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Abstract: Surface rendering (SR) algorithms are fast, but not suited to applications that demand exploration of internal
volume structures. We introduce an enhanced surface rendering algorithm - named VoS, Volume on Surface-
that supports visualization of internal volume structures. VoS integrates surface and volume rendering into an
efficient framework for interactive visualization of volume information. A ray casting is performed to map
volume information onto a boundary surface extracted from the volume grid, enabling the display of structures
internal to the surface using conventional SR. VoS thus offers a low-cost alternative to volume rendering
in some practical situations, as its resulting surfaces can be rendered on commodity graphics hardware at
interactive rates. Moreover, changes in the transfer functions are handled at the rendering step, rather than at
the costly ray-casting operation.

1 INTRODUCTION

Volume visualization has enjoyed significant evolu-
tion in recent years, contributing to major advances in
important applications. In medicine, for example, it
has played an essential role in the empowerment of
imaging technologies, such as ultra-sound, and in the
development of computer-guided surgery. It contin-
ues to play a major role in computer-assisted diagno-
sis, motivating further research into methods capable
of generating improved visualization of internal body
structures at faster rates.

Despite the availability of specific hardware and ef-
fective algorithms, volume visualization is still slow
and computationally expensive as compared to sur-
face rendering. It is not an option if the goal is fast
image generation on standard graphics cards. Surface
rendering is fast, but has limited applicability. Con-
ventional surface rendering approaches completely
dismiss the volumetric information, and therefore, are
not suited to applications that demand exploration of
internal volume structures.

We introduce an enhanced surface rendering al-
gorithm – namedVoS, Volume on Surface – that
supports visualization of internal volume structures.
VoS integrates surface and volume rendering into an
efficient framework for interactive visualization on

standard graphics cards. A pre-processing step uses
ray casting to map the volumetric domain grid infor-
mation onto a boundary surface extracted from this
grid, enabling the display of structures internal to
the surface using conventional surface rendering. As
such, the technique exploits the advantages of surface
rendering while keeping the volumetric information.
VoS thus offers a low-cost alternative to volume ren-
dering in some practical situations, as its resulting sur-
faces can be rendered on commodity graphics hard-
ware at interactive rates. Moreover, changes in the
color and opacity transfer functions are handled at the
rendering step, with no need to repeat the costly ray-
casting operation.

This paper is organized as follows: Section 2
presents an overview of related work. Section 3 de-
scribes theVoS algorithm, and some results of its ap-
plication to visualizing volume data are presented and
discussed in Section 4. Final remarks and plans for
further work are presented in Section 5.

2 RELATED WORK

Many volume visualization techniques have been pre-
sented in the literature over the last years, making
it difficult to accomplish a fair short overview. We
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restrain ourselves to briefly introducing the two ma-
jor approaches adopted by volume visualization tech-
niques, namely, Surface Rendering (SR) and Direct
Volume Rendering (DVR). Concerning specific tech-
niques, we emphasize a third class of so-called Hy-
brid algorithms, which, similarly to our proposed ap-
proach, combine SR and DVR to make up a visual-
ization framework.

Surface Rendering techniques adopt the gen-
eral approach of extracting from the volume two-
dimensional geometric entities of interest, which
are then displayed with conventional SR algo-
rithms (Lorensen and Cline, 1987; Nonato et al.,
2001; Marmitt et al., 2004). In contrast to SR, Di-
rect Volume Rendering techniques do not extract any
geometric representation in the visualization process,
handling the volumetric data in a direct way (Levoy,
1990a; Westover, 1990). Although lower computa-
tional cost has initially motivated the adoption of SR
methods in a wide range of applications, recent de-
velopments in DVR have put in check such an advan-
tage (Wald et al., 2005). The ability to provide high-
quality images of three-dimensional internal struc-
tures at reasonable interactive rates and acceptable
costs stimulates the choice of DVR as a volume visu-
alization approach, particularly in critical fields such
as medicine and biology. However, good solutions re-
quire top-of-the-line graphics cards.

Techniques that integrate different types of
processing into a single visualization strategy are usu-
ally calledhybrid volume rendering techniques. The
term “hybrid rendering”, however, has been employed
in different contexts. One such context refers to a
wide class of algorithms characterized by combin-
ing SR and DVR strategies into a single visualiza-
tion environment. Examples include combining SR
with ray-tracing (Levoy, 1990b) or splatting (Tost
et al., 1993). Such approaches enable simultaneous
visualization of volumetric data and objects modeled
from geometric primitives. A typical application is
computer-aided surgery, where surgical instruments
must be surface rendered while patient’s data is shown
with DVR (Gross, 1998). Other hybrid approaches,
such as the one by (Zakaria and Saman, 1999), in-
tegrate SR, DVR and domain transform into a single
environment.

