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Abstract: Using recent graphics hardware called GPU (Graphics Processing Unit), we can render high quality 
photorealistic images in real-time today.  When rendering the scene, it is important to take into account how 
human eyes percept the whole scene.  Glare is a phenomenon whereby bright light source cause spreading 
of light, and this effect is widely used in computer graphics to enhance reality of brightness of the scene.  
Real-time rendering of glare images is very important for recent computer games and virtual reality 
environment. Current technology for high quality glare rendering is too slow to be used for interactive 
applications, and fast rendering technology is limited to generate only blurry glare images.  In this paper we 
introduce new technique for rendering high quality glare images in real-time using the latest technology 
called vertex texture fetch.  The basic idea is to put what we call degenerate polygons on the screen as 
sensors to detect bright pixels and expand those polygons to form glare polygons where glare images are put.  
Combined with some performance enhancement techniques, our method can render very high quality glare 
images as fast as 60fps using modern GPUs. 

1 INTRODUCTION 

Computer graphics technologies are evolving very 
rapidly and images rendered using techniques like 
photon mapping or path tracing look much more 
photorealistic than using legacy ray tracing.  In 
rendering of photorealistic scenes, it is not enough to 
create images based on physically based methods, 
but it is also important to take into consideration 
how the scene is perceived by human eyes.  The 
most notable characteristics of human eyes are the 
glare effect when we see dazzling bright lights in the 
scene. 

Glare is a phenomenon whereby bright light 
source causes spreading of light. It is perceived as 
blurry circle or a set of radial streaks around the 
light source.  As current computer displays are 
physically limited by the maximum brightness, 
rendering of bright scenes needs extra work for 
human to perceive the scene really bright.  Recently 

glare image generation is considered very common 
and effective technique to enhance visual reality of 
brightness in computer-generated images. 

It is well know that glare is caused by scattering 
and diffraction of lights at obstacles close to or 
inside our eyes.  Many research works have been 
done on generation of glare images based on 
physical models of our eyes.  Those high quality 
glare images are widely used in recent CG movies 
which were rendered off-line. 

Real-time rendering of glare images are also 
becoming very important to enhance visual reality of 
recent computer games and virtual reality 
applications.  As recent GPUs support 16bit/32bit 
texture format, real-time rendering of HDR (High 
Dynamic Range) scenes became possible and 
combination of HDR rendering with glare effect will 
be crucial to next generation game consoles with 
latest GPUs.  However current techniques for real-
time rendering of HDR scene with glare images are 
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quite limited either by image qualities or rendering 
speeds.  This means practically fast rendering 
techniques are limited by image qualities and 
rendering techniques for high quality images have 
poor performance for real-time applications like 
computer games.  In this paper, we describe our new 
techniques for high speed, real-time rendering of 
high quality glare images using the latest 
technologies on GPU and we hope to set the new 
level of standard for next generation computer 
games and interactive virtual environments.  

2 RELATED WORKS 

In this section we briefly overview some of the 
important results from previous works on generation 
of glare images and rendering techniques. 

2.1 Generation of Glare Images 

Many research works have been done on generating 
glare images based on our visual experiences or 
physical models of our eyes.  Spencer et al. 
developed a method based on physical structure of 
human eyes to create glare images with sharp radial 
streaks (Spencer et al., 1995) (see Figure 1(a)).  
They took into consideration refraction and 
scattering of light at various places in our eyes and 
produced high quality glare images based on 
physical and perceptual model.  By placing those 
glare images on bright light sources in the original 
scene, they confirmed the human viewers perceived 
the feeling of brightness although the computer 
display was not bright enough. 

Kakimoto et al. created glare images based on 
wave optics (Kakimoto et al., 2005) (see Figure 
1(b)).  They developed a method to simulate 
diffraction of light at human eyelash and pupil to 
generate physically based glare images.  By 
changing the shapes of eyelash and pupil, various 
kinds of glare images were generated automatically.  
Glare images can be computed and generated off-
line and can be used later for real-time rendering 
using graphics hardware. 

2.2 Real-time Rendering of Scenes 
with Glare Images 

Recent advances in GPUs made it possible to render 
HDR scenes with glare images in real-time.  
Mitchell et al. used pixel shaders of ATI GPUs to 
extract and blur bright pixels in the original HDR 

scene to produce blurry glare images (Mitchell, 
2002).  

They developed an efficient implementation of 2D 
Gaussian blur kernel to be performed on GPUs.  
Using multiple pass rendering on GPUs to create 
glare images and synthesize them with the original 
scene, they could render the whole scene in real-time. 

