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Abstract: An Image-Based Rendering (IBR) approach to appearance modelling enables the capture of a wide variety 
of real physical surfaces with complex reflectance behaviour. The challenges with this approach are 
handling the large amount of data, rendering the data efficiently, and previewing the model as it is being 
constructed. In this paper, we introduce the Incremental Weighted Least Squares approach to the 
representation and rendering of spatially and directionally varying illumination. Each surface patch consists 
of a set of Weighted Least Squares (WLS) node centers, which are low-degree polynomial representations 
of the anisotropic exitant radiance. During rendering, the representations are combined in a non-linear 
fashion to generate a full reconstruction of the exitant radiance. The rendering algorithm is fast, efficient, 
and implemented entirely on the GPU. The construction algorithm is incremental, which means that images 
are processed as they arrive instead of in the traditional batch fashion. This human-in-the-loop process 
enables the user to preview the model as it is being constructed and to adapt to over-sampling and under-
sampling of the surface appearance. 

1 INTRODUCTION 

A Surface Light Field (SLF) (Wood, 2000) is a 
parameterized representation of the exitant radiance 
from the surface of a geometric model under a fixed 
illumination. SLFs can model arbitrarily complex 
surface appearance and can be rendered at real-time 
rates. The challenge with SLFs is to find a compact 
representation of surface appearance that maintains 
the high visual fidelity and rendering rates. 

One approach to this problem is to treat it as a 
data approximation problem. The exitant radiance at 
each surface patch is represented as a function, and 
the input images are treated as samples from this 
function. Since there are no restrictions imposed on 
the geometry of the object or on the camera 
locations, the input samples are located at arbitrary 
positions. This is an example of a problem known as 
scattered data approximation (Wendland, 2005).   

(Coombe, 2005) introduced the notion of casual 
capture of a SLF by moving a camera around an 
object, tracking the camera pose using fiducials, and 
incrementally updating the SLF.  This enabled the 
operator to see the result, add views where needed, 
and stop when he or she was satisfied with the result.  
However, one difficulty with the matrix factorization 
approach is that it requires fully resampled matrices, 

and so can be sensitive to missing data from 
occlusions and meshing errors. 

In this paper we present Incremental Weighted 
Least Squares (IWLS), a fast, efficient, and 
incremental algorithm for the representation and 
rendering of surface light fields. It is a non-linear 
polynomial approximation for multi-variate data, 
based on the idea of Least Squares polynomial 
approximation, which fits scattered data samples to a 
set of polynomial basis functions. WLS is similar to 

Figure 1: A model of a heart captured with our system 
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piecewise polynomial approximation and splines, 
except that the reconstruction is non-linear. 

Weighted Least Squares (Wendland, 2005) 
generalizes Least Squares by computing a set of 
approximations with  associated weighting terms. 
These weighting terms can be either noise (in 
statistics) or distance (in graphics and computational 
geometry (Ohtake, 2003)). If we use distance, then 
WLS becomes a local approximation method. This 
local approximation is extended to a global 
approximation by computing the Partition of Unity 
(Ohtake, 2003; Shepard, 1968). 

This paper offers the following contributions: 
• We apply existing mathematical tools such as 

the Weighted Least Squares approximation 
technique by casting surface light fields as a 
scattered data approximation problem. 

• We introduce Incremental Weighted Least 
Squares, an incremental approach to surface 
light field construction that enables 
interactive previewing of the reconstruction. 

• Using the IWLS representation, we develop a 
real-time surface light field rendering 
algorithm, implemented on the GPU, which 
provides direct feedback about the quality of 
the surface light field. 

The paper proceeds as follows. We first discuss 
previous approaches to light field capture and 
representation, including the difference between 
batch processing and incremental processing. In 
Section 3 we discuss Least Squares fitting and the 
generalization to Weighted Least Squares. We then 
introduce IWLS and describe how the WLS 
representation can be incrementally constructed and 
rendered. In Section 4 we discuss implementation 
details of the capture and rendering system, and then 
present results and conclusion. 