Another use of the term refers to Image-Based Hy-
brid Rendering techniques, which map a set of images
generated from a volume onto surfaces that can then
be rendered on conventional graphics hardware (Wil-
son et al., 2002). The mapping is typically performed
using texture maps available in graphics cards. Chen
et al.’s work (Chen et al., 2001) is a good represen-
tative of this class. In their method, the main idea
is to pre-compute, using conventional DVR, a set of
keyviews, which, depending on the viewer’s position,
are texture-mapped onto a surface that bounds the vol-

ume of interest (their solution uses a sphere as the
bounding surface). When a viewer moves away from
akeyview, the texture is kept in the regions still visible
and rays are cast for pixels in newly visible regions.
An important issue is where to place the cameras to
generate thekeyviews. Another problem is that un-
desired holes appear in the image when the viewer
moves away from thekeyviews.

(Samanta et al., 2000) name as “hybrid” a par-
allel volume visualization algorithm that sub-divides
both the volumetric and the image domains in or-
der to improve processor load balance. Sometimes
the term is also employed to describe optimization
approaches introduced in traditional rendering algo-
rithms. Levoy and Whitaker’s (Levoy and Whitaker,
1990) and Laur and Hanrahan’s (Laur and Hanra-
ham, 1991), for example, are considered hybrid ap-
proaches, though they are essentially DVR algorithms
highly optimized through progressive mesh refine-
ment and hierarchical representations.

Our technique also combines SR and ray casting
into a unified algorithm. However, its goal is not
to enable simultaneous visualization of geometrically
defined surface models and volume data. Ray-casting
is used as a mechanism to enrich the surface rendering
with volume information, in an approach that bears
similarity with image-based approaches such as the
one by (Chen et al., 2001). However, some differ-
ences are distinguishable:

1) the volumetric information is transferred to a
user-specified iso-surface extracted from the data vol-
ume, rather than to an external surface bounding
the volume; 2)VoS uses no texture mapping, i.e.,
rays are cast directly from the faces of the bound-
ary surface; 3) ray casting is executed only in a pre-
processing step; 4) changes in the color and opacity
transfer functions are handled in the rendering step,
with no need to redo the ray casting; 5)VoS presents
no problems with camera positions.
VoS can be summarized as follows: given a vol-

ume stored in a regular grid of voxels, a ray-casting al-
gorithm maps the volumetric information onto a sur-
face of interest extracted from the volume. Note that
only content internal to the extracted surface will be
shown. A SR algorithm is then applied to produce a
volumetric visualization of the domain.

3 THE VoS TECHNIQUE

Given a regular volume grid, a surface of interest must
be extracted. Iso-surface geometry and other infor-
mation required by the mapping process are stored
in a topological data structure. A high-pass filter is
applied to the volume and the resulting information
is also stored to allow identifying transitions between
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materials. LetS be the input iso-surface,f be a face
of S andP be the plane containingf , as shown in Fig-
ure 1. Facef can be seen from any pointP on the op-
posite side ofS (as in Figure 1 (a)). IfS is a transpar-
ent object, part of its internal volume will be observ-
able throughf . Depending on the viewer’s position,
different internal structures can be observed through
f . Evidently, the pattern of colors (or ’texture’) ob-
servable will change as the viewpoint changes.

S

P

S

P

f

b)a)

Figure 1: a) Viewing region off ; b) Sampling the viewing
directions off . The bold arrows illustrate the observation
line that best approximates the viewing direction.

If one could compute and store the texture off for
every possible viewing direction it would be possible
to identify and assign the appropriate texture tof for
any viewpoint. Therefore, a viewer would be able to
observe any structures contained inS processing only
the surface representation. Obviously, it is not feasi-
ble to compute or even store the colors of the ver-
tices for all possible viewing positions and directions.
Thus,VoS samples a sub-set of all possible viewing
directions from which one might observe the interior
of S through the vertices off . The sampled viewing
directions are called ’observation lines’.

For each facef the algorithm computes, for each
observation line, the colors that approximate the tex-
tures in the face when observed from that particular
direction. In fact, colors are pre-computed and stored
at the vertices, and the color of a face is computed in
the rendering step. When computing face colors the
rendering algorithm will identify, for each face ver-
tex, which of the pre-computed observation lines best
approximates the viewer’s line of sight for that vertex.
It then assigns to the face a color computed from the
average of the colors assigned to its vertices, as illus-
trated in Figure 1 (b). Finally, the rendering algorithm
just renders all visible faces.

