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Abstract: Many pattern recognition problems can be solved by mapping the input data into an n-dimensional feature 
space in which a vector indicates a set of attributes. One powerful pattern recognition method is the Hough-
transform, which is usually applied to detect specific curves or shapes in digital pictures. In this paper the 
Hough-transform is applied to the time series data of neurotransmitter vesicle releases of an auditory model. 
Practical vowel recognition of different speakers with the help of this transform is investigated and the 
findings are discussed. 

1 INTRODUCTION 

Vowel recognition is a wide research area with 
many existing solutions. The authors will now 
present a method how a standard image processing 
algorithm like the Hough-transform can be applied 
to process audio signals. The time-varying audio 
signal is first transformed by a neurophysiologically 
parameterized Extended Zwicker / Meddis-Poveda 
auditory model into a two-dimensional 
spatiotemporal neurotransmitter vesicle release 
distribution. The Hough-transform is then applied to 
this image to detect the emerging vesicle release 
patterns evoked by vowels. 

1.1 The Hough-transform 

The Hough-transform is a technique that can be used 
to isolate features of a particular shape within an 
image (Shapiro, 1978). It was originally developed 
in the field of high-energy physics for the detection 
of charged particle tracks in bubble chambers to 
detect straight lines (Hough, 1959), (Hough, 1962). 
Since then it has been used as a standard image 
analysis tool for pattern recognition, and has been 
generalized to arbitrary shapes (Duda, 1972), 
(Ballard, 1981). The procedure has similarities to 
regression methods, the common problem being to 
derive line parameters from points lying on that line 

(Ohlsson, 1992). The Hough-transform is very 
robust; points that are not on the line have little 
influence on the estimation. The main advantage of 
the technique is that it is tolerant of gaps in feature 
boundary descriptions and is relatively unaffected by 
image noise.  
 Hough-transform is a coordinate transform, 
which maps the input data directly to an n-
dimensional feature space, in which the aggregating 
clusters indicate the occurrence of a feature. The 
attributes of a feature are quantitatively coded by the 
corresponding n-dimensional feature vector. The 
feature attributes are mapped linearly along the 
orthogonal feature axes. The power of the Hough-
transform derives from the linearity of the feature 
maps.  
 Input tuple coordinates and feature coordinates 
are coupled by the corresponding Hough-transform 
equations (Duda, 1972). These equations can be 
given analytically for simple patterns like straight 
lines, circles and trigonometric functions (Ballard, 
1981). Each input tuple is translated to its associated 
trajectory in the corresponding feature space. 
Multiple crossings of trajectories in the feature space 
indicate that a feature forming input tuple set 
belongs to the same feature. The multiple 
intersections of the trajectories lead to clustering in 
the feature space. However, the intersection density 
peaks sharply for the best possible fit of an observed 
feature, therefore a single feature is represented in 
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the feature space as a point distribution with 
characteristic decreasing profile (Davis, 1992). 

1.2 Parallel Hough-transform 

The Hough-transform algorithm is known to be 
computational intensive (Swaaij, 1990). In the dis-
crete form, it is a histogram accumulating technique. 
The feature space is subdivided into a grid of histo-
gram cells, whose number defines the granularity of 
the feature space. The Hough-transform is therefore, 
in its discrete form, a histogram updating procedure 
in which for each point (or event) in the input data, 
we update the histogram in the Hough space. The 
result is a 2-D histogram representing for each point 
in the parameter (Hough) space, the probability of 
the existence of a shape with such parameters. 
 Hubel et al. (Hubel, 1978) demonstrated the 
natural orientation columns in the macaque monkey 
brain, which are believed to perform a kind of 
parallel Hough-transform, serving the orientation of 
the monkey by extracting features from the seen 
image in real-time. One can easily come to the idea 
of trying to model this naturally brilliant 
architecture, hoping that the same speed-up can be 
achieved. 
 Epstein et al. (Epstein, 2001) designed a parallel 
Hough-transform engine, where, in reducing the n-
dimensional feature space to two dimensions the 
coordinate transform can be executed by a systolic 
array consisting of time-delay processing elements 
and adders. 