2 BACKGROUND 

A good overview of the state of the art in material 
modelling by image acquisition is provided by the 
recent Siggraph course on Material Modelling 
(Ramamoorthi, 2002), and the Eurographics State of 
the Art Report on Acquisition, Synthesis and 
Rendering of Bidirectional Texture Functions 
(Mueller, 2004). The choice of representation of this 
captured data is crucial for interactive rendering. 
(Lensch, 2001) uses the Lafortune representation 
(Lafortune, 1997) and clustered samples from 
acquired data in order to create spatially-varying 
BRDFs. (Gardner, 2003) and (McAllister, 2002) 

describe BDRF capture devices and methods for 
BRDF representation.  

Data-driven representation can be divided into 
parametric and non-parametric approaches. A 
parametric approach assumes a particular model for 
the BRDF (such as the Lafortune model (Lafortune, 
1997) used by (McAllister, 2002)). These models 
have difficulty representing the wide variety of 
objects that occur in real scenes, as observed by 
Hawkins in (Yu, 1999).  

A non-parametric approach uses the captured 
data to estimate the underlying function and makes 
few assumptions about the behavior of the 
reflectance. Thus non-parametric models are capable 
of representing a larger class of surfaces, which 
accounts for their recent popularity in image-based 
modelling (Chen, 2002; Furukawa, 2002; Matuzik, 
2003; Zickler, 2005). Our approach uses a non-
parametric model to represent surface light fields.  

2.1 Surface Light Fields 

Surface light fields (Wood, 2000) parameterize the 
exitant radiance directly on the surface of the model. 
This results in a compact representation that enables 
the capture and display of complex view-dependent 
illumination of real-world objects. This category of 
approaches includes view-dependent texture 
mapping (Debevec, 1996; Debevec, 1998; Buehler, 
2001), which can be implemented with very sparse 
and scattered samples, as well as regular 
parameterizations of radiance (Levoy, 1996; Gortler, 
1996). (Wood, 2000) use a generalization of Vector 
Quantization and Principal Component Analysis to 
compress surface light fields, and introduce a 2-pass 
rendering algorithm that displays compressed light 
fields at interactive rates. These functions can be 
constructed by using Principal Component Analysis 
(Nishino, 1999; Chen, 2002; Coombe, 2005) or non-
linear optimization (Hillesland 2003). The function 
parameters can be stored in texture maps and 
rendered in real-time (Chen, 2002). 

 These approaches can suffer from difficulties 
stemming from the inherent irregularity of the data. 
If they require a complete and regularly sampled set 
of data, an expensive resampling step is needed. To 
avoid these problems, we treat surface light field 
reconstruction as a scattered data approximation 
problem (Wendland, 2005). Scattered data 
approximation can be used to construct 
representations of data values given samples at 
arbitrary locations (such as camera locations on a 
hemisphere or surface locations on a model). 

AN INCREMENTAL WEIGHTED LEAST SQUARES APPROACH TO SURFACE LIGHTS FIELDS

85



 

A common scattered data approximation 
technique uses Radial Basis Functions (RBFs) 
(Moody, 1989). (Zickler, 2005) demonstrated the 
ability of RBFs to accurately reconstruct sparse 
reflectance data. Constructing this approximation 
requires a global technique, since every point in the 
reconstruction influences every other point. This is a 
disadvantage for an incremental algorithm, as every 
value must be recomputed when a new sample 
arrives. It is also difficult to render efficiently on 
graphics hardware, since many RBF algorithms rely 
on Fast Multipole Methods to reduce the size of the 
computation (Carr, 2001). We would like a method 
that has the scattered data representation ability of 
RBFs, but without the complex updating and 
reconstruction.   

2.2 Incremental Methods 

Most of the research in image-based modelling has 
focused on batch-processing systems. These systems 
process the set of images over multiple passes, and 
consequently require that the entire set of images be 
available. Incorporating additional images into these 
models requires recomputing the model from 
scratch.  

