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Abstract This paper presents a new approach to automatic 3D face recognition using a model-based approach. This 
work uses real 3D dense point cloud data acquired with a stereo face scanner. Since the point clouds are in 
varied orientations, by applying a non-iterative registration technique, we automatically transform each 
point cloud to a canonical position and detect facial features used for defining the frontal part of face which 
is to be modelled in next step. Unlike the iterative ICP algorithm, our non-iterative registration process is 
scale invariant. An efficient B-spline surface-fitting technique is developed to represent 3D faces in a way 
that allows efficient surface comparison. This is based on a novel knot vector standardisation algorithm to 
allow one-to-one mapping from the object space to a parameter space. Consequently, correspondence 
between objects is established based on shape descriptors, which can be used for recognition.  

1 INTRODUCTION 

Recent theoretical and technical advance in 3D data 
capture opens up the possibility of overcoming the 
difficulties in 2D face recognition systems due to 
pose and illumination variations. Whereas most of 
previous works use 2.5D (range) face images, this 
work uses real three-dimensional (3D) data acquired 
using a stereo vision based scanner. However, 3D 
data (dense point clouds in this case) cannot be used 
directly for shape analysis. First, the objects are in 
varied orientations and sizes. Second, the surface 
captured varies significantly across subjects and 
often includes neck or shoulders. Third, since a data 
set has around 30,000 vertices, it is impractical using 
these vertices directly for recognition purposes. Thus 
we are looking for a compact way to represent face 
models so that they can be compared. 

In this paper, a new approach to efficient 3D face 
representation from unstructured point clouds is 
presented. The paper is organised as follows. Section 
2 describes our algorithms for simultaneous scale 
invariant pose estimation and facial features 
detection. Section 3 presents an efficient B-spline 
surface reconstruction method, from which shape 
descriptors are obtained to represent all face models 
in a parameter space. With the affine-invariant 

property of shape descriptors, normalisation and 
alignment can be easily done as discussed in section 
4. Correspondences between objects are also 
obtained via the one-to-one mapping from the object 
space to a parameter space. The distance metric is 
then developed for face recognition. Finally, section 
5 concludes the paper with the future research 
directions. 

2 REGISTRATION 

2.1 Previous Work 

In the past, several efforts have been made for the 
registration of 3D point clouds. One of the most 
popular methods is the iterative closest point (ICP) 
algorithm developed by Besl and McKay (1992). 
The ICP searches a pair of nearest points in two data 
sets, and estimates a rigid transformation which 
aligns the two points. The rigid transformation is 
then applied to all the points of one data set to try to 
match those of the second, and the procedure is 
iterated until some optimisation criteria is satisfied. 
Several variations of the ICP method have been 
proposed. Chen and Medioni (1992) evaluated the 
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registration function using point-to-plane distance. 
In Zhang (1994), a robust statistic threshold was 
introduced to determine the matching distance 
dynamically. Iterative methods such as this are 
obviously time consuming. When the assumption of 
one data set being a subset of the other is not valid, 
false matches can be created (Fusiello et al,  2002). 
Moreover, they rely on a good estimate of the initial 
transformation. Another deficiency of the ICP 
method is scale sensitive. There are other alternative 
approaches. For example, some feature-based 
registration methods were presented in (Godin et al, 
1994; Godin and Boulanger, 1995; Godin et al, 2001). 
More detailed reviews on registration can be found 
in (Campbell and Flynn, 2001; Flusser and Zitova, 2003). 

In face recognition, we have to register face 
scans of varied sizes due to either the distinct 
characteristics of each individual, e.g. faces between 
child and adult, or the scale change of a scanner. 
Moreover, the face surface varies significantly 
across subjects and often includes neck or shoulders. 
Finally, no transformation can be reasonably 
estimated to pre-align two face scans.  

2.2 Our Approach 

The aim of registration is to define a transformation, 
which takes a face of an arbitrary view to a 
canonical position. The transformation can be 
written as: 

tDRkD +⋅⋅=′    ( 1 ) 
where D and D’ are the observed data before and 
after transformation, respectively. R is a 3×3 rotation 
matrix. The translation t and normalisation k can be 
done using shape descriptors obtained from surface 
reconstruction in section 3. The task at this stage is 
to automatically find the rotation matrix, such that 
D* = RD is in the canonical position. The rotation 
matrix represents the pose estimate of the original 
data set. The canonical position is defined as (in 
world coordinate system), see Figure 2(c): 

 
• The line linking two inner eye corners (Eleft, 

Eright) is perpendicular to the yz plane after 
registration; 

• The facial symmetry plane I is perpendicular to 
the xy plane passing through nose tip Ntip. 

