sys-
tem handles the request at its convenience with small
overhead if we use DRD mechanism. For an extreme
example, all requests from a process to the kernel are
buffered and the kernel is called only when the pro-
cess exhausted its ready threads.

The external kernel mechanism in CEFOS inter-
mediates interaction between the internal kernel and
thread schedulers in user processes by using this
DRD mechanism. Thus, CEFOS realizes schedul-
ing mechanisms such as WSC mechanism and Semi-
Preemption mechanism by using DRD mechanism.

2.3 WSC Mechanism

WSC mechanism buffers system call requests from
user programs until the number of the requests satis-
fies some threshold and then transfers the control to
the internal kernel with a bucket of the buffered sys-
tem call requests. Each system call request consists
of four kinds of elements listed below.

• type of the system call

• arguments of the system call

• the address where the system call stores its result

• ID of the thread which the system call syncs after
the execution

The buffered system calls are executed like a single
large system call and each result of the original sys-
tem calls is returned to the appropriate thread in the
user process.Figure 2 illustrates the control flow in
WSC mechanism, and each number in Figure 2 cor-
responds to the explanation below.

1. A thread requests a system call to External Kernel.

2. External Kernel buffers the request of system call
to CA.

3. External Kernel checks whether the number of re-
quests has reached the threshold. If the number of
requests is less than the threshold, the thread sched-
uler is invoked to select the next thread from the
ready threads in the process. If the number of re-
quest has reached the threshold, WSC mechanism
sends the requests of system calls to the internal
kernel to actually perform the system calls.

4. Internal Kernel accepts the requests of system calls
and executes them one by one.

5. Internal Kernel stores the result of the system call
to the address which Internal Kernel accepts as the
third arguments of the system call. Also, Internal
Kernel tells the thread, whose ID is accepted as the
fourth argument, that it stores the result.

6. When Internal Kernel terminates executing all re-
quests of system calls, External Kernel executes
other threads. In other cases, WSC mechanism
goes back to 3 and repeats this transaction.

WSC mechanism reduces overhead of system calls
by decreasing the number of mode changes from user
process to the kernel. Parameters and returned re-
sults of the buffered system calls under WSC mecha-
nism are passed through CA of DRD to avoid frequent
switches between the execution of user programs and
that of the kernel.

3 EVALUATION: SYSTEM CALL
OVERHEAD

We evaluate the effectiveness of WSC mechanism on
commodity processors. The test platform is built by
extending Linux 2.6.14 on commodity PCs.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

310

Table 2: The values to calculate M (in clocks), and the estimated value of M.

processor (Hz) Tgen Tsched Tsync Treq M
Celeron 500M 63 31 21 31 3.4

Pentium4 2.53G 110 43 27 31 1.24
Intel Core Duo 1.62G 61 30 19 29 1.42

process

thread threadsplit-phase
system call

request of
system call

buffer system call
requests

requests >= threshold ?

thread scheduler

external kernel

internal kernel

execute system calls

User
mode

Supervisor
mode

return results &
activate waiting
threads

thread

YES

NO

1

2

3

4

5,6

Figure 2: Control flow in WSC mechanism.

3.1 Estimation of the Effectiveness of
WSC

First, we estimate the effectiveness of WSC mecha-
nism by focusing on system call overhead. We com-
pare the execution time of a program with normal sys-
tem calls under the normal mechanism and that with
split-phase system calls under WSC mechanism.

The total execution time of a program with N nor-
mal system calls under the normal mechanism,Tnor,
is estimated as:

Tnor = Tonor + N × (Tsys + Tbody) + Pnor (1)

whereTonor is the execution time of the program por-
tion excluding system calls under the execution of the
normal system call mechanism,Tsys is the setup and
return cost of a single system call, andTbody is the
execution time of the actual body of the system call.
In this estimation, we assume that we use the same
system call and that there exist no penalties concern-
ing memory hierarchies such as cache miss penalties
and TLB miss penalties inTonor andTbody. Pnor is

the total penalties including cache miss penalties and
TLB miss penalties during the execution of the nor-
mal system call mechanism.