Formulating surface light field construction as an 
incremental processing approach avoids these 
problems by incrementally constructing the model as 
the images become available. (Matusik, 2004) used 
this approach with a kd-tree basis system to 
progressively refine a radiance model from a fixed 
viewpoint. (Schirmacher, 1999) adaptively meshed 
the uv and st planes of a light field, and used an error 
metric along the triangle edges to determine the 
locations of new camera positions. (Coombe, 2005) 
used an incremental PCA algorithm to construct 
surface light fields in an online fashion, but required 
resampling the data for matrix computation.  

3 INCREMENTAL WEIGHTED 
LEAST SQUARES 

IWLS is a technique to incrementally calculate an 
approximation to the exitant radiance at each surface 
patch given a set of input images. The process is 
divided into two parts: constructing the WLS 
representation from the incoming images, and 
rendering the result. In this section we review Least 
Squares fitting and the generalization to Weighted 
Least Squares. We then describe how these WLS 

representations can be incrementally constructed and 
rendered. 

3.1 Least Squares Approximation 

Least Squares methods are a set of linear 
approximation techniques for scattered data. Given a 
set of N scalar samples ℜ∈if  at points d

ix ℜ∈ , 
we want a globally-defined function f(x) that best 
approximates the samples. The goal is to generate 
this function f(x) such that the distance between the 
scalar data values fi and the function evaluated at the 
data points f(xi) is as small as possible. This is 
written as 

min f (xi) − f i
i
∑  

(Note: this discussion follows the notation of 
(Nealen, 2004)). Typically, f(x) is a polynomial of 
degree m in d spatial dimensions. The coefficients of 
the polynomial are determined by minimizing this 
sum. Thus f(x) can be written as 

f (x) = b(x)T c  

where b(x) = [b1(x) b2(x) ... bk(x) ]T is the 
polynomial basis vector and c = [c1 c2 ... ck ] is the 
unknown coefficient vector. A set of basis functions 
b(t) is chosen based on the properties of the data and 
the dimensionality. 

To determine the coefficient vector c, the 
minimization problem is solved by setting the partial 
derivatives to zero and solving the resulting system 
of linear equations. After rearranging the terms, the 
solution is: 

[ ] ∑∑ −
=

i
ii

i

T
ii fxbxbxbc )()()( 1  

For small matrices, this can be inverted directly. 
For larger matrices, there are several common 
matrix inversion packages such as BLAS 
(Remington, 1996) and TGT. The size of the matrix 
to be inverted depends upon the dimensionality d of 
the data and the degree k of the polynomial basis. 

3.2 Weighted Least Squares 

One of the limitations of Least Squares fitting is that 
the solution encompasses the entire domain. This 
global complexity makes it difficult to handle large 
data sets or data sets with local high frequencies. We 
would prefer a method that considers samples that 
are nearby as more important than samples that are 
far away. This can be accomplished by adding a 
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distance-weighting term Θ(d) to the Least Squares 
minimization. We are now trying to minimize the 
function 

∑ −−Θ
i

iii fxfxx )()(min  

A common choice for the distance-weighting 
basis function Θ(d) is the Wendland function 
(Wendland, 1995) 

)14()1()( 4 +−=Θ h
d

h
dd  

which is 1.0 at d = 0, and falls off to zero at the 
edges of the support radius h. This function has 
compact support, so each sample only affects a small 
neighborhood. There are many other weighting 
functions that could be used, such as multiquadrics 
and thin-plate splines, but some functions have 
infinite support and thus must be solved globally. 

Instead of evaluating a single global 
approximation for all of the data samples, we create 
a set of local approximations. These approximations 
are associated with a set of points x , which are 
known as centers. At each of these centers, a low-
degree polynomial approximation is computed using 
the distance-weighted samples xi in the local 
neighborhood. 

[ ] ∑∑ −Θ−Θ=
−

i
iii

i

T
iii fxbxxxbxbxxxc )()()()()()( 1

 We now have a set of local approximations at 
each center. During the reconstruction step, we need 
to combine these local approximations to form a 
global approximation. Since this global function is a 
weighted combination of the basis functions, it has 
the same continuity properties.  