• Both nose top Ntop and nose bottom Nbottom are 
located in plane I, and the line linking them is 
perpendicular to the xz plane. 

 
Ntop is defined as the intersection of the line linking 
Eleft and Eright and plane I . The nose tip can be 
located during clouds generation.  

Two stages are involved to obtain the rotation 
matrix R and facial features. The first stage is to 
estimate the initial rotation matrix (head pose) based 
on the symmetry property of a face. Briefly, B-
spline curves are fitted to the point cloud, and the 
resulting B-spline curves are measured against the 
canonical coordinate axes to determine their 
deviations from each axis to estimate the rotation 
about that axis. The rotation matrix is the composite 
of rotations around all the axes: 

xiyiziapp RRRR ⋅⋅=    ( 2 ) 
Data will be near frontal after being transformed by 
Rapp. Figure 1(a) illustrates the initial pose 
estimation procedure and the result.  

The next stage is to detect facial features and 
refine the initial pose estimate, as shown in Figure 
1(b). The nose saddle point is estimated first. 
Possible areas containing inner corners of the eyes 
can then be decided upon, as shown in Figure 1(c). 
For each area, eight candidates of the inner eye 
corners are obtained for further consideration. The 
pair of points with the highest priority value is 
chosen as the inner eye corners. Feature detection 
and pose refinement are done in parallel, since the 
coordinates of these features are directly related to 
pose. 

Pose refinement uses the following rotation 
matrix: 

zyxre RRRR ⋅⋅=     ( 3 ) 
where Rx, Ry and Rz are the compensation rotation 
matrices around x, y and z axes. The key idea of 
pose refinement is to evaluate Rx, Ry and Rz using 
the facial feature points. As D* will be in the 
canonical position after transforming the original 
data with R= appre RR • , feature points must satisfy 
the equations (4)-(10) simultaneously: 
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where ′
leftE and ′

rightE are the candidate pair of inner 
eye corners; n is number of candidate inner eye 
corners 
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from the facial symmetry plane.  
 

(a) (b) 

   
© (d) (e) 

Figure 1: Procedures of pose estimation and facial features 
detection. (a) Initial pose estimate. (b) Refined pose 
estimate. (c) Output from the first stage of pose estimation. 
Possible areas containing the inner corner of eyes are 
decided upon. (d) Candidates of the inner eye corners 
chosen from the areas marked in (c). (e) Detected facial 
features and the final output from the pose estimation 
algorithm. 

Figure 2 shows an example result of registering 
original point clouds to a canonical position. 
 

(a) (b) 

 

(c) 
Figure 2 Examples of original point clouds before and 
after applying our registration algorithm. (a) Input point 
clouds acquired from 3D scanner with varied orientations. 
(b) Input point clouds displayed in texture. (c) Output 
point clouds in the canonical position (in a same 
orientation).  

We will now compare our 3D registration 
methods with the ICP algorithm. The ICP 
registration results are shown in Figure 3 (b) and (e). 
Figure 3 (c) and (f) are the results using our 
approach.  

 

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 3: Comparison between ICP method and our 
proposed method. (a) First pair of point clouds to be 
registered. (b) Positive result from ICP method. (c) The 
registration result using our approach. (d) Second pair of 
input point clouds. (e) Negative result from ICP algorithm. 
(f) Our result. 

3 3D MODELLING 

The 3D modelling problem can be stated as follows: 
given a unstructured point cloud P: pi (xi, yi, zi), 
find a B-spline surface F: R2 → R3, which fits the 
point cloud best.  