Programs to which we can apply WSC mechanism
are multithreaded and use split-phase style system
calls. Additional thread management should be per-
formed in this multithreaded program and we describe
the overhead of this additional part asTek. Tek is es-
timated as:

Tek = X × Tgen + Y × Tsche + Z × Tsync (2)

where X is the number of threads,Tgen is the over-
head to generate a single thread, Y is the number of
times threads are scheduled,Tsche is the overhead to
schedule a thread, Z is the number of times synchro-
nizations are tried andTsync is the overhead of a syn-
chronization.

Although the execution of system call bodies will
be aggregated, buffering system call request must be
performed for each system call. We represent the
overhead of buffering a single system call request
as Treq. Thus, Twsc, the total execution time of a
program with N split-phase system calls under WSC
mechanism, is estimated as:

Twsc =Towsc + Tek + N × Treq+

[N/M] × Tsys + N × Tbody + Pwsc

(3)

whereTowsc is the execution time of the program por-
tion excluding system calls, M is the number of sys-
tem calls to be buffered for a single WSC (i.e. WSC
threshold) andPwsc is the total penalties concern-
ing memory hierarchies including cache miss penal-
ties and TLB miss penalties during the execution un-
der WSC. We assume none of such penalties exists in
Towsc as in the estimation forTonor andTbody.

∆T , the difference between the execution time un-
der the normal mechanism and that of under CEFOS
with WSC is estimated as:

∆T =Twsc − Tnor

=(Towsc − Tonor)+

{Tek + N × Treq − (N − [N/M]) × Tsys}+

(Pwsc − Pnor)
(4)

IMPACT OF WRAPPED SYSTEM CALL MECHANISM ON COMMODITY PROCESSORS

311

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 4 8 16 32

of threshold

Celeron 500MHz

Pentium4 2.53GHz

Intel Core Duo 1.66GHz
normal

Figure 3: Comparison of clock cycles (getpid).

We can say the performance is improved by WSC
mechanism when∆T < 0. We estimate the value
of M, the number of system calls to be buffered, to
satisfy this condition. We assume the following con-
ditions for the sake of simplicity: each program por-
tion excluding system calls is the same, and each sys-
tem call body is the same both in the normal ver-
sion and in CEFOS version. Under these assump-
tions, we will only observe the difference of system
call cost between the normal version and the CEFOS
version. This assumption makesTowsc − Tonor and
Pwsc − Pnor amount to zero. We also assume X, Y
and Z are equal to N. Thus, we can estimate the con-
dition for M to satisfy∆T < 0 as:

M >
Tsys

Tsys − (Tgen + Tsche + Tsync + Treq)
(5)

We measured each value in (5) in order to calculate
the value of M that satisfies the above condition as
shown inTable 2 (we used the values of null call in
Table 1 forTsys) 1.

The performance on Pentium4 2.53GHz and In-
tel Core Duo 1.62GHz will be improved when M is
larger 1. The performance on Celeron 500MHz will
be improved when M is larger than 4. (Please note M
is a natural number)

3.2 Performance Evaluation Using
getpid()

The above estimation assumed each system call body
is the same both in the normal version and in CEFOS
version for the sake of simplicity. In this subsection,
we examine our estimation by usinggetpid() as a
system call to meet such an assumption. We measured

1We omit the values of PowerPC G4 because of the
problem of accuracy. However, the observed M for Pow-
erPC G4 is 4 according to the experiment explained in the
next subsection.

open() open()

read()
write()

close() close()

buffer

descriptor descriptor

file1 file2

A A

B

C C

B

Figure 4: Control flow in cp program.

the number of clocks for a number ofgetpid() sys-
tem calls using the hardware counter. We executed
128getpid() system calls in our experiments. We
changed the threshold of WSC as 1, 2, 4, 8, 16 and
32 for the WSC version. We also measured the total
time of successivegetpid() system calls under the
normal system call convention in unchanged Linux.

Figure 3 shows the comparison results of clock cy-
cles forgetpid() system calls. The x-axis indi-
cates the threshold of WSC and y-axis the ratio of
clock cycles of WSC versions compared with clock
cycles under the normal system call convention in un-
changed Linux. The lower y value indicates the better
result of WSC.