Kawase et al. developed efficient and practical 
techniques for generating blurry glare images to be 
used for computer games (Kawase and Nagatani, 
2002).  Their approach is similar to (Mitchell, 2002) 
in that they implemented multiple pass blur filters 
using pixel shaders on GPUs, but they also 
developed blur filters for cross glares and pseudo 
lens flares which produce rather artistic visual 
effects. (see Figure 2)  Their techniques are widely 
acknowledged by game developers, and are used in 
recent popular game titles.  The biggest problem 
with the above two techniques are that they apply 
blur filter using pixel shaders and thus can only 
produce blurry glare images.  High quality glare 
images with sharp streaks produced by (Spencer et 
al., 1995) or (Kakimoto et al., 2005) can not be used 
with these techniques.  Another problem is that as 
multiple blur filters using pixel shaders put heavy 
load on texture memory access, they have to down 
size the original image to 1/16 or even less.  During 
the process of down sizing, very bright pixels 
surrounded by dark pixels disappear because of 
smoothing effect, which lead to failure of creating 
proper glare images around such points.   When 
bright pixels move around in the scene, we often see 
flickering or popping up of glare images due to the 
above mentioned problem. 

(a)         (b) 
Figure 1: Computer generated glare images (a) by 
(Spencer, 1995) and (b) by (Kakimoto et al., 2005). 
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Kakimoto et al. not only showed how to generate 

glare images based on wave optics, but showed a 
way to render the whole scene in real-time 
(Kakimoto et al., 2005).  They used their graphics 
hardware (SGI InfiniteReality4 with 1GB texture 
memory) to detect bright pixels in the scene which 
may cause glare effects, sent back an image which 
shows where the bright pixels are to CPU, let CPU 
create polygons to put glare image on and locate 
those polygons on appropriate position on the screen 
and render those glare polygons using the graphics 
hardware.  Their rendering method requires heavy 
communication traffic between GPU and CPU, 
calculation load on CPU to create and place many 
glare polygons, heavy load on GPU to render many 
overlapping translucent glare polygons.  Rendering 
time depends heavily on the number of bright pixels 
in the scene.  Their experiment shows rendering of 
glare polygons on scenes with many bright pixels 
slows the rendering time down to less than 1fps, 
which makes this technique not suitable for 
interactive applications even with expensive 
graphics hardware.  On the other hand, rendering 
time using blur filters are independent of the scene 
and thus can achieve constant frame rates, which is 
preferred by game developers. 

To summarize the problems of current 
techniques for real-time rendering of glare images, 
techniques using blur filters by pixel shaders are 
only limited to produce blurry glare images, and 
although using glare polygons can generate high 
quality glare images current implementation using 
combination of CPU and GPU are too slow to be 
used for interactive applications.  In the next section 
we describe the basic algorithm of our new method 
for rendering high quality glare images in real-time. 

3 THE BASIC ALGORITHM 

From the above discussion on the problems of 
current techniques for real-time rendering of glare 

images, we can conclude that using blur filters can 
not generate high quality glare images in spite of 
stable frame rate.  To render high quality glare 
images it is therefore necessary to use glare 
polygons and put high quality glare images prepared 
off-line.  By choosing this approach, we can use any 
type of glare images including blurry circles, sharp 
radial streaks, cross glares, and so on.  The question 
now is how we can generate and render glare 
polygons at an interactive frame rate. 

Our basic idea is to put glare sensors all over the 
screen, one sensor for one pixel.  When a glare 

sensor detects that the pixel is bright enough to 
generate glare to human eyes, we put glare polygons 
at the location of the pixel with proper luminance 
value of the pixel.  The above idea is realized by 
using ‘degenerate polygons’ and VTF (Vertex 
Texture Fetch) techniques available on recent GPUs.  
Our algorithm is totally implemented on GPU and 
thus needs no read back of images to CPU. 

3.1 Degenerate Polygons as Glare 
Sensors 

Figure 3 illustrates how we use degenerate polygons 
as glare sensors and create glare polygons.  
Conceptually a degenerate polygon is a quad with no 
size and it consists of 4 vertices.  Each vertex has the 
same screen coordinate values, the same texture 
coordinate values for detecting bright pixel on the 
screen.  Each vertex also has different texture 
coordinate values for glare images and different 2D 
directional vector for expanding the polygon.  Each 
vertex of a degenerate polygon checks the luminance 
value of the pixel of the scene using VTF 
functionality. 

VTF is a functionality to access texture 
memories from vertex shaders which was introduced 
as part of shader model 3.0 of Direct3D, and is 
currently supported by NVIDIA GeForce 6 and later 
GPUs.  One examples of VTF functionality is what 
is called displacement mapping where each vertex is 
displaced according to some values stored in texture 
memory.  There are not yet many examples to show 
the potential of VTF, and we expect our method to 

pass1 

pass2 

pass3 

Figure 2: Multiple passes of blur filters for cross glare
images (Kawase, 2003). 