The technique is thus a two-step method: (i) Pre-
visualization (maps the volume onto the extracted sur-
face); and (ii) Surface rendering (renders and projects
the surface). In the following we describe both steps
in detail and discuss some implementation issues.

3.1 Pre-visualization

Pre-visualization, responsible for the ray-casting
process, concentrates the core of the processing. This
step takes as input a volume grid of voxels and an iso-
surface extracted from it.

3.1.1 Sampling the Viewing Directions

To sample the set of all possible viewing directions
and define a set of observation lines for each sur-
face vertex,VoS defines virtual cones with differ-
ent opening angles, centered at the vertex and aligned
with its normal vector, as illustrated in Figure 2. The
observation lines start from the vertex and have their
directions determined by uniformly distributing them
over the surface of each cone (Figure 2).VoS current
implementation uses, for each vertex, a set of cones
with equally spaced opening angles. For example, if
three cones are used they have opening angles equal
to 15o, 45o and75o from the vertex normal vector;
if four observation lines are cast, the angle between
each two of them is90o, measured on the cone.

Figure 2: Three virtual cones with different opening angles
and observation lines defining the viewing directions to be
sampled.

3.1.2 Storing Samples

This step involves casting rays through the volume
in the directions of the observation lines, similarly
to traditional Ray Casting. Discrete ray trajectories
are computed with a 3D scanline algorithm. Each
voxel along the scanline whose value after applying
the high-pass filter is within a user-specified threshold
is stored as a ray sample. Each ray is thus associated
with a list of its stored samples.

3.1.3 Transfer Function Specification

User defined transfer functions are responsible for
computing the color and opacity associated with ray
samples.VoS currently offers a simple interface for
intensity-based color transfer function definition, and
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two alternative types of opacity transfer functions,
one based on intensity and one based on the sample’s
spatial position along the ray. The rationale for the
latter option is that samples positioned closer to the
extreme ends of the ray (its starting point or its fi-
nal intersection point) correspond to ray intersections
with the most external or the most internal objects in
the volume. A user can then assign opacity values
based on sample position, as exemplified in Figure
3, which shows two rays and their associated sam-
ple points (represented by the squares). To favor vi-
sualization of internal structures one assigns higher
opacity values to samples in the internal regions of
the ray, as shown in Figure 3 (a). On the other hand,
to highlight more external object structures one as-
signs higher opacities to the samples closer to the ray
extremes, as illustrated in 3 (b).

a) b)

Figure 3: a) Opacity function to highlight internal struc-
tures; b) Opacity function to highlight object borders.

3.1.4 Color Computation

The samples stored on a given ray are composed to
determine the ray color and opacity values. We adopt
the simple optical model proposed by Levoy (Levoy,
1990a), stated as follows:

C =
NX

i=1

"
c(i)α(i)

iY
j=1

(1 − α(j))

#
In the above equationC is the final color andN

is the number of samples.c(i) and α(i) represent,
respectively, color and opacity of samplei andα(j)
represents opacity of samplej. Each surface vertex
stores the values ofC computed for each ray cast from
it. If the color or opacity functions are modified a
new composition must be performed, but no further
ray casting is required.

3.2 Surface Rendering

At the end of the pre-visualization step a final color
has already been assigned and stored for each ray (ob-
servation line) leaving each surface vertex. The ini-
tial problem for the rendering stage is to decide the
appropriate color for the vertex as observed from the
viewer’s current position.

The problem may be solved with a dot prod-
uct computation: Letv be the vertex andR =
{r1, . . . , rk} (k = number of cones * number of rays

cast per cone) the set of unit vectors on the obser-
vation lines (pointing outwards fromS). Let ro be
the unit vector constructed from the viewer position,
O, to the vertex. Suppose thatro points towards the
viewer andri is the vector inR whose dot product
ri · ro produces the largest positive value. The color
associated with observation lineri is thus attributed to
v as the most appropriate color forv when observed
from O. This dot product computation can be per-
formed in hardware, and the same happens for the
computation of hidden elements and light effects on
the surface. These operations are supported by a con-
siderable number of commodity graphics cards, en-
suring the efficiency of the rendering step.

4 RESULTS

In this section we present some results of applying
VoS to visualize internal volume structures. All vi-
sualizations in this Section were produced on a Pen-
tium 4, CPU 3.2 GHz with 1 GB RAM.

