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Abstract: This paper presents a new method for filtering noise occurring in point cloud sampled data. The method 
smoothes the data set whereas preserves sharp features. We propose a new weighted variant of the principal 
component analysis method, which instead of using exponential weighting factors inversely proportional to 
the Euclidean distance to the mean, which is computationally expensive, uses weighting factors assignment 
by inversely proportional repartition of the sum of distance to the mean. The determination of weighted 
factors by means of inverse proportional repartition makes our variant robust to outliers. Additionally, we 
propose a simple solution to the problem of data shrinkage produced by the linear local fitting of the 
principal component analysis.  The proposed method is simple, easy to implement, and effective for noise 
filtering. 

1 INTRODUCTION 

Data filtering is a task of vital importance in areas 
like signal processing, statistical analysis, computer 
vision and 3D object reconstruction.  In these areas 
there is a huge information quantity, represented by 
discrete samples, which need to be processed for 
reducing the noise produced by devices in the 
acquisition process. Though 3D reconstruction 
applications have been growing due to the 
improvements in the 3D scanner technology, there is 
a remaining problem: the raw data produced by 3D 
scanners are noisy and are far away of being used 
directly into the 3D reconstruction process without a 
previous processing.  

The development of robust point clouds 
denoising algorithms has received much attention in 
last years. The goal of such algorithms is either to 
remove or to reduce the noise in the data, whereas 
preserving sharp features on the original surface 
model. So far, researches in the field of digital image 
filtering have been adapted for point clouds filtering 
algorithms. Nevertheless, the adaptation of 
algorithms for digital image filtering to point clouds 
filtering is not direct, due to three main reasons: 
irregularity, shrinkage, and drifting. The irregularity 
refers to the irregular sampling density of the point 
clouds. The shrinkage and the drifting refer to the 

volume reduction and the spatial displacement 
suffered by the points, which are produced by the 
use of the mean instead of the data points 
(Fleishman, 2003). 

Principal Component Analysis (PCA), initially 
used for digital image processing, has been adapted 
for point clouds processing (Gumhold, 2001, Pauly, 
2002). This adaptation has a drawback: PCA is 
highly sensitive to the outliers present in the point 
clouds. There are several variants that fix this 
drawback (Rousseeuw, 1999, De la Torre, 2001, 
Skokal, 2002, Hubert, 2005), almost all of them are 
based on robust statistics (Huber, 1981). Such 
variants, called robust or weighted PCA, improve 
the PCA, making it less sensitive to the outliers. 
However, the robust PCA variants use exponential 
weighting factors to correct the outlier problem, 
which is computationally expensive. 

This paper presents a new method for point 
clouds denoising. Our method first calculates a 
weighted mean. The weighting factors assignment of 
the mean is achieved by inversely proportional 
distributing the sum of distances to the mean. Then, 
using the weighting factors and the mean, the 
method constructs a covariance matrix and realizes 
an eigen-analysis of such matrix. In this way it is 
obtained a fitting plane expanded by the 
eigenvectors corresponding to the largest 
eigenvalues, and a normal vector to the plane, which 
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is oriented in the direction of the third eigenvector 
corresponding to the smallest eigenvalue. Then, a 
displacement of the neighbourhood mean along the 
normal vector is achieved in order to preserve sharp 
features. 

The main contributions of this work are: i) a 
simple method for point clouds denoising that does 
not require a either previous mesh representation, 
nor local polynomial fitting, ii) a simple approach to 
prevent the shrinkage problem, and iii) a mechanism 
for bias reduction. Our method is robust to outliers, 
fast and easy to implement. 

 The remainder of this paper is organized as 
follows. In section 2, related work dealing with 
mesh and point clouds denoising algorithms are 
presented. In section 3, a short review of principal 
component analysis is presented. In section 4, the 
stages of our method are explained. In section 5, the 
results of our method are shown. In section 6, 
conclusions and future work are discussed. 

2 RELATED WORK 

Point clouds have become a primitive for surface 
representation and geometric modelling; however 
such point clouds are noisy due to the inherent noise 
of the acquisition devices. Point clouds should be 
noise free for using in 3D reconstruction. Recently, a 
great research effort has been done in mesh and 
point clouds denoising and smoothing, producing 
numerous algorithms. 

Taubin (Taubin, 1995) applies in mesh 
smooting a discrete version of the Laplacian 
Operator, which is taken from signal processing. The 
method is linear in both time and memory. 

