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Abstract: A novel evolutionary algorithm called Probability Evolutionary Algorithm (PEA), and a method based on 
PEA for visual tracking of human body are presented. PEA is inspired by the Quantum computation and the 
Quantum-inspired Evolutionary Algorithm, and it has a good balance between exploration and exploitation 
with very fast computation speed. The individual in PEA is encoded by the probabilistic compound bit, 
defined as the smallest unit of information, for the probabilistic representation. The observation step is used 
in PEA to obtain the observed states of the individual, and the update operator is used to evolve the 
individual. In the PEA based human tracking framework, tracking is considered to be a function 
optimization problem, so the aim is to optimize the matching function between the model and the image 
observation. Then PEA is used to optimize the matching function. Experiments on synthetic and real image 
sequences of human motion demonstrate the effectiveness, significance and computation efficiency of the 
proposed human tracking method. 

1 INTRODUCTION 

With the fast developments of computer science and 
technology, visual analysis of human motion in 
image sequences interests more and more 
researchers from both laboratory and industry. 
Human motion analysis has many potential 
application areas such as intelligent visual 
surveillance, advanced human-computer interface, 
virtual reality, etc. Human tracking is a particularly 
important issue in human motion analysis. How to 
track human accurately and fast is a challenging task, 
and it has been a popular topic in the research of 
computer vision. 

Tracking can be considered to be equivalent to 
establishing coherent relations of image features 
between frames with respect to position, velocity, 
shape, texture, color, etc (Hu et al., 2004). Tracking 
can be divided into region-based tracking 
(Haritaoglu et al., 2000; Collins et al., 2000), feature 
-based tracking (Breit et al., 2003), active-counter 
-based tracking (Zhong et al., 2000; Paragio et al., 
2000), and model-based tracking. Model-based 
tracking can provide abundant information of human 
motion, but the increasing of subparts of the human 
model would potentially incur high dimensionality 

and make tracking a difficult task. To solve the 
problem, many approaches have been investigated. 
Gavrila et al. (Gavrila et al., 1996) split human 
model into torso-head and limb partitions, and then 
matching is implemented in the partitioned search 
space. The Pfinder developed by Wren et al. (Wren 
et al., 1997) employ a multi-class statistical model of 
color and shape to obtain a 2D representation of 
head and hands in a wide range of viewing 
conditions. Isard et al. (Isard et al., 1998) propose 
Condensation algorithm, which is a conditional 
density propagation method for visual tracking. 
Condensation is a useful approximate method for 
nonlinearity and non-gaussianity posterior 
probability within the Bayesian framework. 
Condensation has various versions, and these 
algorithms have been widely used now. Deutscher et 
al. (Deutscher et al., 2001) present an Annealed 
Particle Filtering (APF) method combined with 
hierarchical search strategy and crossover operator. 
Wu et al. (Wu et al., 2003) proposed a tracking 
approach using mean field Monte Carlo (MFMC) 
algorithm. In the approach, the subparts of human 
model are considered to be independent and a set of 
low dimensional particle filters interact with each 
other to solve the high dimensional problem 
collaboratively. Zhao et al. (Zhao et al., 2003) 
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employ a 3D elliptical human model and segment 
human body in crowed situations using Data-Driven 
Markov Chain Monte Carlo (DDMCMC) algorithm. 
In their further work (Zhao et al., 2004), Markov 
chain Monte Carlo (MCMC) was used to tracking 
segmented human in sequences.  

Different from using particle filters within the 
Bayesian framework, human tracking is considered 
to be a function optimization problem in this paper, 
so the aim is to optimize the matching function 
between the model and the observation. Function 
optimization is a typical application area of Genetic 
Algorithms (GAs), but canonical genetic algorithms 
is hard to be used here due to the high 
dimensionality of human model and the requirement 
of computation speed. In this paper, we present a 
novel evolutionary algorithm called Probability 
Evolutionary Algorithm (PEA) which is inspired by 
the Quantum computation (Nielsen et al., 2000; Hey, 
1996) and Quantum-inspired Evolutionary 
Algorithm (QEA) (Han et al., 2002; Kim et al., 
2003), and then the PEA based human body tracking 
is proposed in which PEA is used to optimize the 
matching function. PEA has a good balance between 
exploration and exploitation with very fast 
computation speed, and it is suitable for human 
tracking and other real-time optimization problems. 

The rest of the paper is organized as follows. 
Section 2 contains the Probabilistic Evolutionary 
Algorithm (PEA). Section 3 describes the PEA 
based human body tracking. Section 4 shows the 
experimental results of our proposed tracking 
algorithm. Finally, the conclusion follows in section 
5. 