Figure 4 shows two visualizations of a chest
data set(http://www9.cs.fau.de/Persons/Roettger/library/),
with dimensions 120x120x241. The visualiza-
tion in Figure 4 (a) was generated with Kitware’s
Volview (http://www.volview.com) using conven-
tional ray casting. Figure 4 (b) shows a shaded sur-
face rendering of the same data, for an isosurface
value of 80, created with VTK’svtkContourFilter
method (Schroeder et al., 2004). The resulting mesh
has 83,949 vertices and 167,241 faces. The VolView
visualization took nearly 20 seconds to compute; iso-
surface visualizations have a rate of nearly 2 frames
per second on VTK.

a) b)

Figure 4: a) Ray casting image; b) Surface rendering image
with isosurface = 80.

Figure 5 showsVoS visualizations of the same
data. Figures 5 (a)-(c) were created with 3, 6 and 8
cones per vertex, respectively, casting 8 observation
lines per cone. The quality of theVoS visualizations
is comparable to that of the ray casting image shown
in Figure 4 (a), even for the one generated with less
cones.
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a) b)

c) d)

Figure 5:VoS visualizations using 8 observation lines per
cone a) three cones; b) 6 cones; c) 8 cones; d) 8 cones, from
a different viewpoint.

Computational times are shown in Table 1. Pre-
visualization time is the time to cast all rays from
all surface vertices and store their associated sam-
ples. The best and worst case entries indicate the
time to re-compute color composition when transfer
functions are modified. In the best case all scalar val-
ues are associated with the maximum opacity value,
and therefore ray casting stops at the first sample;
in the worst case all samples along the ray must be
color-composed. The time to update the visualization
once the transfer functions change is much shorter
than in conventional ray casting, as the pre-processing
step stores all the necessary information, avoiding
the need of re-casting rays. Also, the number of
frames rendered per second withVoS is lower than,
but on the same order of magnitude, that of a con-
ventional SR implementation.VoS pre-visualization
time is slightly greater than that of a DVR visualiza-
tion, when using 3 cones with 8 observation lines.
This time increases with the number of cones, how-
ever, once pre-processing is done surface renderings
can be displayed in much lower times, as shown in
Table 1.

Table 1:VoS measurements.

3x8 6x8 8x8
Pre-vis 41s 1min 36s 2min 10s
Best Case 0.25s 0.49s 0.64s
Worst Case 2.3s 3.85s 4.88s
fps 1.9 1.3 1.1

Figure 6 shows another comparison between visu-
alizations created with conventional ray casting and

with VoS, now for a papaya fruit data set, with dimen-
sions 86x42x59. This example reinforces thatVoS
can be a reasonable alternative to conventional DVR
in some applications, with the advantage of allowing
more interactive display rates. Figure 7 was created

a) b)

c) d)

Figure 6: Papaya data set: (a) and (c) Conventional ray-
casting; (b) and (d)VoS (8 cones with 8 observation lines).

with VoS and the opacity function based on sample
position. The visualization shown in Figure 7 (a), ob-
tained with the opacity function depicted in Figure 8
(a), shows the outer parts and the pulp that hides the
seeds. The internal hole is highlighted in Figure 7(b),
obtained configuring the opacity function as shown in
Figure 8 (b). Memory usage requirements depend

a) b)

Figure 7: a) Minimum (0) and maximum (1) opacity at the
ends of the ray; b) Maximum opacity between positions
[0.39, 0.47] and[0.53, 0.64].

on three factors: the number of surface vertices, the
number of observation lines cast per vertex, and the
number of samples stored for each observation line.
For theVoS visualizations of the papaya data set in
Figures 6(b) and (d) (8 cones per vertex and 8 lines
per cone), memory consumption was close to 32 MB.
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Figure 8: Opacity transfer functions for Figure 7.

5 CONCLUSIONS

In this paper we introducedVoS, an image-based
surface rendering approach that supports fast visu-
alization of internal volume structures.VoS maps
the volume information contained within a surface
on its faces and enables efficient rendering by pre-
computing and storing the information required at the
rendering step. A user still has the flexibility of mod-
ifying the transfer functions in the rendering step in
order to hide or highlight information.
VoS has a major advantage in its ability to im-

age internal volume contents quickly on conventional
graphics hardware, thus offering enhanced surface
rendering. It provides an additional tool in situations
in which surface rendering is a natural visualization
solution. Moreover, it can be an alternative to quickly
generate initial views of volume contents, or to en-
able volume visualizations on devices where specific
volume graphics hardware is not available, such as
’portable’ devices.

One aspect that deserves further investigation is
how the quality of the resulting visualizations is af-
fected by the quality of the surface mesh. Mesh sim-
plification and smoothing algorithms could be applied
prior to generating the visualizations, and their ef-
fect on the quality of theVoS outcome must be an-
alyzed. Further investigations shall also handle the
use of GPUs to speed up computations and using par-
allelism in the pre-processing and rendering stages.
Also, improved mechanisms for specifying color and
opacity transfer functions must be investigated.
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