 Desbrum et al. (Desbrum, 1999, Desbrum, 
2000) and Bajaj (Bajaj, 2003) successfully use 
anisotropic diffusion over meshes, in order to 
improve the smoothing in reasonable time. 

Peng et al. (Peng, 2001) use locally adaptive 
Wiener filtering for denoising geometric data 
represented as semiregular mesh. The algorithm 
allows interactive local denoising. 

Pauly and Gross (Pauly, 2001) apply Wiener 
filtering to restore surfaces from point clouds in 
presence of blur and noise. 

Fleishman et al. (Fleishman, 2003) and Jones et 
al. (Jones, 2003) have independently proposed the 
use of Bilateral filtering based on robust statistics for 
features preserving and mesh smoothing.  

Mederos et al. (Mederos, 2003) follows the 
same approach that Fleishman and Jones, by 
modifying a high order fitting method, called 

Moving Least Squares (MLS), to preserve sharp 
features. Their approach also considers optimization 
techniques for reducing the execution time of the 
algorithm. 

Choudhury and Tumblin, (Choudhury, 2003) 
present a single-pass nonlinear filter for edge 
preserving and smoothing. The method is called 
Trilateral filtering and it is an evolution of the 
Bilateral filtering. The filter produces better outlier 
rejection and strong noise reduction than Bilateral 
filtering. 

Schall et al. (Schall, 2005) have proposed a 
probabilistic method which consists of using a 
kernel density estimation technique. It associates to 
each point a local measure of probability to locate 
the point into the surface. The method achieves 
effectiveness result in filtering and robustness in 
outliers detection. 

3 PRINCIPAL COMPONENT 
ANALYSIS 

Principal Component Analysis (PCA) is a statistical 
method that tries to explain the covariance structure 
of data by means of various components expressed 
as linear combinations of the original variables 
(Hubert, 2005).  

The first component of PCA corresponds to the 
direction in which the projected data have the largest 
variance. The second component is orthogonal to the 
first component, and maximizes the variance of the 
data points projected on it. 

PCA is applied widely in bias identification into 
data sets. It is used for data dimensionality reduction 
and visualization (Jolliffe, 1986), data clustering 
(Pauly, 2002) and pattern recognition (De la Torre, 
2001). Despite the versatility of PCA, it is sensitive 
to outliers present in data. Figure 1a shows a set of 
points mainly concentrated at the low part of the 
figure. Three of them, which are considered outliers, 
are enclosed in red circles. The first component of 
PCA, blue line, should indicate the main direction of 
data dispersion, but it is observed a bias produced by 
the outliers. Figure 1b shows the correction by 
robust PCA. 

The PCA, first take a set of neighbors )( ipN  

around a point ip , next the neigborhood mean ip  is 
estimated using (1). Finally, using (2), the 
covariance  matrix CM  is  obtained from the  points 
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Figure 1: Principal components of a dataset. (a) PCA (b) 
Robust PCA. 
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It is observed that CM  is a symmetric positive semi-
definite 3x3 matrix. The CM eigen-decomposition 
produce the principal components with their 
associated three eigenvectors 321 ,, vvv   and three 

real eigenvalues 321 λλλ ≤≤ .  The eigenvalues 
measure the variation of the points in the 
neighborhood along of the directions of their 
corresponding eigenvectors. The orthogonal 
eigenvectors 32 ,vv  define the directions of highest 
variation and expand a fitting plane on the 
neighborhood. The eigenvector 1v  approximates the 

normal vector at ip .  

4 PROPOSED METHOD 

The method has four stages: weights assignment for 
the PCA by inversely proportional repartition, 
features preservation, shrinkage prevention and bias 
correction. 

Starting from a noisy point set }{ 3RpP i ∈= , 
close to an unknown and smooth two dimensional 
manifold boundary surface S, we want to determine 
a noise free point set P’ that preserves the sharp 
features of the surface from which they were 
sampled. The main idea is to use a robust version of 
PCA, which allows determining a local fitting plane 
to a neighbourhood )( ipN , close enough to the 
surface S.  Such fitting plane is not influenced by the 
outliers due to the weights assignment by inversely 

proportional repartition. In addition, the PCA 
establish an orthogonal unit vector to the plane in the 
point ip , which is an estimation of the true normal at 

ip . Once we have the normal vector and the fitting 
plane, we apply the operator 

ptnpp +='  (Alexa, 
2001, Fleishman, 2003) to preserve sharp features of 
S. Then, our method prevents the shrinkage and the 
drifting by shifting the neigborhood mean projection 
along the tangent plane. The bias produced by the 
linear approximation of PCA is reduced by applying 
the bootstrap method.  