The first step is to determine the m nearby local 
approximations that overlap this point and combine 
them using a weight based on distance. However, 
the functions cannot just be added together, since the 
weights may not sum to 1.0. To get the proper 
weighting of the local approximations, we use a 
technique known as the Partition of Unity (Shepard, 
1968), which allows us to extend the local 
approximations to cover the entire domain. A new 
set of weights Φ(j) are computed by considering all 
of the m local approximations that overlap this point 

∑
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Θ
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The global approximation of this function is 
computed by summing the weighted local 
approximations. 

∑
=

Φ=
m

j
j

T
j xcxbxxf

1
)()()()(  

The WLS representation allows us to place the 
centers x  wherever we like, but the locations are 
fixed. This is in contrast to the Radial Basis 
Function method, which optimizes the location of 
the centers as well as the coefficients. We discuss 
several strategies for center placement in Section 4. 

3.3 Incremental Construction 

Surface light field representation can be treated as a 
batch process by first collecting all of the images 
and then constructing and rendering the WLS 
representations. The advantage of batch processing 
is that all of the sample points are known at the time 
of construction, and the support radii and locations 
of the centers can be globally optimized.  

The disadvantage to batch processing is that it 
provides very little feedback to the user capturing 
the images. There is often no way to determine if the 
surface appearance is adequately sampled, and 
undersampled regions require recomputing the WLS 
representation. A better approach is to update the 
representation as it is being constructed, which 
allows the user to preview the model and adjust the 
sampling accordingly. In this section we describe 
two approaches to incrementally update the WLS 
approximation.  

3.3.1  Adaptive Construction 

The adaptive construction method starts with all of 
the centers having the maximum support radius. As 
new image samples are generated, they are tested 
against the support radius of a center, and added to 
that center’s neighborhood list. The WLS 

Figure 2:  A diagram of the weighted least squares 
approach to function representation. Each center 
constructs a low-degree polynomial approximation based 
on samples in their neighborhood. These local 
approximations are then combined to form a global 
approximation. 
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approximation is computed from the samples in the 
neighborhood list. As each center’s list gets larger, 
the support radius is decreased, and samples are 
discarded if they no longer fall within the 
neighborhood. In our implementation, this involves 
several user-defined parameters; we typically 
decrease the radius by 25% if the number of samples 
is more than 4 times the rank of the approximation. 

3.3.2  Hierarchical Construction 

The adaptive approach has the disadvantage that a 
single sample can cause the recomputation of 
numerous WLS coefficients, particularly in the 
initial phases when the support radii are large. The 
hierarchical approach avoids this computation by 
subdividing the domain as a quadtree. Initially, the 
representation consists of a single WLS center with 
a large support radius. When a new image sample 
arrives, the hierarchy is traversed until a leaf node is 
reached. The sample is deposited at the leaf node 
and the WLS is recalculated. If the number of 
samples in a leaf node is larger than a pre-
determined threshold, the leaf node is split into four 
children. Each child decreases its support radius and 
recomputes its WLS coefficients. Note that a sample 
can be a member of more than one leaf node, since 
the support radii of the nodes can overlap. There are 
several user-defined parameters; we have had good 
results splitting the nodes if the number of samples 
exceeds 4 times the rank of the approximation, and 
decreasing the area of the neighborhood by half 
(decreasing the radius by 1/√2).  

3.4 Rendering 

Weighted Least Squares conforms well to the 
stream-processing model of modern graphics 
hardware. Each surface patch is independent and is 
calculated using a series of simple mathematical 
operations (polynomial reconstruction and Partition 
of Unity).  More importantly, the local support of the 
WLS centers means that reconstruction only requires 
a few texture lookups in a small neighborhood.  

After the centers and the WLS coefficients have 
been computed (using either the adaptive or the 
hierarchical technique), they are stored in a texture 
map for each surface patch. The coefficients are laid 
out in a grid pattern for fast access by the texture 
hardware. The adaptive centers are typically 
arranged in a grid pattern, but the hierarchical 
pattern must be fully expanded before it is saved to 
texture. This is done by copying down any leaf 
nodes that are not fully expanded. 

During rendering, the viewpoint is projected 
onto the UV basis of the surface patch and used to 
index into the coefficient texture. The samples from 
the neighborhood around this element comprise the 
set of overlapping WLS approximations. Texture 
lookups are used to collect the neighboring centers 
and their coefficients. These polynomial coefficients 
are evaluated and weighted by their distance. The 
weights are computed using the Partition of Unity, 
which generates the final color for this surface patch. 