2 PROBABILISTIC 
EVOLUTIONARY ALGORITHM 

Probabilistic Evolutionary Algorithm (PEA) is 
inspired by the Quantum computation and the 
Quantum-inspired Evolutionary Algorithm (QEA). 
QEA is characterized by the representation of 
quantum-bit, the observation step and the update 
step with quantum gate. QEA performs well in the 
function optimization and the knapsack problems. 
For the full details of QEA, one can peruse Ref. 
(Han et al., 2002; Kim et al., 2003). Considering that 
QEA has only two observed states (0,1), it is more 
suitable for the problem use binary coding than 
multi-nary coding. Although multi quantum-bit can 
be used to obtain multi observed states, this need to 
use multi quantum gate which is extraordinarily hard 

to design, and this shortcoming confines the 
application area of QEA (Nielsen et al., 2000; Hey, 
1996). To overcome the disadvantage, we present 
the probability evolutionary algorithm (PEA). 

2.1 The Individual’s Representation 
in PEA 

In PEA, the individual is encoded by the 
probabilistic superposed bit, which is defined as the 
smallest unit of information in PEA, as below. 

Definition 1: A probabilistic superposed bit is a 
vector that consists of the observation probabilities, 
as: 
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Where P0, P1, … Pk give the probability that a 

probabilistic superposed bit will be observed in the 
‘0’ state, the ‘1’ state, …, and the ‘k’ state, 
respectively. So a probabilistic superposed bit is a 
linear superposition of the states 0 to k. 

In PEA, an individual is defined as a string of the 
probabilistic superposed bits. The individual is no 
longer a deterministic state, but a linear 
superposition of all kinds of states. 

Definition 2: An individual p is a string of m 
probabilistic superposed bits, as: 
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Where m is the length of the string. A PEA 

individual can represent a linear superposition of 
(k+1)m deterministic states probabilistically. For 
example: for an individual with m=3 and k=9, the 
probability to represent the state “123” is 
p1

1×p2
2×p3

3, and the probability to represent the state 
“709” is p7

1×p0
2×p9

3, etc. In the initialization of the 
individual, all pi 

j ,i=0,1,…,k, j=1,2,…,m, are set to 
1/(k+1), so the initial individual represents the linear 
superposition of all possible states with the same 
probability. 

2.2 The Observation in PEA 

The individual p in PEA can’t be used in the fitness 
function directly, and an observation step should be 
used to get the observed individual s. For p with 
length m, it’s observed individual s=[s1,s2,…,sm], 
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where si (i=0,1,…,m) is a deterministic k-nary value 
and s is a deterministic k-nary string. 

For the i-th probabilistic superposed bit [p0 
p1…pk]T in p, its observed value si is obtained by the 
following step. First, a random number r is 
generated from the range [0,1]. Second, if P0+…+ 
Pv-1<r< Pv+…+ Pk, si is set to v.  

Figure 1 shows an example of the observation 
step when k=4, r=0.6 and the i-th probabilistic 
superposed bit in p is [0.25, 0.125, 0.375, 0.125, 
0.125]T, here the observed value is si = 2. 

 

 
 

Figure 1: Observation. 

2.3 The Update in PEA 

The update operator is the only evolutionary 
operator in PEA which can increase the observation 
probabilities of some states, and decrease the 
observation probabilities of some other states, in 
order to make the high fitness state be observed 
more likely. 

Let s be the observed individual of p, and b be 
the best solution of p at current generation. The 
update value Δp of the i-th probabilistic superposed 
bit [p0 p1…pk]T in p can be formed from s and b, and 
it can be found in Table 1. 
 
 
 
 

si =bi f(s)≥f(b) Δp 
false false δ 
true true 0 
false true 0 
true false 0 

 
The update process is described in equation 3. 
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Considering that the observation probability can 
not be negative, and to ensure the decreased 
probability will not attenuate too fast, we make the 
change value δ adaptively change according to the 
decreased observation probability, as: 

10, <<×= dpd
isδ           (4) 

Where d is the update rate that controls the 
convergence speed of PEA. A bigger d leads a rapid 
convergence speed but a rough search in the search 
space, a smaller d has the opposite effect. 

Figure 2 shows an example of the update step 
when k=4, si=2, bi=0 and Δp=0.05, here p2 decrease, 
p0 increase, p1, p3 and p4 have no change. 

 

 
 

Figure 2: Update. 