4.1 PCA and Inverse Repartition  

The weights assignment by inversely proportional 
repartition is the key of the robustness of our robust 
PCA variant. The weights assignment is done 
according to (3). In that way, we punish with small 
weights the points farthest respect to the mean and 
we recompense with large weights the points near to 
the mean. Using inversely proportional repartition, 
the outliers influence over the mean is reduced and 
the principal components are not biased by them. 
This weights estimation is neither computationally 
expensive nor dependent of user parameters.  
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In (3) ∑ ))(( jmean pND  is the sum of the 

distances between the points in the neighborhood of 

jp  (including jp ) and the neighborhood mean, id  
is the Euclidian distance between the neighborhood 
mean and a point ip  in the neighborhood. To 

estimate the weighted mean wp , robust to outliers, 
we use (4). The weights are estimated for each point 
in )( jpN , and we use this weights and the 
weighted mean to compute the weighted covariance 
matrix, using (5). 
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where CMw is the weighted covariance matrix, 
{ }nwwW ,...,1= , are the weighs associated to 

each point  )( ji pNp ∈ . 
Once we have already estimated the covariance 

matrix, its eigen-analysis produces a robust PCA. 
Figure 1b, shows the correction of the problem using 
our PCA variant, including the inverse repartition. 
These variations let our algorithm detect outliers and 
made it robust to noise.  

4.2 Features Preservation  

To prevent over smoothing of the point cloud and, in 
consequence, the lost of sharp features, we apply a 
shift to the mean along of the normal direction. We 
obtain the new position of the mean using (6). 

 

pmw ntpp +='                        (6) 
 

where 'p , is the new position of the mean, wp  is the 
original weighted mean estimated by (4), pn  is the 

normal approximation to the plane at ip , given by 
the robust PCA, and mt  is the displacement 
calculated by (7). 
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The above quantity, under the constraint 
1=pn , is taken as the minimal height needed for 

displacing the mean along of the normal direction.   

4.3 Shrinkage Prevention  

Linear fitting algorithms are based on the mean of 
the neighborhood around a point ip ,  this produce 
data shrinkage, because these algorithms use the 
neighborhood centroid 'p  (free of noise) instead of 

the original point ip . We correct this problem by 

applying a shift to the centroid 'p , in the direction 

of the projection of the vector 'pp −  onto the 

tangent plane to the neighborhood. The centroid 'p  
is on the tangent plane and ip  is on the point cloud, 
as it is shown Figure 2. 
 

 
Figure 2: Data shrinkage prevention. 

 
The new centroid disp'  is calculated using (8). 

'' pOrthop dis +=                         (8) 

TTppOrtho ),( −=                       (9) 

 
where Ortho, is the orthogonal projection of the 
vector 'pp −  onto the neighbourhood tangent plane 

T  in 'p , and ⋅   is the dot product operator. Figure 
3a shows data points sampled from a synthetic curve 
(blue dots) and its corresponding noisy data (red 
dots). Figure 3b shows the smoothed noisy data 
without shrinkage prevention (green dots) and 
Figure 3c shows the correction of the shrinkage 
problem after applying (8). It is important to note 
that for a correct application of (8), the surface must 
be sufficiently sampled in regions with high 
curvatures. 

4.4 Bias Correction  

An additional problem introduced by the linear 
fitting is the bias between the original point and the 
neighborhood mean. We correct this problem using 
bootstrap bias correction (Martinez, 2002). We first 
perform a pass using our PCA variant; then, we 
perform a second pass including the bootstrap bias 
correction according to (10). Figure 4 shows the bias 
problem and its correction. Figure 4a shows data 
points sampled from a synthetic curve (blue dots) 
and its corresponding noisy data (red dots). Figure 
4b shows the smoothed noisy data with bias (green 
dots) and Figure 4c shows the bias reduction (the 
green dots are closer to the blue dots) after the 
application of the bootstrap. The bootstrap is an 
iterative method, but in our experimental test, a 
single iteration was sufficient. 
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                                (a)                                                     (b)                                                   (c) 
Figure 3: Shrinkage problem. (a) Noisy data represented by red dots (b) Smoothed data with shrinkage problem, represented 
by green dots (c) Smoothed data with shrinkage prevention using (8). 

                 
                                (a)                                                     (b)                                                   (c) 
Figure 4: Bias correction (a) Noisy data represented by red dots (b) Smoothed data with bias problem, represented by green 
dots (c) Smoothed data with bias reduction prevention using (10). 
 