As seen from Figure 3, we have extra overhead
when WSC threshold is 1, because of newly added
load of Tgen, Tsche, Tsync andTreq. However, we
observe the effect of WSC when the threshold be-
comes 2 for Pentium4 2.53GHz and Intel Core Duo
1.66GHz and 4 for Celeron 500 MHz as we estimated
in the previous estimation. The clock cycles in WSC
versions are decreased as the threshold gets larger re-
gardless of the processor type.

4 EVALUATION: LOCALITY OF
REFERENCE

In the previous section, we evaluate the effectiveness
of WSC mechanism in reducing overhead caused by
system calls. In this section, we examine the effec-
tiveness in exploiting locality of reference. We can
expect high throughput when we can aggregate sys-
tem calls which refer to the same code or data. The
test platform is also built by extending Linux 2.6.14
on Pentium4 2.53 GHz.

4.1 cp Program

We use modifiedcp programs to evaluate the
effectiveness of WSC mechanism in exploit-

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

312

ing locality of reference. Figure 4 shows an
overview of the control flow in cp program,
and the symbols A, B and C in Figure 4 cor-
respond to the ones in the explanation below.
A. oneopen() system call opens a file to read and

the otheropen() system call opens another file
to write, preparing a file descriptor for each file
respectively.

B. read() system call reads up to designated bytes
from the file descriptor into buffer, and then
write() system call writes up to designated
bytes to the file referenced by the file descriptor
from buffer.

C. close() system calls close these files.
Thus, acp program uses six system calls per trans-

action. We use acp program called NORMAL
version, which executes these six system calls in
the order we show above, likeopen(), open(),
read(), write(), close() andclose(). We
have toopen() a file before executingread() or
write(), and we have to specify the file descriptor,
which is the result ofopen() system call, to execute
read(), write() andclose(). Therefore, we
cannot simply wrap these six system calls. We have
to wrap twoopen() system calls and other four sys-
tem calls respectively. Because of the additional over-
head of using WSC mechanism that we mentioned in
Figure 3, we cannot expect the effect when applying
WSC mechanism to just onecp transaction. In fact,
doing onecp in WSC version of onecp took about
two times clock cycles compared to NORMAL ver-
sion. Therefore, we consider doing multiplecps in a
program.

We use other four versions ofcp program, and
measure 11 portions of these 5 programs to observe:
I. whether WSC mechanism is effective or not in
cp programs in total,

II. the difference between the effect of wrapping
single type of system calls and that of wrapping
various types of system calls, and

III. the effect of wrapping system calls which have
the same code but refer to different data.

Figure 5 shows these 5 programs and 11 portions.
“N” in Figure 5 is the number ofcp transactions.
Now, we explain each program and portion below.
Then we explain why we choose these portions to ex-
amine the points of our interests above.

In Program 2 in Figure 5, we wrap every one of six
kinds of system calls. We call this WSC+COLLECT
version.

As a counterpart of this WSC+COLLECT, we also
collect system calls of the same type in a block but ex-
ecute the block with normal system call convention.
We call this program as NORMAL+COLLECT ver-
sion (Program 3 in Figure 5).

In addition, we implement WSC+RW and NOR-

MAL+RW version (Program 4 and 5 in Figure 5),
which change the order ofread() andwrite()
in WSC+COLLECT and NORMAL+COLLECT ver-
sion.

Then, we show the explana-
tion of 11 portions we measure.
1. fromopen() to close() of NORMAL.

2. from open() to close() of NOR-
MAL+COLLECT.

3. from open() to close() of
WSC+COLLECT.

4. fromopen() to close() of NORMAL+RW.

5. fromopen() to close() of WSC+RW.

6. read() and write() part of NOR-
MAL+COLLECT.

7. read() and write() part of
WSC+COLLECT.

8. read() andwrite() part of NORMAL+RW.

9. read() andwrite() part of WSC+RW.

10. onlywrite() of NORMAL+COLLECT.