2.4 The Procedure of PEA 

The procedure of PEA is described in the following. 
Begin 
t←0 
Initialization: Initialize population P(0) 
Observation: Obtain the observed population S(0) 

by observing P(0) 
Evaluation: Calculate the fitness of the observed 

individuals in S(0) 
Store: Store S(0) into B(0) 
While Termination-condition = false 

t←t+1 
Observation: Obtain the observed population S(t) 

by observing P(t-1) 
Evaluation: Calculate the fitness of the observed 

individuals in S(t) 
Update: Obtain the population P(t) by update 

P(t-1) 
Store: Store the best solution among B(t -1) and 

S(t) into B(t), Store the best solution in B(t) 
into gb 

If Migration-condition = true 
Migrate individuals in B(t) Locally or globally 

End If 
End While 

End Begin 
 

P(t) is the population, P(t)={p1
t,p2

t,…, pn
t}. pj

t is 
the j-th individual at the t-th generation, where n is 
the population size. In the initial population P(0), all 
possible states in the search space should be 
observed with the same probability. 

Table 1: Lookup table of Δp, where f(·) is the fitness 
function, si and bi are the i-th bits of s and b, 
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S(t) is the observed population, 
S(t)={s1

t,s2
t,…,sn

t}. sj
t is the observed individual of 

pj
t, and it is obtained by the observation step 

described in section 2.2. 
B(t) is the best solution population, B(t)= 

{b1
t,b2

t,…,bn
t}. bj

t is the best solution of pj
t at the 

t-th generation. gb is the global best solution. When 
the local migration condition is satisfied, the best 
solution among some of the solutions in B(t) is 
migrated to them. When the global migration 
condition is satisfied, the global best solution gb is 
migrated to B(t). 

Update operator generates the update position 
and update value according to sj

t and bj
t, and evolves 

pj
t-1 to pj

t by the update step described in section 2.3. 

3 PEA BASED HUMAN BODY 
TRACKING 

3.1 The Framework of PEA Based 
Tracking 

Different from tracking human using particle filters 
within the Bayesian framework, tracking is 
considered to be a function optimization problem in 
this paper. We denote the human model by X, and 
denote the observation associate with X by Z. The 
function f(X,Z) represents the matching degree 
between X and Z. Assume that we have known that 
the model at time instance t-1 is X t-1, so the model X 

t at time instance t can be get by equation 5. 
X t =X t-1+ΔX               (5) 

Here, ΔX is the change of the model X t-1. After 
we get X t, the matching function f(X t,Z t) can be 
calculated. Since  X t is associated with ΔX, the 
matching function can be written as: 

f(X t,Z t) = g (ΔX)            (6) 
So tracking at time instance t is to optimize g 

(ΔX) in ΔX’s search space. Generally, g (ΔX) is a 
multi-modal function with many local best solutions, 
and conventional optimization methods are difficult 
to get the global best solution, so we use PEA to 
optimize g (ΔX). 

3.2 Search Strategy 

Human model always has high dimensionality, and 
search space partition is a useful strategy to change 
the high dimensional problem into some low 
dimensional problems and improve the matching 
results (Gavrila et al., 1996; Deutscher et al., 2001; 

Chen et al., 2005). Here we split the human model 
into five partitions including the trunk-head partition 
and four limb partitions. First, PEA is used to match 
the trunk-head partition. Then, keeping the best 
matched parameters of the trunk-head partition 
constant, and PEA is used to math the four limb 
partitions respectively. 

In PEA based tracking, the model for the 
previous frame only gives the initial position for the 
current frame, so even if there are some matching 
errors at the previous frame, the matching is easy to 
be recovered in the following frames as long as the 
search space of ΔX is enough. 

3.3 Human Model 

We employ a 10-part articulated human body model 
which consists of 10 parts and each pairs of neighbor 
parts are connected by the joint point, as shown in 
Figure3. 

 
 

Figure 3: 2D human body model. 
 

The model has 10 joints, and the root joint is at 
the middle bottom of the trunk. The root joint has 3 
degrees, and each of the other 9 joints has 1 degree. 
The model X can be written as: 

X = {x, y, θ1, θ2, …θ10}        (7) 
Here, x and y represent the location of the root 

joint, and θ1,θ2…θ10 represent the swiveling angles 
of the 10 joints. ΔX can be written as: 

ΔX={Δx, Δy, Δθ1, …Δθ10}        (8) 
Human motion is a gradually changed movement, 

so ΔX can be limited in a logical small scope. This 
scope can be learned or man-made. For example, Δx 
and Δy are in the range [-19,19] (integral pixel), 
θ1,θ2…θ10 are in the range [-29,29] (integral degree). 
Apparently, ΔX is suitable for decimal encoding 
here, so the initial PEA individual of the trunk-head 
partition and that of the limb partitions are shown in 
Figure 4 and Figure 5 respectively. 