5 ANALYSIS AND RESULTS 

The proposed method has been tested in 2D and 3D 
data sets. The tests were run on a 1.5 GHz Athlon 
AMD, with 512 MB of RAM. The result shows that 
our algorithm has a good behaviour with different 
noise levels.  Figure 3, used to illustrate the 
shrinkage problem correction, shows a synthetic data 
set corrupted with Gaussian noise (σ  = 1% of the 
average spacing between the points). The points 
were sampled from a parabola in the interval [-1, 1]. 

We observe how the algorithm controls the data 
shrinkage by applying (8), as shows Figure 3c (green 
points), in contrast with shown in Figure 3b, where 
the shrinkage prevention has not been applied (green 
points). The data shrinkage problem is more evident 
at the extremes. In our tests, the proposed method 
for preventing the shrinkage problem allowed to 
reduce the relative error, between the real and the 
approximated volume, from 34% to 10%. 

The parabola data set (Figure 4) is also used to 
illustrate de bias problem. In one hand we observe 
the bias between the data points mean (green dots) 
and the original data points (blue dots). In the other 
hand, we observe in Figure 4c, the result of applying 
the bootstrap bias correction (green dots are closer to 
the blue dots). In our tests, after applying (10) the 
bias reduction reaches a 57%, i.e. the distance 
between the real data points and the smoothed data 

points after applying the bootstrap technique was 
reduced until a 43% of the initial distance. 

The data sets used to illustrate the result of our 
method for point cloud denoising were corrupted 
with Gaussian noise (zero mean and varianceσ ) 
along of the normal direction. We specified the noise 
magnitude as a percentage of the average z 
coordinate or the diagonal of the bounding box of 
the point cloud. 

Figure 5 shows a cube model corrupted with 
Gaussian noise (σ  = 5% of z coordinate average). 
We observe how our algorithm preserves sharp 
features (corners and edges) while smoothes the 
point cloud. 

In Figures 6 the Max Planck model (50k points) 
corrupted with Gaussian noise (σ  = 0.08% of 
diagonal of the bounding box) is shown. The model 
was smoothed in 13 seconds. Figures 7 and 8 show 
the Venus model (70k points) corrupted with 
Gaussian noise (σ  = 0.05% and σ = 0.025% of the 
diagonal of the bounding box respectively). The 
model was smoothed in 19 seconds. In Figure 9 a 
bird model was corrupted with Gaussian noise (σ = 
0.1% of z coordinate average) to illustrate the model 
detail before and after applying our algorithm. It is 
observed the effectiveness of the method eliminating 
the noise and preserving the features. 
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            (a)                                      (b)               (c)  
 

Figure 5: Sharp features preservation. (a) Original cube model (b) Cube model corrupted model with Gaussian noise (c) 
Corrupted cube model after filtering. 

 
 

                                             
 
                          (a)                       (b)                                              (c) 
 

Figure 6: Max Planck model. (a) Original Max Planck model. (b) Max Planck model corrupted with Gaussian noise (c) 
Corrupted Max Planck model after filtering. 

 
 

                     
 

                             (a)                                                    (b)                                    (c) 
 
Figure 7: Venus model left view. (a) Original Venus model. (b) Venus model corrupted with Gaussian noise (c) Corrupted 
Venus model after filtering.  
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                             (a)                                                    (b)                                    (c) 
 
Figure 8: Venus model right view. (a) Original Venus model. (b) Venus model corrupted with Gaussian noise (c) Corrupted 
Venus model after filtering. 

 

                                   
 
           (a)                               (b) 

 
Figure 9: Bird model. (a) Bird model corrupted with Gaussian noise (b) Corrupted bird model after filtering. 

 
6 CONCLUSION AND FUTURE 

WORK 

In this paper we have presented a new and robust 
method for point clouds denoising. The method is a 
PCA variant that preserves sharp features of the 
original surface.  In contrast with previous work, our 
method does not require high order local fitting 
algorithms (like MLS), or global approximation to 
surface (like triangular meshes or graphs). The 
proposed method operates directly on the points and 
does not require neither nonlinear optimization 
algorithms nor parameters provided by users. The 
method is computationally efficient and easy to 
implement. 

There is a way to improve our method using an 
adaptive neighborhood size instead fixed size. The 
neighborhood size should depend on the local 
characteristics like curvature and density, this will 
allow a better normal estimation and, in 
consequence, would improve the application of the 
operator ptnpp +=' . Taking into account the local 
curvature, we can reduce the bias between the 
neighborhood mean and the data point, in this way, 
we are closer to the point of the original surface. 
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