1.3 Application to sound data 

Generally speaking, sound is an oscillation of air 
pressure level in time. To process a piece of sound in 
a digital system, it first has to be digitized. The 
monoaural sounds that we use in this project are 
recorded with a sampling rate of 44.1 kHz and a 
resolution of 16 bits. Due to some similarity between 
pattern recognition and statistical curve fitting 
problems, the Hough-transform may as well be 
directly applied to digitized sound data. The direct 
appliance to the time varying audio signal is 
discussed by Röver et al. for musical instrument 
identification (Röver, 2004). Brückmann et al. have 
shown that not only video signals as bars of different 
slopes, but also audio signals as sinusoids are self-
learned by feed-forward timing neural networks. 
These nets learn the Hough-transform in most of the 
cases (Brückmann, 2004). 

2 MOTIVATION: DELAY 
TRAJECTORIES 

The application of the Hough-transform to the 
output of an auditory model is motivated by the fact, 
that a sound might be represented by regular shapes 
in an intermediate representation, which might be 
identifiable by the Hough-transform. We choose the 
neurotransmitter release distribution as the inter-
mediate input for the Hough-transform. The patterns 
of the neurotransmitter concentration in the synaptic 
cleft have the appearance to be bundles of curves of 
different curvature, if quasi stationary signals such 
as vowels are applied (see Figure 1). 

 
Figure 1: waveform (top) and vesicle release delay 
trajectories (bottom) of vowel "a" (male speaker). 

According to the auditory image (AI) study from 
Greenberg et al. (Greenberg, 1997) the curvature of 
the resulting curve caused by a single impulse is 
solely dependent on the species, i.e., the anatomical 
properties of the basilar membrane (BM). On the 
other hand, when speaking of one species and 
complex sounds, then the resulting curves do have 
different curvature. We concentrate on these 
emerging vesicle data sets. We will try to detect 
these emerging curves composed of vesicles by 
fitting appropriate curves to the neurotransmitter 
vesicle release distribution, and then see whether a 
sound can be classified by the generated sequence of 
curve parameters. The curve parameters are the time 
of occurrence and their specific curvature. The 
Hough-transform is then applied to the auditory 
image of vowel sounds intonated by different 
speakers. 

3 THE AUDITORY MODEL 

The velocity of the basilar membrane excited by a 
time varying audio signal is computed according to 
the Extended Zwicker model as given by Baumgarte 
(Baumgarte, 2000). The mechano-chemical coupling 
of the BM velocity is mediated by the forced 
movement of the stereociliae of the inner hair cells 
(IHC). The movement depolarizes the IHCs 
resulting in neurotransmitter vesicle releases. This 
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process is modelled according to the rate kinetics 
equations as given by Meddis and Poveda in 
(Sumner, 2002). The neurotransmitter release 
distribution reflects the actual state of the BM 
velocity at a given time. 
 The auditory model processes the wave input file 
and generates 251-channel output data, where each 
channel has a different centre frequency, ranging 
from 5 Hz to 21 kHz. The channels can be imagined 
as slices of the basilar membrane in the cochlea with 
the data on them representing the sound information 
sent by the inner hair cells towards the brain. 

4 CORE: THE NEURAL NET  

The core of the system is an artificial Hubel-Wiesel 
network, which is extensively described in 
(Brückmann, 2002). This neural network is able to 
learn almost any set of different slopes or a set of 
sinusoids of different frequencies. It has been also 
shown, that the network is capable of self-learning, 
however, this process may consume large amount of 
time. 
 Katzmann showed (see Acknowledgements) that 
a more efficient learning method is available if the 
following rules are satisfied (see also Figure 2): 

- the curves (to be taught) must be one pixel 
wide, 

- for every x-value a function value (a pixel of the 
curve) must exist,  

- the first “curve” should always be a straight 
horizontal line (y=1), 

- the curves should be ordered by an index, where 
the (i+1)th curve must be at most one pixel 
wider (in y direction) than the ith one, 

- all curves must start at first column (x=1) and 
go down to the rightmost, lowest point (xlast, y=1). 

 
Figure 2: a 4x4 network with four possible curves. 

Please note that the curves created according to the 
method defined above will be inverted before use, 
i.e., the first curve being looked for in the auditory 
image will be a straight vertical line. 

5 PARAMETERIZATION 

To achieve a good performance, it is crucial to have 
the proper curves modelled and to do the Hough-
transform on the appropriate data set. 