Once the color at each patch has been 
determined, we need a method to interpolate the 
colors across the model to smoothly blend between 
surface patches. One approach is to simply 
interpolate the colors directly. However this 
approach is incorrect, as it interpolates the values 
after the Partition of Unity normalization step. This 
generates artifacts similar to those encountered when 
linearly interpolating normal vectors across a 
triangle. The correct approach is to perform the 
normalization after the interpolation. For our system, 
we can accomplish this by interpolating the weights 
and colors independently, and using a fragment 
program to normalize the weights at every pixel. 

4 IMPLEMENTATION 

The data structure and camera capture are managed 
on the CPU and function reconstruction and 
rendering is handled by the GPU. In this section we 
discuss how input images are converted into surface 

Figure 3: A diagram of the surface lightfield capture and 
rendering system. Images are captured using a handheld 
video camera, and passed to the system. Using the mesh 
information, visibility is computed and the surface 
locations are back-projected into the image. Each of these 
samples are incorporated into the Incremental Weighted 
Least Squares approximation, and sent to the card for 
rendering. The user can use this direct feedback to decide 
where to move the video camera to capture more images. 
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patch samples, which involves camera capture, pose 
estimation, and visibility computation. A diagram of 
the system is shown in Figure 3. 

In order to project the image samples onto the 
geometry, the camera's position and orientation must 
be known. Our system uses a tracked video camera 
to capture images of the object. The camera was 
calibrated with Bouguet’s Camera Calibration 
Toolbox, and images are rectified using Intel`s Open 
Source Computer Vision Library. To determine the 
pose of the camera with respect to the object, a stage 
was created with fiducials along the border. The 3D 
positions of the fiducials are located in the camera's 
coordinate system in real-time using the ARToolkit 
Library. This library uses image segmentation, 
corner extraction, and matching techniques for 
tracking the fiducials. This system is similar to the 
system presented in our earlier paper (Coombe, 
2005). 

Table 1: A description of the models and construction 
methods used for timing data. 

Once the camera pose has been estimated, the 
visibility is computed by rendering the mesh from 

the point of view of the camera. The depth buffer is 
read back to the CPU, where it is compared against 
the projected depth of each vertex. If the vertex 
passes the depth test, it samples a color from the 
projected position on the input image.  

For rendering efficiency, the coefficient textures 
are packed into a larger texture map. Each texture 
stores the coefficients for one term of the 
polynomial basis. For all of the examples in this 
paper we use a 3-term polynomial basis. We found 
that higher-order polynomial bases were susceptible 
to over-fitting (Geman, 1992), which occurs when 
the number of input samples is small enough that the 
polynomial bases try to fit minor errors in the data, 
rather than the overall shape. The consequence is 
that reconstruction is very accurate at sample 
positions, but oscillates wildly around the edges. 
Using a lower-degree polynomial avoids this 
problem. 

The positions of the surface patches, which are 
determined a priori, are represented as either 
vertices or texels. For most of the models we use 
vertices, and the renderer uses a vertex texture fetch 
to associate surface patches with vertices.  

4.1 Results 

We have implemented this system on a 3.2 GHz 
Intel Pentium processor with an Nvidia GeForce 
7800. A graph of timing results from several 
different models is shown in Figure 4, and the 
parameters used for these timings are shown in Table 
1. The rendering algorithm is compact, fast, and 
efficient and can render all of the models in this 
paper at over 200 frames per second. An image 

Model # Vertices Construction # Centers 
Bust A 31K Hierarchical 16 
Heart A 4K Hierarchical 16 
Pitcher A 29K Hierarchical 16 
Bust B 14K Hierarchical 16 
Bust C 14K Hierarchical 64 
Heart B 4K Adaptive 16 

Figure 4: Timing results (in seconds per image) for the
IWLS construction. We measured three quantities; the time
to compute the visibility and reproject the vertices into the
image, the Least Squares fitting times, and the time to
transfer the computed results to the graphics card for
rendering. 
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Figure 5: A side-by-side comparison of the WLS 
reconstruction with an input image that was not included 
in the training set. 
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generated with our system is shown in Figure 1, and 
a side-by-side comparison is shown in Figure 5.  