Same 2D coordinate 
Texture coordinate 

Locate many on the screen 

as glare sensors 

Degenerate Polygon 

Figure 3: Degenerate polygons as glare sensors.
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be one of the very few.  Care must be taken when 
using VTF because it is much slower than texture 
fetching by pixel shaders.  Also, current 
implementation of VTF by NVIDIA has the 
limitation that vertex shaders can only read textures 
with 32bit floating point format. 

As a glare sensor, one degenerate polygon 
checks the assigned pixel in the rendered scene and 
decides if the luminance value of the pixel is above 
the threshold.  If the pixel is considered bright 
enough, each vertex of the degenerate polygon 
moves itself away from its original position to 
expand the quad to form a square to be used a glare 
polygon where the glare image is put on.  If the 
assigned pixel is not bright enough, the degenerate 
polygon will be ignored at the rasterizing stage. 

3.2 Rendering of Glare Polygons 

Once a degenerate polygon expands itself and 
becomes a glare polygon, pixel shaders put a 
translucent glare texture on the square polygon to 
generate a glare image.  Each vertex of the glare 
polygon has unique texture coordinate values for 
glare texture, i.e. (0, 0), (1, 0), (0, 1) and (1, 1) so 
that the glare texture image will fit into the square 
glare polygon. 

Glare polygons are then rendered to a target 
texture which will be later synthesized with the 
original scene.  When there are many bright pixels in 
the original scene, rendering of many overlapping 
translucent glare textures pushes the memory 
bandwidth to the limit and this rendering stage 
becomes the performance bottleneck. 

Following the above idea, we can generate very 
high quality glare images.  But straight forward 
implementation of the described method is not 
practical for current GPUs.  As described above, 
when there are so many bright pixels in the original 
scene, there will be so many overlapping translucent 
glare polygons and rendering the whole scene is 
sometimes as slow as a few fps.  In the next section, 
we will describe some performance enhancement 
techniques of our method without sacrificing the 
final glare image quality. 

4 PERFORMANCE 
ENHANCEMENT 
TECHNIQUES 

In this section we describe some important 
techniques to improve performance of our basic 

method.  The basic strategy is to reduce the number 
of translucent glare polygons as many as possible 
without sacrificing the final image quality.  The 
technique to reduce the number of redundant VTF is 
also described. 

4.1 Grouping Glare Polygons 

The first step to reduce the number of glare polygons 
is to group some neighbouring glare polygons and 
replace them with one new glare polygon where 
possible.  Assume we are going to group NxN 

neighbouring pixels. (see Figure 4)  To maintain 
consistency, we set the luminance value of the new 
glare polygon to be the sum of all luminance values 
of the neighbouring pixels.  We also adjust the 
center position of the new glare polygon taking in to 
consideration the distribution of luminance value 
over the neighbouring pixels.  The new luminance 
value L0 and the new center position P0 of the new 
glare polygon is defined by the following equation. 

 
 

 
 
 
 
 
If we are to group 2x2 neighbouring pixels and 

create one glare polygon for these pixels, we can 
reduce the number of glare polygons to 1/4 
compared to the number of polygons before 
grouping.  This reduction result in big performance 
gain because we are limited by pixel fill rate of GPU.  
Adjustment of new glare position works great for 
chasing a small moving pixel.  From visual tests by 
many users, we can safely group 4x4 pixels using 
this technique and still maintain high quality of the 
final glare images. 
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Figure 4: Grouping NxN Pixels for one glare polygon. 

GRAPP 2006 - COMPUTER GRAPHICS THEORY AND APPLICATIONS

22



 

Notice that the number of vertices was reduced 
to 1/NxN, but each vertex now has to check for NxN 
pixels for the calculation of L0 and P0, and the total 
number of VTF in the scene remains the same.  To 
reduce the cost of 4 vertices of one degenerate 
polygon accessing the same group of NxN pixels 
using costly VTF, we now replace this process by a 
pixel shader program which can read textures much 
faster than using VTF.  We first run a pre-processing 
by a pixel shader program to read all NxN pixels, 
calculate L0 and P0 values and store them in the new 
render target texture.  Now each vertex of 
degenerate polygons has to read only one texel from 
the texture just created to get L0 and P0 values.  This 
reduces the number of costly VTF down to 4/(NxN). 

4.2 Clustering of Bright Pixel Areas 

The above technique to reduce the number of glare 
polygons works great to achieve significant speed 
gain.  We can stably achieve enough frame rates in 
most cases, but in some very extreme situation 
where the scene is mostly covered by bright areas, 
there will be too many overlapping translucent 
polygons to slow down the rendering speed.  One 
example of this is rendering of very bright sky 
covering wide area of the scene. 