There has been considerable work on fitting B-
spline surfaces to 3D points. However, most work 
dealt with fitting a single B-spline patch on a regular 
grid data set. This can only deal with simple data 
sets, e.g. a deformed quadrilateral (Hoschek et al, 
1989; Rogers and Fog, 1989; Sarkar and Menq, 1991) 
or a deformed cylinder (Schmitt et al, 1986). To 
reconstruct complex surfaces, many efforts focus on 
interconnecting multiple surface patches (Eck et al, 
1995; Eck and Hoppe, 1996; Krishnamurthy and Levoy, 
1996; Milroy et al, 1995). The problem with this is the 
difficulty in having all objects modelled in the same 
parameter space, since every patch has its own 
parameter space.  
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Our aim is to construct a compact and unique 
representation of the 3D surface to allow face 
comparison. This is achieved by constructing, 
automatically, a single B-spline surface having Ck-1 
continuity (k is the degree of B-spline function) 
everywhere intrinsically, Figure 4(b), rather than 
many patches stitched together. This makes object 
comparison impossible. 

 

  
(a) (b) (c) 

Figure 4: 3D modelling. (a) Unstructured point cloud to be 
reconstructed. (b) Reconstructed surface. (c) 
Reconstructed surface with texture mapping. 

The procedure of constructing this single B-spline 
surface is as follows: 
• Decomposing the surface-fitting problem to a 

sequence of curve-fitting problems based on a 
knot vector standardisation algorithm. We 
reconstruct a single B-spline surface on a 
parameter space by the control points of the 
surface and individual knot vectors. This is 
discussed in section 3.2. 

• Since the B-spline surface obtained from section 
3.2 depends on the control points, parameter 
values and basis functions, which vary from 
individual to individual, there is no direct 
mapping from the parameter domain to the 
object space. The task in section 3.3 is to obtain 
a direct one-to-one mapping relationship from 
the object space to the parameter domain. 

3.1 Knot Vector Standardisation 

Given nx+1 control points f: {f1, f2, …, fnx} and a knot 
vector X={x0, x1, …, xnx+g+1}, the B-spline curve F 
of degree g is: 
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Another B-spline curve L defined by nY+1 control 
points l: {l1, l2, …, lny} and a distinct knot vectors 
Y={y0, y1, …, yny+g+1} is: 
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The task is to standardise distinct knot vectorsand 
have B-spline curves F and L defined on the same 
knot vector.  

Instead of simply merging all knot vectors 
together (Watt and Watt, 1992), our approach is to 
standardise all knot vectors to a pre-defined knot 
vector U={u0, u1, …, unu+g+1}. Correspondingly, 
control points set {fi} is re-calculated as 
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Then curve F is: 
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Similarly, we have curve L defined on the same knot 
vector U by 
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Comparing Equation (17) and (20), it is obvious that 
the basis functions B’ and N’ are identical. We then 
have one basis function expression Q for all B-spline 
curves defined upon the knot vector U: 
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Consequently, Equation (11) and (12) can be 
rewritten as: 
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Errors E is measured between the set of original 
data points D and the corresponding interpolated 
values from B-spline curve F’. sd is the parameter 
value associated with data point d. Then, we can 
define E to be  

Υ
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The maximum error was within 1%. Therefore 

we could ignore the difference between curve F’ and 
F, by having F’ ≈ F.  
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3.2 B-spline Surface Fitting 

A B-Spline surface  
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is defined by  
 
• a set of m+1 rows and n+1 column control 

points jiC , , where 0 ≤ i ≤ m,  and 0 ≤ j ≤ n; 

• a knot vector of l+1 knots in the u- direction, 
U={u0, u1, …, ul}; 

• a knot vector of k+1 knots in the v- direction, 
V={v0, v1, …, vk}; 

• degree h in the u- direction; and 
• degree g in the v- direction. 
 
Bj,g(s) is the B-Spline basis functions in the u- 
directions, defined over knot vector U: 
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Ni,h(t) is defined analogously over the knot vector V 
in the v-direction.  

Given grid data P: {pc,d | pc,d ∈ R3, 0 < c < m, 0 < 
d < n }, uniform knot vector U and V are obtained 
for the u- and v- direction, respectively, basing on 
the property of grid data spacing at equal intervals. 
In this case, the fundamental identities, i.e. l=m+h+1 
and k=n+g+1, can be held explicitly for the pair knot 
vector U and V. Then the problem of finding the 
underlying B-Spline surface Γ fitting P best can be 
converted into a sequence of curve fitting processes  
(Schmitt et al, 1986). However, for a complex surface, 
e.g. face in Figure 4 (a), obtaining grid data on all 
areas such as forehead, nose and chin etc. is a 
nontrivial problem. Alternative approaches are to 
divide the surface into small planar patches and then 
re-sample each patch to get grid data (Krishnamurthy 
and Levoy, 1996; Milroy et al, 1995; Eck and Hoppe, 
1996), which require extensive computation 
subdividing the surface and maintaining continuity.  