11. onlywrite() of WSC+COLLECT
We measured onlywrite() in portion 10 and

11 to observe the effect of wrapping system calls
which refer to different data. Whileread() sys-
tem call contains disk access time,write() system
call buffers access to the disk and enables us to ob-
serve the effect of WSC mechanism excluding disk
access time. Also, we implemented NORMAL+RW
and WSC+RW and measured portion 6, 7, 8 and 9 to
observe the effect of wrapping two types of system
calls together. Then, we measured the wholecp in
portion 1, 2 and 3 to examine if WSC mechanism is
effective or not in total. Also, we measured portion 4
and 5 to examine the influence of wrappingread()
andwrite() system calls oncp total.

We measure clock cycles and the number of events
such as L1 cache misses in every portion. From these
results, we investigate how WSC mechanism effects
locality of reference from the view point of I, II and
III above.

4.2 Performance Evaluation

Table 3 shows the result ofcp programs. In this case,
WSC threshold is 8 and we docp transactions 100
times, which means N in Figure 5 is 100. The num-
bers in the row “portion” correspond to the numbers
of the explanation we show in subsection 4.1. The
row “#clocks” shows clock cycles, the row “L2$”
shows L2 cache miss counts and rows “ITLB”, and
“DTLB” show the walk counts for ITLB and DTLB,
respectively. We measured these events with a perfor-
mance monitoring tool perfctr (Petterson, n.d.).

IMPACT OF WRAPPED SYSTEM CALL MECHANISM ON COMMODITY PROCESSORS

313

open()
open()
read()
write()
close()
close()

N

open() N

open() N

read() N

write() N

close() N

close() N

open() N

open() N

read()
write() N

close() N

close() N

open() N

open() N

close() N

close() N

Program 1.
NORMAL

Program 3.
NORMAL+COLLECT

Program 5.
NORMAL+RW

Program 4.
WSC+RW

open() N

open() N

read() N

write() N

close() N

close() N

Program 2.
WSC+COLLECT

read()
write() N

portion 1

portion 2

portion 4
portion 8portion 6

portion 10
portion 3

portion 5
portion 9

represents the execution of normal system calls

represents the execution of system calls to which we applied Wrapped System Call mechanism

Figure 5: Program and Portion we measure incp program.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

1 2 4 8

ra
tio

 o
f W

SC
/N

O
RM

AL

of threshold

WSC
NORMAL

Figure 6: Comparison of clock cycles (write()).

In write() sections (portion 10 and 11), the
clock cycles for WSC+COLLECTwrite() are less
than NORMAL+COLLECTwrite() in about 0.12
million cycles, which is reduction to 83 % in clock
cycles. The reduction of this 0.12 million cycles
by WSC mechanism is larger than the reduction es-
timated by using formula in section 3, which is
about 0.072 million cycles for 100write() sys-
tem calls. We consider this improvement is achieved
by enhanced locality of reference, therefore we mea-
sure the number of events concerning memory hier-
archies. As we expected, we can see the reduction
of L2 cache misses, ITLB walks and DTLB walks
in WSC+COLLECTwrite() compared to NOR-

MAL+COLLECT write(). Thus, we can say WSC
mechanism is effective even when each system call
refer to different data. We changed the threshold and
measured portion 10 and 11 to compare the results
with those ofgetpid(). Figure 6 shows the result,
and we can see the same tendency as we see in Figure
3 that wrapping more than 2 system calls is effective
in clock cycles in Pentium 4.

In read/write section (portion 6, 7, 8 and 9), we can
see the effect of wrapping different system calls by
comparing portion 6 with 7 and 8 with 9. Both clock
cycles and number of events decrease in WSC version
in both cases.