5.1 Geometric model of the curves 

Greenberg pointed out that the motion of the BM 
proceeds in an orderly fashion from the base to the 
point of maximum displacement, beyond which it 
damps out relatively quickly. The transit of the 
travelling wave is extremely fast at the base, but 
slowing dramatically for peak displacements at the 
apex of the cochlea (Greenberg, 1997). He showed, 
furthermore, that the delay trajectories can be 
efficiently modelled by the simple equation: 

 kfd ia += −1 , (1) 

where the cochlear delay da can be calculated from 
the given frequency fi and delay constant k. 
Basically, the equation above means that the delay 
trajectories have some kind of 1/x characteristics. 
 Based on this statement, and taking the rules 
listed in Chapter 4 into account, we found the 
following curve-equation for our digital system: 
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where np is the size of the quadratic network in each 
direction (measured in pixels), ν denotes the index of 
the current curve (ν= 0, 1, …, np – 1), and j is the 
index of the current pixel being calculated (j= 0, 1, 
…, np – 1). Free variable fmin can be used to set the 
average curvature, see Figure 3 for comparison. 

 
Figure 3: 16x16 networks configured with different  fmin 
value (left: fmin= 5, right: fmin= 35). Note that only 3 of the 
16 curves are shown on each figure. 

5.2 Hough parameters 

As already mentioned in the introductory part, the 
extraction of the curves is performed by an artificial 
Hubel-Wiesel network in a parallel way. Parallel 
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operation stands for a line-wise instead of a pixel-
wise approach. 
 As stated in Chapter 3, our auditory model has 
251 channels of output, each corresponding to a 
specific centre frequency. Since speech processing 
does not require the whole spectral information, a 
spectral crop can be applied to decrease the number 
of channels to be processed. We now introduce two 
new system parameters: Cb and Ct, which stand for 
bottom- and top (spectral) crop, respectively. Both 
are non-negative integers and mean the number of 
channels to be ignored (see Figure 4). 

 
Figure 4: cropping of the auditory image. 

One other system parameter is St, which stands for 
time-scaling. St is the number of consecutive data on 
each channel, which will be averaged and treated as 
one input data for the Hough-transform. 
 So, the main parameter quadruplet for the 
Hough-transform is fmin, Cb, Ct and St. The best 
values are different for men and women voice, but 
fmin= 30, Cb=25, Ct=85 and St=6 is a good 
compromise. From now on, these values will be 
referred as the default Hough parameters. 
 It is easy to see, that the height of the auditory 
image to be transformed, and hence, the size of the 
artificial Hubel-Wiesel network is h=251–Ct–Cb. 
The width (w) of the image depends on the duration 
of the input sound and on St. 

6 THE TRANSFORMATION 

Once the input sound file has been transformed into 
an auditory image, the Hubel-Wiesel network will 
be configured, i.e., the curves corresponding to a 
given fmin will be taught. 
 Next, the cropped auditory image will be fed into 
the network. In each step, the image will be shifted 
by one column that the network will transform. Each 
step generates an output array of h elements. Since 
our artificial Hubel-Wiesel network is quadratic, in 
w steps, the Hough-transformed output image 
(having the same dimension as that of the input 
image) will be ready. 

 
Figure 5: delay trajectories of (male) vowel “e” induced 
by the highly coherent neurotransmitter vesicle releases 
(top), and its Hough-transformed image (bottom). 

If the Hough parameters were set correctly, the 
output image would give clear information about 
“when” and “what curvature” curves were contained 
by the auditory image (see Figure 5 and Figure 6). 
 For better understanding, see Figure 6, where a 
fake auditory image with five artificially created 
curves has been overlaid with random noise and then 
transformed. Note that the transformed output image 
(bottom) only contains five distinctly visible points 
representing the five original curves (top). 

 
Figure 6: a Hough-transformed fake auditory image. 

7 RECOGNITION 

To achieve a clear transformed image (similar to 
Figure 6, bottom), and to enable an experimental 
vowel recognition, the Hough-transformed auditory 
image (AI) has to be post-processed. A typical post-
processing step for Hough-transform is the so called 
butterfly filtering, which is a convolution filter, and 
is used to enhance the feature points in the 
transformed image. Still, since we only need several 
feature points for vowel recognition we chose 
another way of post-processing as follows. 