In the observation step, the probabilistic 
superposed bits corresponding with Δx and Δy can 
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be observed as {0,1,…39},  and subtracting 20 
from these values give the true values of Δx and Δy. 
The probabilistic superposed bits corresponding with 
θ1,θ2…θ10 can be observed as {0,1,…59}, and 
subtracting 30 from these values give the true values 
of θ1,θ2…θ10. 

 

 
 

Figure 4: Initial PEA individual of the trunk-head 
partition. 

 
 

 
 

Figure 5: Initial PEA individual of the limb partition. 
 

Here, we have a comparison of PEA with QEA. 
If we use QEA here, ΔX should be encoded in 
binary. For the same range of ΔX mentioned above, 
the lengths of QEA’s individuals for trunk-head 
partition and limb partitions are 24 and 12 
respectively, and those lengths of PEA’s individual 
are 8 and 4 respectively. In PEA and QEA, the most 
intensive computation is the observation and the 
update for each bit in the individual, so the shorter 
length of individual make PEA run much faster than 
QEA. 

4 EXPERIMENTAL RESULTS 

Two image sequences are used here to demonstrate 
the effectiveness of PEA. Sequence 1 is a synthetic 
image sequence generated by Pose software which 
consists of 100 frames. Sequences 2 is a real image 
sequence which consists of 325 frames. The 

observation Z is also an important factor in tracking. 
Here we use two types of visual cues: edge and 
intensity. We compared the tracking results from 
PEA with Annealed Particle Filtering (APF). All the 
algorithms run on a 2.4GHz PC without code 
optimization. 

4.1 Parameters Setting 

In APF based tracking, 200 particles are used, and 
the particles are annealed for 8 times. 

In PEA based tracking, we test two population 
sizes. The population sizes of PEA1 and PEA2 are 
set to 1 and 4, respectively. In PEA2, the local 
migration occurs every generation between each pair 
of neighboring individuals, and the global migration 
occurs every 100 generations. The maximum 
number of generations is 200. 

4.2 Results 

Some tracking results of PEA and APF for sequence 
1 and sequence 2 are shown in Figure 6 and Figure 7 
respectively. The average computation time for one 
frame of PEA and APF are shown in table 2. 

 
 
Algorithm Particles or 

Population size second/frame 

APF 200 3.77s 
PEA2 4 1.62s 
PEA1 1 0.41s 

 
The results show that the PEA based tracking 

algorithm yields more stable results than APF, and 
run much faster than APF.  

In some frames, PEA1 has some matching errors, 
this is because there is only one individual in the 
population and the premature convergence is 
happened sometimes. PEA2 generates very stable 
results in all the experiments. 

In the experiments we also found that, when the 
population size is bigger than 10, the tracking result 
can not be improved further, so we suggest that the 
population size is set to 2 to 8 in applications in 
order to get a balance between the tracking accuracy 
and the computation time. 

Table 2: Average computation time for one frame.
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5 CONCLUSIONS AND FURTHER 
WORK 

Model-based human tracking is a challenging 
problem, since the human model has high 
dimensionality. Different from tracking human using 
particle filters, we consider tracking to be a function 
optimization problem, and a novel evolutionary 
algorithm called Probabilistic Evolutionary 
Algorithm (PEA) is proposed to optimize the 
matching function between the model and the 
observation. PEA has a good balance between 
exploration and exploitation with very fast 
computation speed. Experiments on synthetic and 
real image sequences of human motion demonstrate 
the effectiveness, significance and computation 
efficiency of the PEA based human body tracking 
algorithm. 

This paper mainly concerned to 2D tracking, but 
the PEA based tracking method is easy to be 
extended to 3D tracking, and our further work is to 
extend our algorithm to 3D and combine more 
observed cues such as motion and color. Our further 
work also includes the further improving of the 
searching ability and the computation speed of PEA. 
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Figure 6: Some tracking results of sequence 1. (a) Tracking based on APF. (b) Tracking based on PEA with population size 
1 (PEA1). (c) Tracking based on PEA with population size 4 (PEA2). 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 

(c) 
Figure 7: Some tracking results of sequence 2. (a) Tracking based on APF. (b) Tracking based on PEA with population size 
1 (PEA1). (c) Tracking based on PEA with population size 4 (PEA2). 
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