Finally, from portion 1, 2 and 3, we can say ap-
plying WSC mechanism tocp program is effective
in total. When we compare portion 2 with 3 to ig-
nore the difference of disk access pattern, the reduc-
tion in clock cycles is about 0.32 million cycles. As
we see inwrite() system call, we can see the re-
duction of L2 cache misses, ITLB walks and DTLB
walks. Therefore, we conclude that WSC mechanism
for split-phase style system calls is effective in ex-
ploiting locality of reference. We can see the simi-
lar result from portion 4 with 5 and reach to the same
conclusion.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

314

Table 3: Results ofcp program.

portion #clocks L2$ ITLB DTLB
1. NOR 2,884,325 7378 511 136
2. NOR+COLLECT 2,588,200 8800 187 207
3. WSC+COLLECT 2,262,523 7740 81 120
4. NOR+RW 2,625,804 8264 227 200
5. WSC+RW 2,431,758 8118 128 197
6. NOR+COLLECT read/write 1,090,608 4385 112 69
7. WSC+COLLECT read/write 876,703 3503 37 42
8. NOR+RW read/write 1,096,045 3875 130 72
9. WSC+RW read/write 985,227 3647 70 62
10. NOR+COLLECT write 686,883 1779 93 28
11. WSC+COLLECT write 569,206 1363 41 13

5 CONCLUSION

In this paper, we discussed our WSC mechanism in
CEFOS. While CEFOS is based on a dataflow-like
fine-grain multithreading model, WSC mechanism is
effective in improving throughput even on commodity
platforms which have no explicit support to dataflow-
like fine-grain multithreading.

Today, many investigation have been made about
utilizing multithreading processor, such as SMT.
Many of them tackle with memory hierarchy problem
because cache conflict often occurs under the con-
dition where several threads run concurrently. One
effective solution to this problem is improving the
scheduling of thread, which is conventional Pthread,
to utilize CPU resources more effectively(Snavely
and Tullsen, 2000). On the other hand, our work split
conventional thread and control the thread in user pro-
cess. Thus, we have more chances to schedule fine-
grained threads more flexibly with smaller overhead.

In cp program, the combination of our split-phase
style system calls and WSC mechanism is effective in
improving throughput by reducing mode changes and
penalties concerning memory hierarchies such as L2
cache misses and TLB walks.

Recently, the overhead of system call and context
switch is increasing on commodity processors. Be-
sides, we think the tendency continues that latency of
memory access becomes bottleneck, which is coming
from the gap between processor speed and memory
speed. Therefore, we think WSC will be more effec-
tive in the future, which can reduce the overhead of
system call and context switch and enhance the lo-
cality of reference. We believe this will contribute to
higher throughput of internet server and large-scale
computation in the future. Our future work includes
collecting more data from other processors and ex-
ploiting the effect of SYSENTER/SYSEXIT com-
mand in x86 architecture.

REFERENCES

Behren, R. and et al (2003). Revising old friends: Capric-
cio: scalable threads for internet services. InProc. of
the 19th ACM symposium on Operating systems prin-
ciples, pages 268–281.

Culler, D. E., Goldstein, S. C., Schauser, K. E., and von
Eicken, T. (1993). Tam – a compiler controlled
threaded abstract machine. InJournal of Parallel and
Distributed Computing Vol.18, pages 347–370.

E.A.Thomas and et al (1991). Scheduler activation: Effec-
tive kernel support for the user-level management of
parallelism. InProc. of the 13th ACM Symp. on OS
Principles, pages 95–109.

Kusakabe, S. and et al (1999). Parallel and distributed op-
erating system cefos. InIPSJ ISG Tech. Notes, Vol.99,
No.251, pages 25–32.

McVoy, L. and Staelin, C. (1996). lmbench:
Portable tools for performance analysis,
http://www.bitmover.com/lm/lm-bench.

Petterson, M. (n.d.). Perfctr,
http://user.it.uu.se/ mikpe/linux/perfctr/.

Purohit, A. and et al (2003). Cosy: Develop in user-land,
run in kernel-mode. InProc. of HotOS IX: The 9th
Workshop on Hot Topics in Operating Systems, pages
109–114.

Snavely, A. and Tullsen, D. (2000). Symbiotic jobschedul-
ing for a simultaneous multithreading processor. In
9th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 234–244.

Taniguchi, H. (2002). Drd: New connection mechanism
between internal kernel and external kernel. InTran.
of IEICE, Vol.J85-D-1, No2.

IMPACT OF WRAPPED SYSTEM CALL MECHANISM ON COMMODITY PROCESSORS

315