By applying the knot vector standardisation 
algorithm described in 3.1, fundamental identity can 
also be enforced on non-grid data. Thus non-grid 
data can be decomposed into small portions upon 
which the curve-fitting procedure can be applied 
independently, as does on grid data. Consequently, 
we can apply different automatic sampling schemes 

on different parts of a face. For example, the 
forehead area is rather flat with little curvature 
changes. A sparse and evenly sampling scheme will 
work well. In contrast, the area close to the nose 
contains sharp curvature variations. A dense and 
uneven sampling scheme is necessary to guarantee 
precise interpolation.  

Following the discussion above, the point cloud 
data }{: 3RpP ∈ are decomposed into small portions 

},,{: 10 mpppP Λ  (sub dataset), where,  

},,{: 0,01,00,00 xpppp Λ , …, },,{: ,1,0, xmmmmm pppp Λ  

and x0 ≠ x1 ≠ … xm. For each sub dataset cp , 0 ≤ c 
≤ m, the curve-fitting procedure is applied 
independently: 
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After standardising knot vectors, Equation 26 is 
written as 
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From Equation 27 and 28, the underlying B-Spline 
surface is calculated as: 
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3.3 Shape Descriptors 

After B-spline surface-fitting, we have each face 
modelled by a set of control points over its own pair 
of knot vectors. If we use matrix operations to 
present the reconstructed B-spline surface, i.e. 
Equation (23), we have: 
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kkk

k vectsts •Α=Γ       ( 30 ) 
 
where matrix A represents the Kronecker product. 
Obviously Equation (30) is not a direct function of 
parameter (s, t) yet. By applying knot vector 
standardisation, we can remove the dependency on 
individual knot vectors in Equation (30). By having  
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if uj ≤  s <uj+1 
otherwise 
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where A
−

 is a function of (s,t) for all face models. 

C
k

′ is a set of parameters ∈ R3 which is independent 
of individual knot vectors, we arrived at 

CA
k

k tsts ′⋅=Γ
−

),(),(     ( 33 ) 

Thus we have established a direct mapping between 
the parameter domain (s, t) ∈ Ω: [0,1]×[0,1] and the 
object space Γ ∈ R3. From Equation (33), we know 
that C′  defines the unique shape of a surface, 

i.e.C′  is a shape descriptor. Figure 4(b) shows a 
rendered B-spline surface using shape descriptors 
over the domain Ω. Shape descriptors have several 
important properties, including: 
 
• Establishing direct one-to-one mapping 

relationship from the parameter domain to the 
object space. For each pair of parameter value 
(s, t), we have a unique corresponding B-spline 
surface point in the object space.  

• Compact representation for 3D objects. The 
approach can achieve over 90% compression 
rate with similar rendering result to polygon 
representation.  

• Affine-invariance. The same result will be 
obtained transforming a B-spline surface itself 
or its shape descriptors. This is a very important 
property and will be used in next section for 
normalisation and alignment. Instead of 
translating and scaling the 3D object directly, 
we will apply the operations to its shape 
descriptors.  

4 FACE RECOGNITION 

We have represented 3D face scans in a form which 
can be used to compare faces. In this section, we 
will use this representation to match test faces to 
those stored in a database. Currently, our database 
consists of 30 individuals, 3 scans per individual. 
One scan is used to construct the 3D face database, 
whilst the other 2 scans are used in face recognition 
experiments. The test set consisted of 24 individuals 
with 2 scans for each.  

Each face in the database and test set is modelled 
using the techniques discussed in previous sections. 
Each object in the test set is compared against all the 
faces in the database. The face having the smallest 
difference is identified as the best match to the test 

face. The procedure is shown in Figure 5. Details of 
the implementation is described below. 

 

 
Figure 5: Face recognition based on the distance metric. 