7.1 Post-processing 

The (greyscale) value for each pixel in the 
transformed image ranges from 0 to h-1. Let us 
denote the x and y position and the value of the 
global maximum pixel by mx, my and mv, respec-
tively. Furthermore, the pixels of the transformed 
image will be referred as Px,y, where, for example, 
P5,8 means the value of the pixel that is the 5th from 
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the left and the 8th from the bottom of the image. 
 Now, histogram Hτ will be built according to the 
pixel values of all the rows of the transformed image 
(see Equation 3 and Equation 4). Hτ will contain the 
sum of those pixel-values in a line, which are greater 
or equal to τ  ּmv. Default value for τ is 0.75. 
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Now, let smooth Hτ and take the positions of the 
three major peaks; denote them by Φ1  (highest 
peak), Φ2  and Φ3  (smallest peak). Taking the peak 
values from the histogram will determine the y 
position of the areas, in which an adaptive (local) 
maximum search shall be initiated. The x position of 
the search areas will be determined by calculating 
the highest autocorrelation value (ρ :  best 
periodicity) of the transformed image, and by adding 
this ρ  several times to the x position of the 
maximum pixel in the actual line (see Figure 7). 

 
Figure 7. Hough transformed AI of vowel “u” (female 
speaker). The local-maximum (LM) search-areas 
(boxes) based on the histogram (right) are also shown. 
Please note the order of Φ1 , Φ2  and Φ3 , and that ρ 
equals to the displacement between adjacent boxes. 

7.2 The resulting data set 

Quadruplet [Φ1 , Φ2 , Φ3 , ρ] contains sufficient 
information to carry out a simple vowel recognition. 
We introduce a redundant variable r for easier 
discussion of the relation of the histogram peaks (see 
Table 1).  

Table 1: Possible relation of histogram peaks. 
Relation of peak positions r 

Φ1  < Φ2  < Φ3  1 
Φ1  < Φ3  < Φ2  2 
Φ2  < Φ1  < Φ3  3 
Φ2  < Φ3  < Φ1  4 
Φ3  < Φ1  < Φ2  5 
Φ3  < Φ2  < Φ1  6 

We state that efficient and robust automated vowel 
recognition might be possible based on Hτ and ρ. 

 
Figure 8: Hough-transformed AIs of vowel “a”, with the 
maximum points (of LM-areas) shown. Top: male speaker 
A, bottom: male speaker B. Please note the similarities, 
and the fact that in both cases r=5 holds. 

7.3 A simple recognition method 

As the next step of a very simple vowel recognition 
and visualization procedure, the maximum value of 
each LM-area (see boxes on Figure 7) will be 
picked. Then, based on the histogram, r will be 
evaluated. Most amazingly, r itself is a very strong 
feature for vowels “a”, “o” and “u”, even for 
different speakers. See Figure 8, Figure 9 and Figure 
10 for comparison. 

 
Figure 9: Hough-transformed AIs of vowel “o”, with the 
maximum points shown. Top: male speaker B, bottom: 
male speaker C. In both cases r=3 holds. 

 
Figure 10: Hough-transformed AIs of vowel “u”, with 
the maximum points shown. Top: female speaker A, 
bottom: female speaker B. In both cases r=1 holds. 

The results presented above are very similar in the 
case of other speakers. 

7.4 Visualization of the results 

One could doubt whether the maximum points 
would be found correctly. The maximum points can 
be picked and the curves that they encode can be 
drawn back for verification. See Figure 11. The 
results do not need any further explanation. 
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Figure 11: Hough-transformed AI of vowel “i” by male 
speaker B with maximum points shown (bottom), and the 
corresponding delay trajectories with curves drawn back 
based on maximum point information (top). Please note 
that despite the similarity to Figure 8, r=2 in this case. 

8 RESULTS 

It has been shown that after the Hough-transfor-
mation of the auditory image, vowels can be recog-
nized even with very simple processing methods. 
Despite the simplicity of the algorithm, recognition 
is speaker-independent for selected vowels (a, o, u). 
We insist that a competent (neural) system could do 
a more extensive and yet robust recognition based 
on Hτ and ρ. 

9 CONCLUSIONS 

The application of the Hough-transform to the 
neurotransmitter vesicle release distribution yields 
good results, especially in procuring invariant 
parameter settings for vowel descriptions for 
different speakers. According to these findings, the 
authors will try to model several computational 
maps in the brain structured to execute Hough-
transforms. Furthermore, more sophisticated post-
processing methods are being investigated to yield a 
more robust and possibly automated vowel 
recognition. 
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