To maintain decent frame rate even in such 
extreme situation, we further group glare polygons 
to cover fairy wide area of bright pixels.  Figure 5 
illustrates the basic idea of this approach.  If more 
than 90% of the pixels in 8x8 pixel area are bright 
enough to cause glare effect, we put one glare 
polygon for this area and prohibit expansion of other 
degenerate polygons in the same area.  Luminance 
value and center position of the glare polygon can be 
calculated by the equation (1) presented before.  If 
the above 8x8 area was not filled with enough 
number of bright pixels, we do not create a glare 
polygon for the area and let other 4 degenerate 
polygons in the area do the job.  This hierarchical 
organization of glare polygons works great to reduce 
the number of polygons and to maintain good frame 
rate. 

4.3 Shrinkage of Glare Polygons 

To be physically correct, glare image keeps its size 
on the screen independent of the luminance value.  
The image just gets dimmer when the luminance 
gets lower, but never gets smaller.  Glare images 
often have brightest pixels at their center where the 
light source is, and get dimmer towards the outer 
edge.  When the luminance value of the glare image 
gets dim enough, image around the edge gets 

imperceptive to human eyes, and we can safely 
discard these dark areas by shrinking glare polygons. 

When shrinking a glare polygon, care must be 
taken not to scale down the glare image drawn on 
the screen.  Shrinking a glare polygon without 
scaling down the glare image requires linear 
adjustment of texture coordinate values at each 
vertex of the glare polygon according to the size of 
the shrunk polygon.  When to start shrinking and 
how much we can safely shrink for certain 
luminance value depends totally on luminance 
distribution of the glare image, but this can be 
precomputed.  Shrinking glare polygons where 
possible reduces unnecessary overlapping of too 
dark glare images and we can gain some speed in 
some cases. 

4.4 Performance Evaluation 

By combining all these techniques, we achieved 
drastic performance improvement over straight 
forward implementation of our basic method.  We 
used NVIDIA GeForce 7800 GTX GPU with HLSL 
of DirectX9 to render 1024x786 size scenes with 
glares.  The size of glare images used was 512x512.  
Some of the images are shown in Figure 6.  The 
images at the top are the original scenes without 
glare images, those in the middle are with glare 
images and those on the bottom show the edges of 
glare polygons.  It can be seen that degenerate 
polygons with VTF works great to create high 
quality glare images at proper locations.  Rendering 
speed was above 60 fps in average, over 120 fps in 
the best case, and 40 fps in the worst case.  This 
depends mostly on how many glare polygons were 
drawn on the screen. 

One Glare 

One Glare

One Glare One Glare 

Figure 5: Clustering of bright pixel areas. 
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5 CONCLUSIONS 

We have presented a new method for real-time 
rendering of high quality glare images using the 
latest vertex texture fetch technique.  The basic idea 
is to put degenerate polygons on the screen as 
sensors to detect bright pixels and make them 
expand to form glare polygons where glare images 
are put.  We have also presented some techniques to 
improve rendering performance without sacrificing 
image quality.  It is fast enough for truly interactive 
applications like computer games and virtual 
environment.  Combined with proper tone mapping 
at the last rendering stage, the generated scene looks 
pretty realistic.  We will be using this technique for 
such applications to enhance visual quality and 
visual experience of the users. 

You can replace degenerate polygons with point 
sprites to reduce the number of VTF and save video 
memory space.  As VTF is not the performance 
bottleneck, rendering speed gain is negligible.  
Using our degenerate polygons, rotation of glare 
images can be done by vertex shaders at almost no 
cost.  Rotation of glare images needs to be done by 
costly pixel shaders when using point sprites.  We 
recommend to use point sprites only if the GPU 
memory is limited, i.e. GPUs in game consoles, and 
rotation of glare image  is not necessary.  There are 
many tuneable parameters to gain rendering 
performance and we do not have enough space to 
describe this in detail, such as usage of texture 
channels. 

In this paper we described our method for glare 
image rendering, and we are currently working on 
generating so called “Lens Flare” effects.  We can 
use the same VTF technique with degenerate 
polygons, but we need many polygons for a set of 
lens flare images.  Our technique works for any type 
of glare images including sharp radial streaks and 
blurry circles.  Although creation of glare images is 
not the main theme of this paper, we need a good 
tool to create high quality glare images for high 
quality rendering. 
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Figure 6: TOP (a1,b1) Original scenes without glare image, MIDDLE (a2, b2) Scenes with glare images generated with 
our method, BOTTOM (a3, b3) Glare polygons rendered as green squares to show their locations. 
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