4.1 Face Comparison 

We normalise and align face models first. As 
mentioned in section 3, normalisation and alignment 
can be done fairly straightforwardly using the affine-
invariant property of shape descriptors. Taking one 
model in the database as the generic model, we 
normalise and align all the face models to the 
generic model. 

tk CC
kk

+⋅= ′′′     ( 34 ) 
where k and t are scalars of normalisation and 
translation, respectively. The normalised and aligned 
face model is: 
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k
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The corresponding surface points between 

models can be generated due to the one-to-one 
mapping from the parameter domain Ω to the object 
space. For each pair of parameters (s, t), each face 
model has a unique corresponding B-spline surface 
point:  

),(),( tsts kΓ⇒     ( 36 ) 
),(),( 1 tsts k+Γ⇒    ( 37 ) 

Therefore, B-spline surface points Γk(s, t) and Γk+1(s, 
t) are uniquely mapped, i.e.  

),(),( 1 tsts kk +Γ⇒Γ    ( 38 ) 
Examples are shown in Figure 6. 
 

 
(a) (b) (c) (d) 

Figure 6:Corresponding B-spline surface points. (a) A 
common parameter domain Ω. (b)-(d) Face models 
reconstructed on the parameter domain, Ω  in (a). For each 
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parameter pair marked in (a), there is a unique surface 
point on each face model.  

By sampling the parameter domain, we obtain a set 
of corresponding B-spline surface points on each 
face model. The linear distance-based method, i.e. 
Euclidean distance matrix analysis (EDMA) (Lele 
ans Richtsmeier, 2001) can be used as metric to judge 
the similarity between a test face and each face in a 
database, which is given by 
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where Γi represents the ith model in the database; 
Γtest is a test object which we want to find its 
matching face model in the database. N is the total 
numbers of the 3D models in the database. Small 
values indicate a high degree of similarity. 

4.2 Experimental Results 

The representative 3D models and test scans are 
shown in Figure 7 and Figure 8 respectively.  
 

    

    
Figure 7: Some of the 3D face models in the database. 

    
Figure 8: Representative test faces. 

Each face in the data set is compared against all the 
3D models in the database. The examples of 
similarity measurement between test faces and each 
face in a database are provided in Figure 9. 

 

 

 
Figure 9: Similarity measurement. The bar charts show the 
similarity between a test face and each face in a database. 
The face having the smallest difference to the test face is 
identified as the best match to the test face. 

 
Out of the 4 errors in the 48 test faces 
(corresponding to 91.7% accuracy), 2 test faces are 
different scans of the same subject with different 
facial expressions. In the other two cases, the correct 
match is ranked the second best, Figure 10(top). 
However, incorporating some additional 
information, e.g. using the square root distance 
between corresponding points as an additional 
metric to compare the similarity, given by Equation 
40, they are correctly identified, Figure 10(bottom). 
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Figure 10: The difference between the test face and the 
impostor face.  (Top) The correct model is the second 
ranked face in the database. (Bottom) Result after 
combining another recognition strategy.  
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5 CONCLUSION 

We have developed a new automatic model-based 
face recognition system, which includes both non-
iterative registration and the representation of 3D 
face models by shape descriptors. By registering 
point clouds to a canonical position, we overcome 
the pose-variation problem. Unlike ICP algorithm, 
this non-iterative registration process is scale 
invariant. An efficient B-spline surface-fitting 
technique is developed to reconstruct underlying 
surface for the registered data set. A new knot vector 
standardisation technique is proposed to allow a 
direct one-to-one mapping relationship from the 
object space to a parameter space. Subsequently, a 
compact parametric representation of 3D objects is 
obtained. The system has been tested on a personal 
computer (Pentium 4/512M RAM). Compared with 
the existing method of closed surface 
parameterisation, which takes 33s to 536s depending 
on the complexity of the objects [BGK96], the 
registration and modelling process introduced in this 
paper only takes 2 seconds, on an average sized 
point cloud (about 25,000 vertices). 

Although surface distance can be used as a 
metric for face recognition, it may not be very 
sufficient since no explicit geometric information is 
employed. Our future work is to integrate geometric 
information into recognition methods. For example, 
we may turn a recognition problem into a 
classification problem of the shape descriptors.  

With the proposed surface representation, it is 
possible to analyse facial component separately. As 
the geometry of B-spline surface can be inferred 
from the shape descriptors, we can delineate facial 
areas, e.g. forehead, nose, mouth, chin, from the 
parameter space, and weigh each part separately in 
the recognition metric to reduce the influence of 
facial expression. The areas potentially affected by 
facial expression will be given lower weight. 
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