The hierarchical construction method is much 
faster than the adaptive construction method due to 
the fact that the adaptive construction method can 
potentially cause the recomputation of a number of 
coefficients. For the 4K-vertex heart model, the 
adaptive construction generated about 5.1 Least 
Squares fitting computations per image, while the 
hierarchical construction only generated about 1.7. 
As this is the most time-consuming aspect of the 
process, reducing the number of Least Squares fits is 
important to achieve good performance. This 
performance gain enables higher resolution 
reconstruction; note that the bust model with 64 
centers is only 1.4 times slower than the 16 center 
version, even though it has 4 times as many 
coefficients. However, the increased number of 
coefficients is reflected in the data transfer time, 
which is close to 4 times longer. 

A potential issue with the hierarchical 
construction is that it could introduce error. We 
conducted an experiment to compare the quality of 
the reconstruction with a reference batch process 
which has global knowledge. The results are shown 
in Figure 6.  

We have tried several center placement 
strategies; a uniform grid over projected hemisphere 
directions, a uniform disk using Shirley’s concentric 
mapping (Shirley, 1997), and jittered versions of 
each. A comparison is shown in Table 2. For most of 
the models in this paper we use the grid method due 
to its ease of implementation. 

Table 2: RMS Error values from reconstructing a WLS 
approximation while varying the center layout. The error 
was computed with a training set of 64 images and an 
evaluation set of 74 images. The disk is a slight 
improvement in terms of error compared to the grid, and it 
has a large benefit in terms of reducing the variability of 
the error. 

Layout Mean RMS Error StD RMS Error 
Uniform Grid 0.0519 0.0086 
Jittered Grid 0.0608 0.0148 
Uniform Disk 0.0497 0.0045 
Jittered Disk 0.0498 0.0036 

5 CONCLUSION 

We have introduced Incremental Weighted Least 
Squares (IWLS), a fast, efficient, and incremental 
algorithm for the representation and rendering of 

surface light fields. IWLS can be used to render high 
quality images of surfaces with complex reflectance 
properties. The incremental construction is useful for 
visualizing the representation as it is being captured, 
which can guide the user to collect more images in 
undersampled regions of the model and minimize 
redundant capture of sufficiently sampled regions. 
The rendering algorithm, which is implemented on 
the GPU for real-time performance, provides 
immediate feedback to the user.  

5.1 Future Work 

There are several improvements to our system that 
we are interested in pursuing. Currently, the surface 
patches are computed independently and do not 
share information. This choice was made in order to 
allow the algorithm to reconstruct as broad a class of 
surfaces as possible. However, many surfaces have 
slowly-varying reflectance properties which could 
be exploited for computational gain. Each surface 
patch could collect WLS coefficients from itself as 
well as its neighbors. This would involve adjusting 
the distance weighting to reflect the distance along 
the surface of the model. We could also use an 
approach similar to Zickler (Zickler, 2005) to share 
reflectance values across a surface. 

This system was designed to construct and 
render surface light fields, which allow arbitrary 

Figure 6: The reconstruction error of the hierarchical 
construction versus a batch construction for a single surface 
patch of the bust model. Each method used only the input 
samples available, and the error was measured against the 
full set of samples. The hierarchical algorithm is initially 
superior to the batch algorithm, and continues to be similar 
in error behavior while also being much faster to compute. 
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viewpoints but a fixed lighting. We are interested in 
applying IWLS to the problem of reconstructing 
arbitrary lighting, but from a static viewpoint. This 
is similar to Polynomial Texture Mapping 
(Malzbender, 2001), which used Least Squares 
fitting and custom hardware to render images with 
varying lighting.  

Mathematically, the Weighted Least Squares 
approach generalizes easily to multiple dimensions 
by simply modifying the polynomial basis. 
However, the substantial increase in data would 
require re-thinking the construction and rendering 
components of our system.  
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